# Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

#### 2.1. Theory

#### 2.2. FEM Approach

_{p}/λ ≃ 0 to 1 (D

_{p}= 2a is the BP diameter).

#### 2.3. Material Model

#### 2.4. Convergence and Validation

## 3. Results and Discussion

#### 3.1. ARF Exerted on BPs in High Frequencies

#### 3.2. One-Directional Standing Acoustic Waves

#### 3.3. Multidirectional Standing Acoustic Waves

_{p}/λ (Figure 5D), which implies that a constant modifying factor is not appropriate for presenting a predictive formulation in multidirectional acoustic fields.

#### 3.4. Range of Validity

^{−3}and ${c}_{p}\simeq 1500$ m s

^{−1}(Figure 6A,B), while Ɗ increases with deviating from the optimum point. However, even for values other than the optimal density and longitudinal sound velocity, Equation (10) provides more accurate results than previous formulations which have been using in particle tracing analysis (Figure 6C).

## 4. Conclusions

## Supplementary Materials

_{v}/a. Ideal theory suggests a steady contrast factor while viscous and thermoviscous theories predict a variable contrast factor. However, the difference between these values are negligable; (B) The ARF error when using an ideal fluid compared to viscous (green dashed line) or thermoviscous (blue solid line) fluid. Results demonstrate that the maximum ARF error with an ideal fluid assumption is less that 1%, however the error significantly decreases with increasing the acoustic frequency. The detailed properties are presented in Table 1; Table S1: Comparison of the ARF values obtained from different studies along with the results of ASI model in present study; Table S2: Properties of the cell/particle and fluid (water) for calculation of ARF results shown in Table S1.

## Acknowledgments

## Author Contributions

## Conflicts of interest

## References

- Antfolk, M.; Laurell, T. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood—A review. Anal. Chim. Acta
**2017**, 965, 9–35. [Google Scholar] [CrossRef] [PubMed] - Jubery, T.Z.; Srivastava, S.K.; Dutta, P. Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis
**2014**, 35, 691–713. [Google Scholar] [CrossRef] [PubMed] - Gholizadeh, S.; Draz, M.S.; Zarghooni, M.; Sanati-Nezhad, A.; Ghavami, S.; Shafiee, H.; Akbari, M. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: Current status and future directions. Biosens. Bioelectron.
**2017**, 91, 588–605. [Google Scholar] [CrossRef] [PubMed] - Lee, K.; Shao, H.; Weissleder, R.; Lee, H. Acoustic purification of extracellular microvesicles. ACS Nano
**2015**, 9, 2321–2327. [Google Scholar] [CrossRef] [PubMed] - Shao, H.; Chung, J.; Balaj, L.; Charest, A.; Bigner, D.D.; Carter, B.S.; Hochberg, F.H.; Breakefield, X.O.; Weissleder, R.; Lee, H. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med.
**2012**, 18, 1835–1840. [Google Scholar] [CrossRef] [PubMed] - Li, P.; Mao, Z.; Peng, Z.; Zhou, L.; Chen, Y.; Huang, P.-H.; Truica, C.I.; Drabick, J.J.; El-Deiry, W.S.; Dao, M. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. USA
**2015**, 112, 4970–4975. [Google Scholar] [CrossRef] [PubMed] - Xia, Y.; Tang, Y.; Yu, X.; Wan, Y.; Chen, Y.; Lu, H.; Zheng, S.-Y. Label-free virus capture and release by a microfluidic device integrated with porous silicon nanowire forest. Small
**2017**, 13, 1603135. [Google Scholar] [CrossRef] [PubMed] - Barani, A.; Paktinat, H.; Janmaleki, M.; Mohammadi, A.; Mosaddegh, P.; Fadaei-Tehrani, A.; Sanati-Nezhad, A. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosens. Bioelectron.
**2016**, 85, 714–725. [Google Scholar] [CrossRef] [PubMed] - Guven, S.; Chen, P.; Inci, F.; Tasoglu, S.; Erkmen, B.; Demirci, U. Multiscale assembly for tissue engineering and regenerative medicine. Trends Biotechnol.
**2015**, 33, 269–279. [Google Scholar] [CrossRef] [PubMed] - Hasan, A.; Saliba, J.; Modarres, H.P.; Bakhaty, A.; Nasajpour, A.; Mofrad, M.R.; Sanati-Nezhad, A. Micro and nanotechnologies in heart valve tissue engineering. Biomaterials
**2016**, 103, 278–292. [Google Scholar] [CrossRef] [PubMed] - Maltsev, V.P.; Semyanov, K.A. Characterisation of Bio-Particles from Light Scattering; De Gruyter: Berlin, Germany, 2004; Volume 6, pp. 5779–5787. [Google Scholar]
- Chen, G.D.; Alberts, C.J.; Rodriguez, W.; Toner, M. Concentration and purification of human immunodeficiency virus type 1 virions by microfluidic separation of superparamagnetic nanoparticles. Anal. Chem.
**2009**, 82, 723–728. [Google Scholar] [CrossRef] [PubMed] - Ding, X.; Li, P.; Lin, S.-C.S.; Stratton, Z.S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzo, F. Surface acoustic wave microfluidics. Lab Chip
**2013**, 13, 3626–3649. [Google Scholar] [CrossRef] [PubMed] - Ding, X.; Lin, S.-C.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.-K.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA
**2012**, 109, 11105–11109. [Google Scholar] [CrossRef] [PubMed] - Guo, F.; Mao, Z.; Chen, Y.; Xie, Z.; Lata, J.P.; Li, P.; Ren, L.; Liu, J.; Yang, J.; Dao, M. Three-dimensional manipulation of single cells using surface acoustic waves. Proc. Natl. Acad. Sci. USA
**2016**, 113, 1522–1527. [Google Scholar] [CrossRef] [PubMed] - Bouyer, C.; Chen, P.; Güven, S.; Demirtaş, T.T.; Nieland, T.J.; Padilla, F.; Demirci, U. A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3d brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv. Mater.
**2016**, 28, 161–167. [Google Scholar] [CrossRef] [PubMed] - Garvin, K.A.; Dalecki, D.; Yousefhussien, M.; Helguera, M.; Hocking, D.C. Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields. J. Acoust. Soc. Am.
**2013**, 134, 1483–1490. [Google Scholar] [CrossRef] [PubMed] - Naseer, S.M.; Manbachi, A.; Samandari, M.; Walch, P.; Gao, Y.; Zhang, Y.S.; Davoudi, F.; Wang, W.; Abrinia, K.; Cooper, J.M.; et al. Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (gelma) hydrogels. Biofabrication
**2017**, 9, 015020. [Google Scholar] [CrossRef] [PubMed] - Wu, M.; Mao, Z.; Chen, K.; Bachman, H.; Chen, Y.; Rufo, J.; Ren, L.; Li, P.; Wang, L.; Huang, T.J. Acoustic separation of nanoparticles in continuous flow. Adv. Funct. Mater.
**2017**, 27. [Google Scholar] [CrossRef] - Collins, D.J.; Morahan, B.; Garcia-Bustos, J.; Doerig, C.; Plebanski, M.; Neild, A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat. Commun.
**2015**, 6, 8686. [Google Scholar] [CrossRef] [PubMed] - King, L.V. On the acoustic radiation pressure on spheres. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; The Royal Society: London, UK, 1934; Volume 147, pp. 212–240. [Google Scholar]
- Yosioka, K.; Kawasima, Y. Acoustic radiation pressure on a compressible sphere. Acta Acust. United Acust.
**1955**, 5, 167–173. [Google Scholar] - Gor’Kov, L. On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Dokl.
**1962**, 6, 773. [Google Scholar] - Muller, P.B.; Barnkob, R.; Jensen, M.J.H.; Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip
**2012**, 12, 4617–4627. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Karlsen, J.T.; Bruus, H. Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Phys. Rev. E
**2015**, 92, 043010. [Google Scholar] [CrossRef] [PubMed] - Settnes, M.; Bruus, H. Forces acting on a small particle in an acoustical field in a viscous fluid. Phys. Rev. E
**2012**, 85, 016327. [Google Scholar] [CrossRef] [PubMed] - Hasegawa, T.; Yosioka, K. Acoustic-radiation force on a solid elastic sphere. J. Acoust. Soc. Am.
**1969**, 46, 1139–1143. [Google Scholar] [CrossRef] - Hasegawa, T. Acoustic radiation force on a sphere in a quasistationary wave field—Theory. J. Acoust. Soc. Am.
**1979**, 65, 32–40. [Google Scholar] [CrossRef] - Glynne-Jones, P.; Mishra, P.P.; Boltryk, R.J.; Hill, M. Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry. J. Acoust. Soc. Am.
**2013**, 133, 1885–1893. [Google Scholar] [CrossRef] [PubMed] - Drinkwater, B.W. Dynamic-field devices for the ultrasonic manipulation of microparticles. Lab Chip
**2016**, 16, 2360–2375. [Google Scholar] [CrossRef] [PubMed] - Cai, F.; Meng, L.; Jiang, C.; Pan, Y.; Zheng, H. Computation of the acoustic radiation force using the finite-difference time-domain method. J. Acoust. Soc. Am.
**2010**, 128, 1617–1622. [Google Scholar] [CrossRef] [PubMed] - Grinenko, A.; Wilcox, P.; Courtney, C.; Drinkwater, B. Acoustic radiation force analysis using finite difference time domain method. J. Acoust. Soc. Am.
**2012**, 131, 3664–3670. [Google Scholar] [CrossRef] [PubMed] - Bruus, H. Acoustofluidics 2: Perturbation theory and ultrasound resonance modes. Lab Chip
**2012**, 12, 20–28. [Google Scholar] [CrossRef] [PubMed] - Ai, Y.; Sanders, C.K.; Marrone, B.L. Separation of escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal. Chem.
**2013**, 85, 9126–9134. [Google Scholar] [CrossRef] [PubMed] - Muller, P.B.; Bruus, H. Numerical study of thermoviscous effects in ultrasound-induced acoustic streaming in microchannels. Phys. Rev. E
**2014**, 90, 043016. [Google Scholar] [CrossRef] [PubMed] - Bruus, H. Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip
**2012**, 12, 1014–1021. [Google Scholar] [CrossRef] [PubMed] - Samandari, M.; Abrinia, K.; Mokhtari-Dizaji, M.; Tamayol, A. Ultrasound induced strain cytoskeleton rearrangement: An experimental and simulation study. J. Biomech.
**2017**, 60, 39–47. [Google Scholar] [CrossRef] [PubMed] - Hartono, D.; Liu, Y.; Tan, P.L.; Then, X.Y.S.; Yung, L.-Y.L.; Lim, K.-M. On-chip measurements of cell compressibility via acoustic radiation. Lab Chip
**2011**, 11, 4072–4080. [Google Scholar] [CrossRef] [PubMed] - Nama, N.; Barnkob, R.; Mao, Z.; Kähler, C.J.; Costanzo, F.; Huang, T.J. Numerical study of acoustophoretic motion of particles in a pdms microchannel driven by surface acoustic waves. Lab Chip
**2015**, 15, 2700–2709. [Google Scholar] [CrossRef] [PubMed] - Morley, M.J. Derivation of physical properties of muscle tissue from adiabatic pressure-induced temperature measurements. Int. J. Food Sci. Technol.
**1986**, 21, 269–277. [Google Scholar] [CrossRef] - Rabin, Y.; Plitz, J. Thermal expansion of blood vessels and muscle specimens permeated with dmso, dp6, and vs55 at cryogenic temperatures. Ann. Biomed. Eng.
**2005**, 33, 1213–1228. [Google Scholar] [CrossRef] [PubMed] - Rodrigues, D.B.; Maccarini, P.F.; Salahi, S.; Colebeck, E.; Topsakal, E.; Pereira, P.J.S.; Limão-Vieira, P.; Stauffer, P.R. Numerical 3d modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism. Proc. SPIE
**2013**, 8584. [Google Scholar] [CrossRef] - O’Brien, W.D. Ultrasound—biophysics mechanisms. Prog. Biophys. Mol. Biol.
**2007**, 93, 212–255. [Google Scholar] [PubMed] - Ding, X.; Peng, Z.; Lin, S.-C.S.; Geri, M.; Li, S.; Li, P.; Chen, Y.; Dao, M.; Suresh, S.; Huang, T.J. Cell separation using tilted-angle standing surface acoustic waves. Proc. Natl. Acad. Sci. USA
**2014**, 111, 12992–12997. [Google Scholar] [CrossRef] [PubMed] - Wang, H.; Liu, Z.; Shin, D.M.; Chen, Z.; Cho, Y.; Jang, D.-Y.; Kim, Y.-J.; Han, A. Acoustophoretic force-based compressibility measurement of cancer cells having different metastatic potential. In Proceedings of the Meetings on Acoustics ICA2013, Montreal, QC, Canada, 2–7 June 2013; ASA: Monroe, MI, USA, 2013. [Google Scholar]
- Gesellchen, F.; Bernassau, A.; Dejardin, T.; Cumming, D.; Riehle, M. Cell patterning with a heptagon acoustic tweezer–application in neurite guidance. Lab Chip
**2014**, 14, 2266–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Guo, F.; Li, P.; French, J.B.; Mao, Z.; Zhao, H.; Li, S.; Nama, N.; Fick, J.R.; Benkovic, S.J.; Huang, T.J. Controlling cell–cell interactions using surface acoustic waves. Proc. Natl. Acad. Sci. USA
**2015**, 112, 43–48. [Google Scholar] [CrossRef] [PubMed] - Kinsler, L.E. Fundamentals of Acoustics, 4th ed.; Wiley: Hoboken, NJ, USA, 2000; ISBN 978-0-471-84789-2. [Google Scholar]

**Figure 1.**Harmonic behavior of a typical bio-particle (BP) in standing acoustic field with different applied frequencies. (

**A**) Sketches of the BP under low (left) and high (right) frequency actuations; (

**B**) The validity range of small particle and ideal fluid assumptions for a typical BP. In low frequencies, thermal and viscous boundary layer thicknesses (${\delta}_{t}$ and ${\delta}_{v}$, respectively) are comparable to the BP size, therefore the fluid cannot be considered with ideal theory (see Equations (S1) and(S2)). In addition, for wavelengths much larger than particle size (i.e., $ka\ll 1$, in which $k$ is the wave number), the BP boundary experiences either negative or positive pressure. At higher frequencies, boundary layers are thinner. On the other hand, a complex deformation and harmonic behavior are experienced by the BP given the fact that different points of the BP boundary experience different pressure values. Therefore, the BP size cannot be neglected for higher frequencies. The values are calculated based on the parameters presented in Section 2.3.

**Figure 2.**Mesh dependency analysis and convergence of finite element model (FEM) results. (

**A**) Computational mesh structure for the acoustic solid interaction (ASI) model. An appropriate mesh size is selected based on the acoustic wavelength to comply with the gradients of deformation (color map inside solid domain) and acoustic pressure fields (gray-scale map of acoustic domain); (

**B**,

**C**) Convergence analysis of the ARF using Equation (9) for (

**B**) ASI and (

**C**) 2D model with proposed formulation (Equation (10)). For all simulations, a fine mesh (mesh size/λ = 1/15) was chosen to ensure the results accuracy. The graphs demonstrate that the proposed formulation has a better convergence with respect to the ASI model.

**Figure 3.**Analysis of the ARF exerted on the BP using ASI simulation. (

**A**) Color map of displacement (i), internal pressure ((ii) ${p}_{solid}=({\sigma}_{11}^{s}+{\sigma}_{22}^{s}+{\sigma}_{33}^{s})/3$, in which ${\sigma}_{ii}^{s}$ is the i-th principle stress in the solid domain), and time-averaged force on the elements within the BP (iii). The BP is placed in an acoustic standing pressure field (gray scale) with λ = D

_{p}. In high frequencies, the elements located in various positions within the BP experience different displacements due to gradients of the pressure. Thus, the BP cannot be considered as a single point, and the resultant force over the whole BP volume needs to be calculated to obtain the ARF; (

**B**) The comparison between the results of ASI model, proposed formulation (Equation (10)) in present work and previous formulations (Equation (5)). Results show a significant deviation of the ARF values in high frequencies between Equation (5) predictions and ASI results, however the proposed formulation (Equation (10)) is in a good accordance with the ASI model; (

**C**) Density and longitudinal sound velocity of some BP materials [4,6,20,38,44,45]. Since deriving Equation (10) is based on the negligible difference in pressure map inside and outside the BP, the closeness of acoustic impedance of BP and surrounding fluid warrants a negligible error for the proposed formulation (see also Section 3.4).

**Figure 4.**The influence of BPs size on their trajectory in a separation device. (

**A**) Scheme of a typical separation microfluidic device. The ARF pushes the BPs toward acoustic nodes while exerted force is dependent on the BP size (Equation (5)). The BPs entering the sheath flow are collected from the side outlets, however smaller particles that are less affected by the acoustophoretic force, remain in the sample flow and are collected from the center outlet; (

**B**) 10 µm BPs trajectory in microfluidic channel, affected by a vertical one-directional standing acoustic wave (SAW) with λ = 60 µm. Three similar BPs (P1, P2 and P3) are released from different vertical positions. Dashed lines stand for trajectories of BPs subjected to the ARF derived from conventional formulation with small particle assumption (Equation (5)). The actual trajectory considering the BP size (Equation (12)) are shown by solid lines. Since f

_{m}< 1, some BPs may not succeed to enter the sheath flow and therefore the predicted efficacy of separation reduces. The distance along the channel axis is not in scale and is based on the power and inflow channel velocity.

**Figure 5.**Evaluation of the ARF arising from perpendicular acoustic waves field with D

_{p}/λ = 0.2 and 0.4. (

**A**) Instantaneous acoustic standing pressure map. Ellipses between positive and negative pressure areas show typical pressure nodes while circles indicate typical pressure anti-nodes; (

**B**) The ARF calculated using small particle assumption. Triangles show the force direction; (

**C**) The calculated ARF where the BP size is considered in equations. The results demonstrate that not only the values of actual ARF are significantly lower in comparison with previous analytical approaches but also its pattern is different particularly in higher frequencies; (

**D**) The deviation of previous ARF calculations with respect to the position in standing pressure field. The variable $F/{F}^{s}$ implies that ${F}^{s}$ cannot be amended by a constant modifying factor for multidirectional acoustic fields.

**Figure 6.**Investigation on the validity of Equation (10). The effect of (

**A**) density and (

**B**) longitudinal sound velocity of BPs on the force difference ($\mathrm{\u018a}$) in which the target force is the ARF calculated from Equation (10). The ${c}_{p}$ and ${\rho}_{p0}$ are kept constant based on values in Table 1, respectively for (

**A**,

**B**); (

**C**) The ARF obtained from ASI model compared to Equation (5) and Equation (10) predictions for ${\rho}_{p0}\simeq $ 1700 kg m

^{−3}. Although the deviation of the BP density and longitudinal sound velocity from the optimal values shown in Figure 6A,B increases $\mathrm{\u018a}$, the predictions are still acceptable compared to the results obtained from previous formulations that use the small particle assumption (Equation (5)).

Property | Fluid ^{(a)} | BP | Symbol | Unit |
---|---|---|---|---|

Density | 1.0 × 10^{3} | 1.079 × 10^{3} ^{(c)} | ${\rho}_{0}$ | kg m^{−3} |

Shear modulus | - | 1.67 × 10^{3} ^{(c)} | G | Pa |

Isentropic compressibility | 4.433 × 10^{−10} ^{(b)} | 3.78 × 10^{−10} ^{(c)} | β | Pa^{−1} |

Thermal expansion | 2.748 × 10^{−4} | 2.0 × 10^{−4} ^{(d)} | α | K^{−1} |

Specific heat capacity at constant pressure | 4.181 × 10^{3} | 3.421 × 10^{3} ^{(e)} | h_{c} | J kg^{−1}K^{−1} |

Ratio of specific heats | 1.012 | 1.012 ^{(f)} | γ | 1 |

Thermal conductivity | 6.095 × 10^{−1} | 4.9 × 10^{−1} ^{(e)} | k_{t} | Wm^{−1}K^{−1} |

Longitudinal (compressional) wave speed | 1.502 × 10^{3} | 1.566 × 10^{3} ^{(g)} | c | m s^{−1} |

Transvers (shear) wave speed | - | 1.244 × 10^{3} ^{(h)} | c_{s} | m s^{−1} |

Shear viscosity | 8.538 × 10^{−4} | - | μ | Pa s |

Bulk viscosity | 2.4 × 10^{−3} | - | μ_{b} | Pa s |

^{(a)}Material properties for water from Ref. [25];

^{(b)}Calculated as $1/(\rho {c}^{2})$ from Ref. [39];

^{(c)}Properties of NIH/3T3 cell from Ref. [38];

^{(d)}Approximate value for tissue from Ref. [40,41];

^{(e)}thermal properties of tissue from Ref. [42];

^{(f)}Assumed to resemble water;

^{(g)}Calculated as $c=\sqrt{3(1-\upsilon /1+\upsilon )/{\rho}_{0}\beta}$ from Ref. [39], in which $\upsilon \simeq 0.5$ is Poisson ratio calculated using G and bulk modulus $\kappa =1/\beta $;

^{(}

^{h)}Calculated as ${c}_{s}=\sqrt{G/{\rho}_{0}}$ from Ref. [43].

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Samandari, M.; Abrinia, K.; Sanati-Nezhad, A.
Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach. *Micromachines* **2017**, *8*, 290.
https://doi.org/10.3390/mi8100290

**AMA Style**

Samandari M, Abrinia K, Sanati-Nezhad A.
Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach. *Micromachines*. 2017; 8(10):290.
https://doi.org/10.3390/mi8100290

**Chicago/Turabian Style**

Samandari, Mohamadmahdi, Karen Abrinia, and Amir Sanati-Nezhad.
2017. "Acoustic Manipulation of Bio-Particles at High Frequencies: An Analytical and Simulation Approach" *Micromachines* 8, no. 10: 290.
https://doi.org/10.3390/mi8100290