# Resistance Switching Statistics and Mechanisms of Pt Dispersed Silicon Oxide-Based Memristors

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

_{x}/Ta memristors (the inset of Figure 1a) were fabricated on a Si wafer. Metallic Ta and Pt layers were deposited by DC sputter deposition at ambient temperature. The RS layers of the Pt:SiO

_{x}films were deposited by radiofrequency (RF) magnetron co-sputtering in pure Ar, using SiO

_{2}and Pt targets as dielectric and metal sources, respectively. The as-grown Pt dispersed SiO

_{2}thin films were composed of a SiO

_{2}matrix with 2–3 nm-sized Pt nanoclusters. Pt concentrations were of about 20–45 atomic%, which were controlled by the RF power of the Pt sputtering target [36,37]. The sandwich structure of the Pt/Pt:SiO

_{x}/Ta memristors consisted of (from bottom to top) a 10 nm Ta bottom electrode, a 7 nm silicon dioxide blanket layer, and a 16 nm Pt disc (the diameter is about 50 $\mathsf{\mu}\mathrm{m}$) top electrode.

_{x}/Ta memristors show a bipolar switching behavior, i.e., Set to the low-resistance state (LRS) under negative voltages and Reset to the high-resistance state (HRS) under positive voltages, as shown in Figure 1a. Figure 1b presents the ON and OFF resistance states of 400 cycles, and the average RS range is approximately from 1 to 10 kΩ.

## 3. Results

#### 3.1. Statistical Distributions

#### 3.2. Quantum Point Contact Model

_{x}/Ta memristors, the QPC model has been introduced here to fit the I–V curves in both the Reset and Set processes.

## 4. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Chua, L.O. Memristor-the missing circuit element. IEEE Trans. Circuit Theory
**1971**, 18, 507–519. [Google Scholar] [CrossRef] - Chua, L.O.; Kang, S.M. Memristive devices and systems. Proc. IEEE
**1976**, 64, 209–223. [Google Scholar] [CrossRef] - Waser, R.; Aono, M. Nanoionics-Based Resistive Switching Memories. Nat. Mater.
**2007**, 6, 833–840. [Google Scholar] [CrossRef] [PubMed] - Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature
**2008**, 453, 80–83. [Google Scholar] [CrossRef] [PubMed] - Sawa, A. Resistive switching in transition metal oxides. Mater. Today
**2008**, 11, 28–36. [Google Scholar] [CrossRef] - Chua, L.O. Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process.
**2011**, 102, 765–783. [Google Scholar] [CrossRef] [Green Version] - Yang, J.J.; Pickett, M.D.; Li, X.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol.
**2008**, 3, 429–433. [Google Scholar] [CrossRef] - Wong, H.-S.P.; Lee, H.-Y.; Yu, S.; Chen, Y.-S.; Wu, Y.; Chen, P.-S.; Lee, B.; Chen, F.T.; Tsai, M.-J. Metal–Oxide RRAM. Proc. IEEE
**2012**, 100, 1951–1970. [Google Scholar] [CrossRef] - Xia, Q.F.; Robinett, W.; Cumbie, M.W.; Banerjee, N.; Cardinali, T.J.; Yang, J.J.; Wu, W.; Li, X.M.; Tong, W.M.; Strukov, D.B.; et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett.
**2009**, 9, 3640–3645. [Google Scholar] [CrossRef] - Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett.
**2010**, 10, 1297–1301. [Google Scholar] [CrossRef] [PubMed] - Lee, M.-J.; Lee, C.B.; Lee, D.; Lee, S.R.; Chang, M.; Hur, J.H.; Kim, Y.-B.; Kim, C.-J.; Seo, D.H.; Seo, S.; et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta
_{2}O_{5−x}/TaO_{2−x}bilayer structures. Nat. Mater.**2011**, 10, 625–630. [Google Scholar] [CrossRef] - Chen, W.; Fang, R.; Balaban, M.B.; Yu, W.; Velo, Y.G.; Barnaby, H.J.; Kozicki, M.N. A CMOS-compatible electronic synapse device based on Cu/SiO
_{2}/W programmable metallization cells. Nanotechnology**2016**, 27, 255202. [Google Scholar] [CrossRef] [PubMed] - Burgt, Y.; Lubberman, E.; Fuller, E.J.; Keene, S.T.; Faria, G.C.; Agarwal, S.; Marinella, M.J.; Talin, A.A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater.
**2017**, 16, 414–418. [Google Scholar] [CrossRef] - Hu, M.; Graves, C.E.; Li, C.; Li, Y.; Ge, N.; Montgomery, E.; Davila, N.; Jiang, H.; Williams, R.S.; Yang, J.; et al. Memristor-Based Analog Computation and Neural Network Classification with a Dot Product Engine. Adv. Mater.
**2018**, 30, 1705914. [Google Scholar] [CrossRef] [PubMed] - Li, C.; Belkin, D.; Li, Y.; Yan, P.; Hu, M. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun.
**2018**, 9, 2385. [Google Scholar] [CrossRef] [PubMed] - Gavrilov, D.; Strukov, D.; Likharev, K.K. Capacity, Fidelity, and Noise Tolerance of Associative Spatial-Temporal Memories Based on Memristive Neuromorphic Networks. Front. Neurosci.
**2018**, 12, 195. [Google Scholar] [CrossRef] [PubMed] - Bayat, F.M.; Prezioso, M.; Chakrabarti, B.; Nili, H.; Kataeva, I.; Strukov, D. Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nat. Commun.
**2017**, 9, 2331. [Google Scholar] [CrossRef] - Li, D.; Wu, B.; Zhu, X.; Wang, J.; Ryu, B.; Lu, W.D.; Lu, W.; Liang, X. MoS
_{2}Memristors Exhibiting Variable Switching Characteristics towards Bio-Realistic Synaptic Emulation. ACS Nano**2018**, 9, 9240–9252. [Google Scholar] [CrossRef] - Zhu, X.; Lu, W.D. Optogenetics-Inspired Tunable Synaptic Functions in Memristors. ACS Nano
**2018**, 12, 1242–1249. [Google Scholar] [CrossRef] - Shi, Y.; Liang, X.; Yuan, B.; Chen, V.; Li, H.; Hui, F.; Yu, Z.; Yuan, F.; Pop, E.; Wong, H.-S.P.; et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron.
**2018**, 1, 458–465. [Google Scholar] [CrossRef] - Zhao, Y.; Jiang, J.; Nanosci, J. Electronic synapses made of layered two-dimensional materials. Nanotechnol
**2018**, 18, 8003. [Google Scholar] - Park, M.H.; Lee, Y.H.; Mikolajick, T.; Schroeder, U.; Hwang, C.S. Review and Perspective on Ferroelectric HfO
_{2}-based Thin Films for Memory Applications. MRS Commun.**2018**, 8, 795–808. [Google Scholar] [CrossRef] - Li, Y.; Han, K.; Kang, Y.; Kong, E.Y.J.; Gong, X. Extraction of Polarization-dependent Damping Constant for Dynamic Evaluation of Ferroelectric Films and Devices. IEEE Electron. Device Lett.
**2018**, 39, 1211–1214. [Google Scholar] [CrossRef] - Li, Y.; Kang, Y.; Gong, X. Evaluation of Negative Capacitance Ferroelectric MOSFET for Analog Circuit Applications. IEEE Trans. Electron. Devices
**2017**, 64, 4317–4321. [Google Scholar] [CrossRef] - Bricalli, A.; Ambrosi, E.; Laudato, M.; Maestro, M.; Rodriguez, R.; Lelmini, D. Resistive Switching Device Technology Based on Silicon Oxide for Improved ON-OFF Ratio—Part II: Select Devices. IEEE Trans. Electron. Devices
**2018**, 65, 122–128. [Google Scholar] [CrossRef] - Liu, C.; Lin, C.; Liu, S.; Bai, C.; Zhang, Y. Improvement of switching uniformity in Cu/SiO
_{2}/Pt resistive memory achieved by voltage prestress. Jpn. J. Appl. Phys.**2015**, 54, 031801. [Google Scholar] [CrossRef] - Liu, C.; Huang, J.; Lai, C.; Lin, C. Influence of embedding Cu nano-particles into a Cu/SiO
_{2}/Pt structure on its resistive switching. Nanoscale Res. Lett.**2013**, 8, 156. [Google Scholar] [CrossRef] - Nandakumar, S.R.; Minvielle, M.; Nagar, S.; Dubourdieu, C.; Rajendran, B. A 250 mV Cu/SiO
_{2}/W Memristor with Half-Integer Quantum Conductance States. Nano Lett.**2016**, 16, 1602–1608. [Google Scholar] [CrossRef] - Mehonic, A.; Shluger, A.L.; Gao, D.; Valov, I.; Miranda, E.; Ielmini, D.; Bricalli, A.; Ambrosi, E.; Li, C.; Yang, J.J.; et al. Silicon Oxide (SiO
_{x}): A Promising Material for Resistance Switching? Adv. Mater.**2018**, 30, 1801187. [Google Scholar] [CrossRef] - Ng, W.H.; Mehonic, A.; Buckwell, M.; Montesi, L.; Kenyon, A.J. High-Performance Resistance Switching Memory Devices Using Spin-On Silicon Oxide. IEEE Trans. Nanotechnol.
**2018**, 17, 884–888. [Google Scholar] [CrossRef] - Munde, M.S.; Mehonic, A.; Ng, W.H.; Buckwell, M.; Montesi, L.; Bosman, M.; Shluger, A.L.; Kenyon, A.J. Intrinsic Resistance Switching in Amorphous Silicon Suboxides: The Role of Columnar Microstructure. Sci. Rep.
**2017**, 7, 9274. [Google Scholar] [CrossRef] [PubMed] - Mehonic, A.; Buckwell, M.; Montesi, L.; Munde, M.S.; Gao, D.; Hudziak, S.; Chater, R.J.; Fearn, S.; McPhail, D.; Bosman, M.; et al. Nanoscale Transformations in Metastable, Amorphous, Silicon-Rich Silica. Adv. Mater.
**2016**, 28, 7486–7493. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Tappertzhofen, S.; Valov, I.; Tsuruoka, T.; Hasegawa, T.; Waser, R.; Aono, M. Generic Relevance of Counter Charges for Cation-Based Nanoscale Resistive Switching Memories. ACS Nano
**2013**, 7, 6396–6402. [Google Scholar] [CrossRef] [PubMed] - Tsuruoka, T.; Terabe, K.; Hasegawa, T.; Valov, I.; Waser, R.; Aono, M. Effects of Moisture on the Switching Characteristics of Oxide-Based, Gapless-Type Atomic Switches. Adv. Funct. Mater.
**2012**, 22, 70–77. [Google Scholar] [CrossRef] - Yang, Y.; Gao, P.; Li, L.; Pan, X.; Tappertzhofen, S.; Choi, S.; Waser, R.; Valov, I.; Lu, W.D. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun.
**2014**, 5, 4232. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Choi, B.J.; Torrezan, A.C.; Norris, K.J.; Miao, F.; Strachan, J.P.; Zhang, M.X.; Ohlberg, D.A.; Kobayashi, N.P.; Yang, J.J.; Williams, R.S. Electrical Performance and Scalability of Pt Dispersed SiO
_{2}Nanometallic Resistance Switch. Nano Lett.**2013**, 13, 3213–3217. [Google Scholar] [CrossRef] - Choi, B.J.; Ge, N.; Yang, J.J.; Zhang, M.-X.; Williams, R.S.; Norris, K.J.; Kobayashi, N.P. New materials for memristive switching. IEEE Int. Symp. Circuits Syst. (ISCAS)
**2014**, 10, 2808–2811. [Google Scholar] - Lian, X.; Wang, M.; Yan, P.; Yang, J.J.; Miao, F. Reset switching statistics of TaO
_{x}-based Memristor. J. Electroceram.**2017**, 39, 132–136. [Google Scholar] [CrossRef] - Long, S.; Lian, X.; Cagli, T.; Ye, C.; Perniola, L.; Miranda, E.; Liu, M.; Sune, J. Cycle-to-Cycle Intrinsic RESET Statistics in HfO
_{2}-Based Unipolar RRAM. IEEE Electron. Device Lett.**2013**, 34, 623–625. [Google Scholar] [CrossRef] - Lian, X.; Miao, F.; Wan, X.; Guo, Y.-F.; Tong, Y.; Electroceram, J. Set transition statistics of different switching regimes of TaO
_{x}memristor. J. Electroceram.**2019**. [Google Scholar] [CrossRef] - Michalas, L.; Stathopoulos, S.; Khiat, A.; Prodromakis, T. Conduction mechanisms at distinct resistive levels of Pt/TiO
_{2−x}/Pt memristors. Appl. Phys. Lett.**2018**, 113, 143503. [Google Scholar] [CrossRef] - Chen, K.-H.; Tsai, T.-M.; Cheng, C.-M.; Huang, S.-J.; Chang, K.-C.; Liang, S.-P.; Young, T.-F. Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments. Materials
**2017**, 11, 43. [Google Scholar] [CrossRef] [PubMed] - Gul, F. Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO
_{2}memristor. Ceram. Int.**2018**, 44, 11417–11423. [Google Scholar] [CrossRef] - Gismatulin, A.A.; Kruchinin, V.N.; Gritsenko, V.A.; Prosvirin, I.P.; Yen, T.-J.; Chin, A. Charge transport mechanism of high-resistive state in RRAM based on SiO
_{x}. Appl. Phys. Lett.**2019**, 114, 033503. [Google Scholar] [CrossRef] - Bersuker, G.; Gilmer, D.C.; Veksler, D.; Kirsch, P.; Vandelli, L.; Padovani, A.; Larcher, L.; McKenna, K.; Shluger, A.; Iglesias, V.; et al. Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys.
**2011**, 110, 124518. [Google Scholar] [CrossRef] - Yan, X.; Zhou, Z.; Ding, B.; Zhao, J.; Zhang, Y. Superior resistive switching memory and biological synapse properties based on a simple TiN/SiO
_{2}/p-Si tunneling junction structure. J. Mater. Chem. C**2017**, 5, 2259–2267. [Google Scholar] [CrossRef] - Yu, S.; Guan, X.; Wong, H.-S.P. Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model. Appl. Phys. Lett.
**2011**, 99, 063507. [Google Scholar] [CrossRef] - Chang, K.-C.; Tsai, T.-M.; Chang, T.-C.; Wu, H.-H.; Chen, J.-H.; Syu, Y.-E.; Chang, G.-W.; Chu, T.-J.; Liu, G.-R.; Su, Y.-T.; et al. Characteristics and Mechanisms of Silicon-Oxide-Based Resistance Random Access Memory. IEEE Electron. Device Lett.
**2013**, 34, 399–401. [Google Scholar] [CrossRef] - Kim, K.M.; Choi, B.J.; Shin, Y.C.; Choi, S.; Hwang, C.S. Anode-interface localized filamentary mechanism in resistive switching of TiO
_{2}thin films. Appl. Phys. Lett.**2007**, 91, 012907. [Google Scholar] [CrossRef] - Hsieh, W.-K.; Lam, K.-T.; Chang, S.-J. Characteristics of tantalum-doped silicon oxide-based resistive random access memory. Mater. Sci. Semicond. Process.
**2014**, 27, 293–296. [Google Scholar] [CrossRef] - Sun, C.; Lu, S.M.; Jin, F.; Mo, W.Q.; Song, J.L.; Dong, K.F. The Resistive Switching Characteristics of TiN/HfO
_{2}/Ag RRAM Devices with Bidirectional Current Compliance. J. Electron. Mater.**2019**, 48, 2992–2999. [Google Scholar] [CrossRef] - Liu, M.; Abid, Z.; Wang, W.; He, X.; Liu, Q.; Guan, W. Multilevel resistive switching with ionic and metallic filaments. Appl. Phys. Lett.
**2009**, 94, 233106. [Google Scholar] [CrossRef] [Green Version] - Kunchur, M.N.; Liang, M.; Gurevich, A. Thermally activated dynamics of spontaneous perpendicular vortices tuned by parallel magnetic fields in thin superconducting films. Phys. Rev. B
**2012**, 86, 024521. [Google Scholar] [CrossRef] - Graves, C.E.; Dávila, N.; Merced-Grafals, E.J.; Lam, S.-T.; Strachan, J.P.; Williams, R.S. Temperature and field-dependent transport measurements in continuously tunable tantalum oxide memristors expose the dominant state variable. Appl. Phys. Lett.
**2017**, 110, 123501. [Google Scholar] [CrossRef] - Miranda, E.; Mehonic, A.; Ng, W.H.; Kenyon, A.J. Simulation of Cycle-to-Cycle Instabilities in SiOx- Based ReRAM Devices Using a Self-Correlated Process with Long-Term Variation. IEEE Electron. Device Lett.
**2018**, 40, 28–31. [Google Scholar] [CrossRef] - Holloway, G.W.; Ivanov, O.; Gavrilov, R.; Bluschke, A.G.; Hold, B.K.; Baugh, J. Electrical Breakdown in Thin Si Oxide Modeled by a Quantum Point Contact Network. IEEE Trans. Electron. Devices
**2016**, 63, 3005–3010. [Google Scholar] [CrossRef] - Sune, J.; Miranda, E.; Nafria, M.; Aymerich, X. Point contact conduction at the oxide breakdown of MOS devices. In Proceedings of the International Electron Devices Meeting 1998, Technical Digest (Cat. No.98CH36217), San Francisco, CA, USA, 6–9 December 1998. [Google Scholar]
- Sune, J.; Miranda, E. Understanding soft and hard breakdown statistics, prevalence ratios and energy dissipation during breakdown runaway. In Proceedings of the International Electron Devices Meeting, Technical Digest (Cat. No.01CH37224), Washington, DC, USA, 2–5 December 2001. [Google Scholar]
- Lian, X.; Cartoixà, X.; Miranda, E.; Perniola, L.; Rurali, R.; Long, S.; Liu, M.; Suñé, J. Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices. J. Appl. Phys.
**2014**, 115, 244507. [Google Scholar] [CrossRef] - Zhang, M.; Long, S.; Wang, G.; Xu, X.; Li, Y.; Liu, Q.; Lv, H.; Lian, X.; Miranda, E.; Suñé, J.; et al. Set statistics in conductive bridge random access memory device with Cu/HfO
_{2}/Pt structure. Appl. Phys. Lett.**2014**, 105, 193501. [Google Scholar] [CrossRef] - Lian, X.; Wang, M.; Rao, M.; Yan, P.; Yang, J.J.; Miao, F. Characteristics and transport mechanisms of triple switching regimes of TaO
_{x}memristor. Appl. Phys. Lett.**2017**, 110, 173504. [Google Scholar] [CrossRef] - Datta, S. Electronic Transport in Mesoscopic Systems; University of Cambridge: Cambridgeshire, UK, 1997. [Google Scholar]
- Buttiker, M. Quantized transmission of a saddle-point constriction. Phys. Rev. B
**1990**, 41, 7906. [Google Scholar] [CrossRef] - Bogachek, E.N.; Scherbakov, A.G.; Landman, U. Nonlinear magnetoconductance of nanowires. Phys. Rev. B
**1997**, 56, 14917. [Google Scholar] [CrossRef] - Miranda, E.; Sune, J. From post-breakdown conduction to resistive switching effect in thin dielectric films. In Proceedings of the 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 15–19 April 2012; p. 367. [Google Scholar]
- Lübben, M.; Valov, I. Active Electrode Redox Reactions and Device Behavior in ECM Type Resistive Switching Memories. Adv. Electron. Mater.
**2019**, 1800933. [Google Scholar] [CrossRef] - Valov, I.; Luebben, M.; Wedig, A.; Waser, R. Mobile Ions, Transport and Redox Processes in Memristive Devices. ECS Trans.
**2016**, 75, 27–39. [Google Scholar] [CrossRef]

**Figure 1.**The Current–Voltage (I–V) characteristics in Pt/Pt:SiO

_{x}/Ta memristors. (

**a**) The I–V curves for the Set and Reset transitions. A current compliance limit of 0.5 mA is given in the Set process to avoid the breakdown; (

**b**) The ON and OFF resistance states in 400 cycles, extracted at low voltage (0.1 V).

**Figure 2.**The statistics of resistance switching (RS) parameters in Pt/Pt:SiO

_{x}/Ta memristors. (

**a**) The Reset voltages and (

**b**) the Reset currents versus the ON-state resistances for the measured 400 cycling data of the same device. (

**c**) The Set voltages and (

**d**) the Set currents versus the OFF-state resistances for the measured 400 cycling data of the same device.

**Figure 3.**The Weibull distributions of the Reset voltage and the Reset current in Pt/Pt:SiO

_{x}/Ta devices. Experimental distributions (symbols) and the fitting to Weibull distribution (lines) of (

**a**) the Reset voltage and (

**b**) the Reset current as functions of the ON-state resistance. Weibull slopes and scale factors of (

**c**) the Reset voltage and (

**d**) the Reset current versus <${R}_{ON}$>, where <${R}_{ON}$> is the average value of the ON-state resistance (${R}_{ON}$) in each screening range. It can be seen that the Weibull slopes of the Reset voltage and the Reset current are independent of <${R}_{ON}$>, and the scale factor of the Reset voltage is constant, whereas the Reset current is inversely proportional to <${R}_{ON}$>.

**Figure 4.**The Weibull distributions of the Set voltage and the Set current in Pt/Pt:SiO

_{x}/Ta devices. Experimental distributions (symbols) and the fitting to Weibull distribution (lines) of (

**a**) the Set voltage and (

**b**) the Set current as functions of the OFF-state resistance. Weibull slopes and scale factors of (

**c**) the Set voltage and (

**d**) the Set current versus <${R}_{OFF}$>, where <${R}_{OFF}$> is the average value of the OFF-state resistance (${R}_{OFF}$) in each screening range. It can be seen that the Weibull slopes of the Set voltage and the Set current are independent of <${R}_{OFF}$>, and the scale factor of the Set voltage is proportional to <${R}_{OFF}$>, whereas the Set current is constant.

**Figure 5.**The quantum points contact (QPC) model applied to Pt/Pt:SiO

_{x}/Ta memristors. The I–V fitting results together with experimental data of ON and OFF states (

**a**) in log scale and (

**b**) linear scale. (

**c**) The barrier thickness and (

**d**) the number of CF paths versus the initial resistance, respectively. The averaged values are: $<{t}_{gap}>=0.1\mathrm{nm},N=30$ in the ON-state; and $<{t}_{gap}>=0.25\mathrm{nm},N=5$ in the OFF-state.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lian, X.; Shen, X.; Lu, L.; He, N.; Wan, X.; Samanta, S.; Tong, Y.
Resistance Switching Statistics and Mechanisms of Pt Dispersed Silicon Oxide-Based Memristors. *Micromachines* **2019**, *10*, 369.
https://doi.org/10.3390/mi10060369

**AMA Style**

Lian X, Shen X, Lu L, He N, Wan X, Samanta S, Tong Y.
Resistance Switching Statistics and Mechanisms of Pt Dispersed Silicon Oxide-Based Memristors. *Micromachines*. 2019; 10(6):369.
https://doi.org/10.3390/mi10060369

**Chicago/Turabian Style**

Lian, Xiaojuan, Xinyi Shen, Liqun Lu, Nan He, Xiang Wan, Subhranu Samanta, and Yi Tong.
2019. "Resistance Switching Statistics and Mechanisms of Pt Dispersed Silicon Oxide-Based Memristors" *Micromachines* 10, no. 6: 369.
https://doi.org/10.3390/mi10060369