Response of Growth-Related Traits of Submerged Macrophytes to Light Reduction: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Traits Selection
2.2. Data Source and Collection
2.3. Data Analysis
3. Results
3.1. Effects of Light Reduction on the Growth of Submerged Macrophytes
3.2. Effects of Light Reduction on the Whole Plant and Leaf Traits
3.3. Influence of Whole Plant and Leaf Traits on the Responses of RGR to Light Reduction
4. Discussion
4.1. Effects of Light Reduction on Growth-Related Whole Plant and Leaf Traits
4.2. Light-Reduction-Induced Changes of RGR and Its Relationships with Growth-Related Traits
4.3. Factors Influencing the Responses of RGR and Other Traits to Light Reduction
4.4. Potential Publication Bias
4.5. Limitations and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Chl | Chlorophyll content |
Chl a/b | Chlorophyll a/b ratio |
Fv/Fm | Leaf maximal quantum yield of photosystem II complex |
LN | Leaf number |
lnRR | Response ratio |
lnRR++ | Weighted average effect sizes |
NPR | Net photosynthesis rate |
PH | Plant height |
PLR | Percentage of light reduction |
RB | Root biomass |
RGR | Relative growth rate |
RM | Ramet number |
R/S | Root-to-shoot ratio |
SB | Shoot biomass |
SC | Soluble carbohydrates |
References
- Jeppesen, E.; Søndergaard, M.; Søndergaard, M.; Christoffersen, K. The Structuring Role of Submerged Macrophytes in Lakes; Springer: New York, NY, USA, 1998; ISBN 978-0-387-98284-7. [Google Scholar]
- Su, H.; Chen, J.; Wu, Y.; Chen, J.; Guo, X.; Yan, Z.; Tian, D.; Fang, J.; Xie, P. Morphological traits of submerged macrophytes reveal specific positive feedbacks to water clarity in freshwater ecosystems. Sci. Total Environ. 2019, 684, 578–586. [Google Scholar] [CrossRef]
- Liu, H.; Liu, G.; Xing, W. Functional traits of submerged macrophytes in eutrophic shallow lakes affect their ecological functions. Sci. Total Environ. 2021, 760, 143332. [Google Scholar] [CrossRef]
- Henninger, T.O.; Froneman, P.W.; Richoux, N.B.; Hodgson, A.N. The role of macrophytes as a refuge and food source for the estuarine isopod Exosphaeroma hylocoetes (Barnard, 1940). Estuar. Coast. Shelf Sci. 2009, 82, 285–293. [Google Scholar] [CrossRef]
- Sato, M.; Nishijima, S.; Miyashita, T. Differences in refuge function for prey and tolerance to crayfish among macrophyte species. Limnology 2014, 15, 27–35. [Google Scholar] [CrossRef]
- Korner, S.; Nicklisch, A. Allelopathic growth inhibition of selected phytoplankton species by submerged macrophytes. J. Phycol. 2002, 38, 862–871. [Google Scholar] [CrossRef]
- Jiang, M.; Zhou, Y.; Wang, N.; Xu, L.; Zheng, Z.; Zhang, J. Allelopathic effects of harmful algal extracts and exudates on biofilms on leaves of Vallisneria natans. Sci. Total Environ. 2019, 655, 823–830. [Google Scholar] [CrossRef]
- Verhofstad, M.; Poelen, M.D.M.; van Kempen, M.M.L.; Bakker, E.S.; Smolders, A.J.P. Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants. Ecol. Eng. 2017, 106, 423–430. [Google Scholar] [CrossRef]
- Carr, J.; D’Odorico, P.; McGlathery, K.; Wiberg, P. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. J. Geophys. Res-Biogeo. 2010, 115, 1–14. [Google Scholar] [CrossRef]
- Phillips, G.; Willby, N.; Moss, B. Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquat. Bot. 2016, 135, 37–45. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth-Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Zhang, Q.; Dong, X.; Yang, X.; Liu, E.; Lin, Q.; Cheng, L.; Liu, L.; Jeppesen, E. Aquatic macrophyte fluctuations since the 1900s in the third largest Chinese freshwater lake (Lake Taihu): Evidences, drivers and management implications. Catena 2022, 213, 106153. [Google Scholar] [CrossRef]
- Lacoul, P.; Freedman, B. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 2006, 14, 89–136. [Google Scholar] [CrossRef]
- Son, D.; Cho, H.; Lee, E.J. Determining factors for the occurrence and richness of submerged macrophytes in major Korean rivers. Aquat. Bot. 2018, 150, 82–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Qin, B.; Shi, K.; Deng, J.; Zhou, Y. Aquatic vegetation in response to increased eutrophication and degraded light climate in Eastern Lake Taihu: Implications for lake ecological restoration. Sci. Rep. 2016, 6, 23867. [Google Scholar] [CrossRef]
- Yang, C.; Shi, X.; Nan, J.; Huang, Q.; Shen, X.; Li, J. Morphological responses of the submerged macrophyte Vallisneria natans along an underwater light gradient: A mesocosm experiment reveals the importance of the Secchi depth to water depth ratio. Sci. Total Environ. 2022, 808, 152199. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Shi, K.; Lin, J.; Zhou, Y.; Qin, B. Determining critical light and hydrologic conditions for macrophyte presence in a large shallow lake: The ratio of euphotic depth to water depth. Ecol. Indic. 2016, 71, 317–326. [Google Scholar] [CrossRef]
- Ni, L. Growth of Potamageton maackianus under low-light stress in eutrophic water. J. Freshw. Ecol. 2001, 16, 249–256. [Google Scholar] [CrossRef][Green Version]
- Sorrell, B.K. Regulation of root anaerobiosis and carbon translocation by light and root aeration in Isoetes alpinus. Plant Cell Environ. 2004, 27, 1102–1111. [Google Scholar] [CrossRef]
- Xie, Y.; Luo, W.; Ren, B.; Li, F. Morphological and physiological responses to sediment type and light availability in roots of the submerged plant Myriophyllum spicatum. Ann. Bot. 2007, 100, 1517–1523. [Google Scholar] [CrossRef][Green Version]
- Wright, I.J.; Westoby, M.; Reich, P.B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J. Ecol. 2002, 90, 534–543. [Google Scholar] [CrossRef][Green Version]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Wright, I.J.; Dong, N.; Maire, V.; Prentice, I.C.; Westoby, M.; Díaz, S.; Gallagher, R.V.; Jacobs, B.F.; Kooyman, R.; Law, E.A.; et al. Global climatic drivers of leaf size. Science 2017, 357, 917–921. [Google Scholar] [CrossRef][Green Version]
- Poorter, H.; Niinemets, U.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Pierce, S.; Brusa, G.; Sartori, M.; Cerabolini, B.E.L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 2012, 109, 1047–1053. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dalla Vecchia, A.; Villa, P.; Bolpagni, R. Functional traits in macrophyte studies: Current trends and future research agenda. Aquat. Bot. 2020, 167, 103290. [Google Scholar] [CrossRef]
- Strand, J.A.; Weisner, S.E.B. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). J. Ecol. 2001, 89, 166–175. [Google Scholar] [CrossRef]
- Riis, T.; Olesen, B.; Clayton, J.S.; Lambertini, C.; Brix, H.; Sorrell, B.K. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquat. Bot. 2012, 102, 56–64. [Google Scholar] [CrossRef]
- Chen, J.; Cao, T.; Zhang, X.; Xi, Y.; Ni, L.; Jeppesen, E. Differential photosynthetic and morphological adaptations to low light affect depth distribution of two submersed macrophytes in lakes. Sci. Rep. 2016, 6, 34028. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, L.; Ding, M.; Lan, Z.; Zhao, Y.; Chen, J. Light Availability and Patterns of Allocation to Reproductive and Vegetative Biomass in the Sexes of the Dioecious Macrophyte Vallisneria spinulosa. Front. Plant Sci. 2019, 10, 572. [Google Scholar] [CrossRef][Green Version]
- Arthaud, F.; Toury, J.; Romestaing, C.; Bornette, G. Photosynthetic and morphological traits control aquatic plant distribution according to light stress. Evol. Ecol. 2021, 35, 739–760. [Google Scholar] [CrossRef]
- Li, H.; Li, Q.; Luo, X.; Fu, J.; Zhang, J. Responses of the submerged macrophyte Vallisneria natans to a water depth gradient. Sci. Total Environ. 2020, 701, 134944. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, H.; Luo, F. Effects of light heterogeneity on growth of a submerged clonal macrophyte. Plant Spec. Biol. 2013, 28, 156–164. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Wang, H.; Wu, X.; Zhang, M.; Wang, H.; Hamilton, D.P.; Jeppesen, E. Submersed macrophyte restoration with artificial light-emitting diodes: A mesocosm experiment. Ecotoxicol. Environ. Saf. 2021, 228, 113044. [Google Scholar] [CrossRef]
- Chen, J.; Chou, Q.; Ren, W.; Su, H.; Zhang, M.; Cao, T.; Zhu, T.; Ni, L.; Liu, Z.; Xie, P. Growth, morphology and C/N metabolism responses of a model submersed macrophyte, Vallisneria natans, to various light regimes. Ecol. Indic. 2022, 136, 108652. [Google Scholar] [CrossRef]
- Zhu, B.; Mayer, C.M.; Rudstam, L.G.; Mills, E.L.; Ritchie, M.E. A comparison of irradiance and phosphorus effects on the growth of three submerged macrophytes. Aquat. Bot. 2008, 88, 358–362. [Google Scholar] [CrossRef]
- Chotikarn, P.; Kaewchana, P.; Prathep, A.; Roekngandee, P.; Sinutok, S. Effect of in situ experiment shading on the photosynthesis of Canadian waterweed (Elodea canadensis) from Songkhla Lagoon, Thailand. Appl. Ecol. Environ. Res. 2021, 19, 2593–2604. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Xing, W.; Liu, G. Effects of substrate and shading on the growth of two submerged macrophytes. Hydrobiologia 2013, 700, 157–167. [Google Scholar] [CrossRef]
- Hussner, A.; Hofstra, D.; Jahns, P.; Clayton, J. Response capacity to CO2 depletion rather than temperature and light effects explain the growth success of three alien Hydrocharitaceae compared with native Myriophyllum triphyllum in New Zealand. Aquat. Bot. 2015, 120, 205–211. [Google Scholar] [CrossRef]
- Peng, H.; Ge, D.; Yuan, G.; Zou, D.; Fu, H.; Jeppesen, E. Effect of clonal fragmentation on the growth of Vallisneria natans (Lour.) Hara at contrasting nutrient and light conditions. Hydrobiologia 2021, 848, 903–912. [Google Scholar] [CrossRef]
- Gurevitch, J.; Koricheva, J.; Nakagawa, S.; Stewart, G. Meta-analysis and the science of research synthesis. Nature 2018, 555, 175–182. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef][Green Version]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: http://www.r-project.org/ (accessed on 13 April 2022).
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analysis of Response Ratios in Experimental Ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Gleser, L.J.; Olkin, I. Stochastically dependent effect sizes. In The Handbook of Research Synthesis and Meta-Analysis, 2nd ed.; Russell Sage Foundation: New York, NY, USA, 2009; pp. 357–376. ISBN 978-0-87154-163-5. [Google Scholar]
- Lajeunesse, M.J. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 2011, 92, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Bracken, M.B. Statistical methods for analysis of effects of treatment in overviews of randomized trials. In Effective Care of the Newborn Infant; Sinclair, J.C., Bracken, M.B., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 13–20. ISBN 978-0192617378. [Google Scholar]
- Lajeunesse, M.J. Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for r. Methods Ecol. Evol. 2016, 7, 323–330. [Google Scholar] [CrossRef]
- Kambach, S.; Bruelheide, H.; Gerstner, K.; Gurevitch, J.; Beckmann, M.; Seppelt, R. Consequences of multiple imputation of missing standard deviations and sample sizes in meta-analysis. Ecol. Evol. 2020, 10, 11699–11712. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Soft. 2010, 36, 1–48. [Google Scholar] [CrossRef][Green Version]
- Benítez-López, A.; Alkemade, R.; Schipper, A.; Ingram, D.; Verweij, P.A.; Eikelboom, J.; Huijbregts, M. The impact of hunting on tropical mammal and bird populations. Science 2017, 356, 180–183. [Google Scholar] [CrossRef][Green Version]
- Midolo, G.; De Frenne, P.; Hölzel, N.; Wellstein, C. Global patterns of intraspecific leaf trait responses to elevation. Glob. Chang. Biol. 2019, 25, 2485–2498. [Google Scholar] [CrossRef]
- Rosenberg, M.S. The file-drawer Problem Revisited: A General Weighted Method for Calculating fail-safe Numbers in meta-analysis. Evolution 2005, 59, 464–468. [Google Scholar] [CrossRef]
- Nakagawa, S.; Santos, E.S.A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 2012, 26, 1253–1274. [Google Scholar] [CrossRef]
- Revelle, W. Psych: Procedures for Personality and Psychological Research, 1.9.12; Northwestern University: Evanston, IL, USA, 2019; Available online: https://CRAN.R-project.org/package=psych (accessed on 13 April 2022).
- Wei, T.; Simko, V. R Package ‘Corrplot’: Visualization of a Correlation Matrix, 0.92. 2021. Available online: https://github.com/taiyun/corrplot (accessed on 13 April 2022).
- Chmara, R.; Szmeja, J.; Robionek, A. Leaf traits of macrophytes in lakes: Interspecific, plant group and community patterns. Limnologica 2019, 77, 125691. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, W.; Li, X.; Chu, Q.; Tang, N.; Shu, B.; Liu, G.; Xing, W. How many submerged macrophyte species are needed to improve water clarity and quality in Yangtze floodplain lakes? Sci. Total Environ. 2020, 724, 138267. [Google Scholar] [CrossRef] [PubMed]
- Ellawala Kankanamge, C.; Matheson, F.E.; Riis, T. Shading constrains the growth of invasive submerged macrophytes in streams. Aquat. Bot. 2019, 158, 103125. [Google Scholar] [CrossRef]
- Kurtz, J.C.; Yates, D.F.; Macauley, J.M.; Quarles, R.L.; Genthner, F.J.; Chancy, C.A.; Devereux, R. Effects of light reduction on growth of the submerged macrophyte Vallisneria americana and the community of root-associated heterotrophic bacteria. J. Exp. Mar. Bio. Eco. 2003, 291, 199–218. [Google Scholar] [CrossRef]
- George, R.; Gullström, M.; Mangora, M.M.; Mtolera, M.S.P.; Björk, M. High midday temperature stress has stronger effects on biomass than on photosynthesis: A mesocosm experiment on four tropical seagrass species. Ecol. Evol. 2018, 8, 4508–4517. [Google Scholar] [CrossRef]
- Soda, S.; Ike, M.; Ogasawara, Y.; Yoshinaka, M.; Mishima, D.; Fujita, M. Effects of light intensity and water temperature on oxygen release from roots into water lettuce rhizosphere. Water Res. 2007, 41, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Martin, B.C.; Gleeson, D.; Statton, J.; Siebers, A.R.; Grierson, P.; Ryan, M.H.; Kendrick, G.A. Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots. Front. Microbiol. 2018, 8, 2667. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhu, H.; Jiang, M.; Zhou, N.; Jiang, C.; Liu, S. Submerged macrophytes recruit unique microbial communities and drive functional zonation in an aquatic system. Appl. Microbiol. Biotechnol. 2021, 105, 7517–7528. [Google Scholar] [CrossRef]
- Brodersen, K.E.; Nielsen, D.A.; Ralph, P.J.; Kühl, M. A split flow chamber with artificial sediment to examine the below-ground microenvironment of aquatic macrophytes. Mar. Biol. 2014, 161, 2921–2930. [Google Scholar] [CrossRef]
- Jovanovic, Z.; Pedersen, M.; Larsen, M.; Kristensen, E.; Glud, R.N. Rhizosphere O2 dynamics in young Zostera marina and Ruppia maritima. Mar. Ecol. Prog. Ser. 2015, 518, 95–105. [Google Scholar] [CrossRef][Green Version]
- Bagwell, C.E.; La Rocque, J.R.; Smith, G.W.; Polson, S.W.; Friez, M.J.; Longshore, J.W.; Lovell, C.R. Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiol. Ecol. 2002, 39, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Perner, M. The globally widespread genus Sulfurimonas: Versatile energy metabolisms and adaptations to redox clines. Front. Microbiol. 2015, 6, 989. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Xiao, Y.; Yin, X.; Chen, L.; Wang, J.; Wang, Y.; Liu, G.; Hua, Y.; Wan, X.; Xiao, N.; Zhao, J.; et al. Effects of illumination on nirS denitrifying and anammox bacteria in the rhizosphere of submerged macrophytes. Sci. Total Environ. 2021, 760, 143420. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Gu, X.; Song, R.; Wang, X.; Yang, L. Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara. J. Hazard. Mater. 2011, 190, 188–196. [Google Scholar] [CrossRef]
- Xue, W.; Peng, Y.; Song, X.; Zou, G. Effects of light intensity on physiological and biochemical characteristics of Hydrilla verticillata (L.f.) Royle. J. Anhui Agr. Sci. 2012, 40, 4169–4172. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, H.; Liu, C.; Deng, Y. Growth, pigment composition, chlorophyll fluorescence and antioxidant defenses in the red alga Gracilaria lemaneiformis (Gracilariales, Rhodophyta) under light stress. S. Afr. J. Bot. 2015, 100, 27–32. [Google Scholar] [CrossRef]
- Zhu, Z.; Song, S.; Yan, Y.; Li, P.; Jeelani, N.; Wang, P.; An, S.; Leng, X. Combined effects of light reduction and ammonia nitrogen enrichment on the submerged macrophyte Vallisneria natans. Mar. Freshw. Res. 2018, 69, 764–770. [Google Scholar] [CrossRef]
- Fritz, C.; Schneider, T.; Geist, J. Seasonal Variation in Spectral Response of Submerged Aquatic Macrophytes: A Case Study at Lake Starnberg (Germany). Water 2017, 9, 527. [Google Scholar] [CrossRef][Green Version]
- Jin, S.; Ibrahim, M.; Muhammad, S.; Khan, S.; Li, G. Light intensity effects on the growth and biomass production of submerged macrophytes in different water strata. Arab. J. Geosci. 2020, 13, 948. [Google Scholar] [CrossRef]
- Solymosi, K.; Morandi, D.; Boka, K.; Boddi, B.; Schoefs, B. High biological variability of plastids, photosynthetic pigments and pigment forms of leaf primordia in buds. Planta 2012, 235, 1035–1049. [Google Scholar] [CrossRef]
- Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. Evol. Syst. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- Choudhury, M.I.; Urrutia-Cordero, P.; Zhang, H.; Ekvall, M.K.; Medeiros, L.R.; Hansson, L.A. Charophytes collapse beyond a critical warming and brownification threshold in shallow lake systems. Sci. Total Environ. 2019, 661, 148–154. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gao, H.; Shi, Q.; Qian, X. A multi-species modelling approach to select appropriate submerged macrophyte species for ecological restoration in Gonghu Bay, Lake Taihu, China. Ecol. Model. 2017, 360, 179–188. [Google Scholar] [CrossRef]
- Ji, Z. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2017; pp. 285–306. ISBN 9781118877159. [Google Scholar]
- Sviben, S.; Matoničkin Kepčija, R.; Vidaković-Cifrek, Ž.; Sertić Perić, M.; Kružić, P.; Popijač, A.; Primc, B. Chara spp. exhibit highly heterogeneous light adaptation, calcite encrustation and epiphyton patterns in a marl lake. Aquat. Bot. 2018, 147, 1–10. [Google Scholar] [CrossRef]
- Bagdanavičiūtė, I.; Umgiesser, G.; Vaičiūtė, D.; Bresciani, M.; Kozlov, I.; Zaiko, A. GIS-based multi-criteria site selection for zebra mussel cultivation: Addressing end-of-pipe remediation of a eutrophic coastal lagoon ecosystem. Sci. Total Environ. 2018, 634, 990–1003. [Google Scholar] [CrossRef]
- Carter, V.; Rybicki, N.B.; Turtora, M. Effect of increasing photon irradiance on the growth of Vallisneria americana in the tidal Potomac River. Aquat. Bot. 1996, 54, 337–345. [Google Scholar] [CrossRef]
- Asaeda, T.; Sultana, M.; Manatunge, J.; Fujino, T. The effect of epiphytic algae on the growth and production of Potamogeton perfoliatus L. in two light conditions. Environ. Exp. Bot. 2004, 52, 225–238. [Google Scholar] [CrossRef]
- Boedeltje, G.; Smolders, A.J.P.; Roelofs, J.G.M. Combined effects of water column nitrate enrichment, sediment type and irradiance on growth and foliar nutrient concentrations of Potamogeton alpinus. Freshw. Biol. 2005, 50, 1537–1547. [Google Scholar] [CrossRef]
- Li, Y.; Yu, D.; Xu, X.; Xie, Y. Light intensity increases the susceptibility of Vallisneria natans to snail herbivory. Aquat. Bot. 2005, 81, 265–275. [Google Scholar] [CrossRef]
- Chen, X.; Chen, K.; Xiao, Y.; Zhang, S.; Wang, Q. Effects of light and matrix on turion germination, seedling growth and leaf photosynthesis efficiency of Potamogeton crispus. Chin. J. Appl. Ecol. 2006, 17, 1413–1418, (Chinese article with English abstract). [Google Scholar]
- Li, H. The Influences of Light, Nutrition and Phytoplankton on Growth and Physiology of Submerged Macrophytes in Eutrophic Waters; Graduate University of the Chinese Academy of Sciences: Beijing, China, 2006. [Google Scholar]
- Xiao, Y. Effect of Main Environmental Factors on Photosynthesis of Three Submerged Macrophytes from Taihu Lake; Nanjing Agriculture University: Nanjing, China, 2006; (Chinese thesis with English abstract). [Google Scholar]
- Xiao, Y.; Chen, K.; Dai, X.; Chen, X.; Xu, X. Comparison of Adaptive Capacity to Low Light Intensity of Two Angiosperm Submerged Macrophytes from Taihu Lake. Plant Physiol. Commun. 2006, 42, 421–425, (Chinese article with English abstract). [Google Scholar]
- Imamoto, H.; Horiya, K.; Yamasaki, M.; Washitani, I. An experimental system to study ecophysiological responses of submerged macrophytes to temperature and light. Ecol. Res. 2007, 22, 172–176. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Q.; Chen, K. Impacts of Different Light Intensity on Morphology and Structure of Potamogeton crispus. J. Wuhan Bot. Res. 2008, 26, 163–169, (Chinese article with English abstract). [Google Scholar]
- Zhou, X.; Wang, G.; Feng, B. Influence of the growth and photosynthetic characteristics of Potamogeton cripus in light. Ecol. Environ. 2008, 17, 1342–1347, (Chinese article with English abstract). [Google Scholar]
- Zhou, X.; Wang, G.; Feng, B. Effects of Light on Growth and Some Characteristics of Light-Energy Conversion of Elodea nuttallii Seedling. J. Ecol. Rural Environ. 2008, 24, 46–52, (Chinese article with English abstract). [Google Scholar]
- Angelstein, S.; Schubert, H. Light acclimatisation of Elodea nuttallii grown under ambient DIC conditions. Plant Ecol. 2009, 202, 91–101. [Google Scholar] [CrossRef]
- Cao, T.; Xie, P.; Ni, L.; Zhang, M.; Xu, J. Carbon and nitrogen metabolism of an eutrophication tolerative macrophyte, Potamogeton crispus, under NH4+ stress and low light availability. Environ. Exp. Bot. 2009, 66, 74–78. [Google Scholar] [CrossRef]
- Zhu, G. Effects of Turbidity and Low Light Intensity on the Growth of Macrophytes; Nanjing Foresty University: Nanjing, China, 2009; (Chinese thesis with English abstract). [Google Scholar]
- Sultana, M.; Asaeda, T.; Azim, M.E.; Fujino, T. Morphological plasticity of submerged macrophyte Potamogeton wrightii Morong under different photoperiods and nutrient conditions. Chem. Ecol. 2010, 26, 223–232. [Google Scholar] [CrossRef]
- Wang, S. The Combined Effect of Light and N, P on Growth and Physiology of Vallisneria natans; South China University of Technology: Guangzhou, China, 2010; (Chinese thesis with English abstract). [Google Scholar]
- Zhang, M.; Cao, T.; Ni, L.; Xie, P.; Li, Z. Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environ. Exp. Bot. 2010, 68, 44–50. [Google Scholar] [CrossRef]
- Cao, T.; Ni, L.; Xie, P.; Xu, J.; Zhang, M. Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability. Freshw. Biol. 2011, 56, 1620–1629. [Google Scholar] [CrossRef]
- Zhu, D.; Qiao, N.; Li, M.; Chen, P. Effect of light intensity, temperature, total nitrogen concentration and their interaction on Hydrilla Verticillata. Acta Hydrobiol. Sin. 2011, 35, 88–97, (Chinese article with English abstract). [Google Scholar] [CrossRef]
- Ge, F.; Liu, B.; Lu, Z.; Gao, Y.; Wu, Z. Effects of Light Intensity on Growth and Phenolic Contents of Myriophyllum spicatum. Environ. Sci. Technol. 2012, 35, 30–34, (Chinese article with English abstract). [Google Scholar]
- Yuan, L.; Li, W.; Liu, G.; Deng, G. Effects of different shaded conditions and water depths on the growth and reproductive strategy of Vallisneria spinulosa. Pak. J. Bot. 2012, 44, 911–918. [Google Scholar]
- Malheiro, A.C.E.; Jahns, P.; Hussner, A. CO2 availability rather than light and temperature determines growth and phenotypical responses in submerged Myriophyllum aquaticum. Aquat. Bot. 2013, 110, 31–37. [Google Scholar] [CrossRef]
- Cao, J.; Lu, J.; Ruan, H. Effects of underwater illumination compensation on growth and physiological indices of submerged macrophyte Vallisneria natans L. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2014, 38, 102–106, (Chinese article with English abstract). [Google Scholar]
- Lang, P.; Yuan, L.; Li, S. Effects of different light conditions on the photosynthesis of Potamogeton malaianus and Potamogeon pectinatus. Jiangsu Agric. Sci. 2014, 42, 323–325, (Chinese article with English abstract). [Google Scholar]
- Zhao, S.; Li, E.; Yang, J.; Wang, Z.; Wang, X.; Cai, X. Effects of light intensity on the seeds germination, seedlings growth and physiology of Ottelia acuminata. J. Lake Sci. 2014, 26, 107–112, (Chinese article with English abstract). [Google Scholar]
- Eller, F.; Alnoee, A.B.; Boderskov, T.; Guo, W.-Y.; Kamp, A.T.; Sorrell, B.K.; Brix, H. Invasive submerged freshwater macrophytes are more plastic in their response to light intensity than to the availability of free CO2 in air-equilibrated water. Freshw. Biol. 2015, 60, 929–943. [Google Scholar] [CrossRef]
- Hussner, A.; Jahns, P. European native Myriophyllum spicatum showed a higher use capacity than alien invasive Myriophyllum heterophyllum. Hydrobiologia 2015, 746, 171–182. [Google Scholar] [CrossRef]
- Song, Y.; Kong, F.; Wang, M.; Zhang, Y. Effects of Light Intensity and Epiphytic Algae on Physiological Parameters of Myriophyllum spicatum. J. Agro-Environ. Sci. 2015, 34, 233–239, (Chinese article with English abstract). [Google Scholar]
- Lin, C.; Han, C.; Pan, H.; You, W.; Yan, H.; Chen, H. Effects of different light intensity on growth of the eight submerged plants. Environ. Eng. 2016, 34, 16–19, (Chinese article with English abstract). [Google Scholar]
- Zhang, S. The influecne of Vallisneria natans Growth under Water Gradient/Light Intensity; Jiangxi Normal University: Nanchang, China, 2016; (Chinese thesis with English abstract). [Google Scholar]
- Cao, Y.; Luo, S.; Chen, B. Effects of light intensity on growth and antioxidant enzyme activity of Potamogeton crispus. Acta Hydrobiol. Sin. 2018, 42, 846–853, (Chinese article with English abstract). [Google Scholar]
- Jiang, H.; Zhang, Y.; Yin, L.; Li, W.; Jin, Q.; Fu, W.; Zhang, T.; Huang, W. Diurnal changes in photosynthesis by six submerged macrophytes measured using fluorescence. Aquat. Bot. 2018, 149, 33–39. [Google Scholar] [CrossRef]
- Li, P.; Zhu, Z.; Yan, Y.; An, S.; Leng, X. Effects of different light intensity and sediment nutrition on three submerged macrophytes. Ecol. Sci. 2018, 37, 101–107, (Chinese article with English abstract). [Google Scholar]
- Xue, R. Effect of Light Conditions on Growth Characteristic of Two Submersed Macrophyte; Chongqing University: Chongqing, China, 2018; (Chinese thesis with English abstract). [Google Scholar]
- He, L.; Bakker, E.S.; Nunez, M.M.A.; Hilt, S. Combined effects of shading and clipping on the invasive alien macrophyte Elodea nuttallii. Aquat. Bot. 2019, 154, 24–27. [Google Scholar] [CrossRef]
- Hillmann, E.R.; La Peyre, M.K. Effects of salinity and light on growth and interspecific interactions between Myriophyllum spicatum L. and Ruppia maritima L. Aquat. Bot. 2019, 155, 25–31. [Google Scholar] [CrossRef]
- Hu, Q.; Turnbull, M.; Hawes, I. Estimated light compensation depth explains growth of Stuckenia pectinata in Te Waihora. Aquat. Bot. 2019, 156, 57–64. [Google Scholar] [CrossRef]
- Tan, X.; Yuan, G.; Fu, H.; Peng, H.; Ge, D.; Lou, Q.; Zhong, J. Effects of ammonium pulse on the growth of three submerged macrophytes. PLoS ONE 2019, 14, e0219161. [Google Scholar] [CrossRef][Green Version]
- Zhang, X. Study on the Influence of Environmental on the Growth of Submerged Rotala Rotundifolia; Wenzhou University: Wenzhou, China, 2019; (Chinese thesis with English abstract). [Google Scholar]
- Chen, J.; Liu, Z.; Xiao, S.; Chen, R.; Luo, C.; Zhu, T.; Cao, T.; Ni, L.; Xie, P.; Su, H.; et al. Effects of benthivorous fish disturbance on chlorophyll a contents in water and the growth of two submersed macrophytes with different growth forms under two light regimes. Sci. Total Environ. 2020, 704, 135269. [Google Scholar] [CrossRef]
- Chen, J.; Ren, W.; Chou, Q.; Su, H.; Ni, L.; Zhang, M.; Liu, Z.; Xie, P. Alterations in biomass allocation indicate the adaptation of submersed macrophytes to low-light stress. Ecol. Indic. 2020, 113, 106235. [Google Scholar] [CrossRef]
- Kankanamge, C.E.; Matheson, F.E.; Riis, T. Shading may alter the colonization pattern and dominance between two invasive submerged aquatic plant species. Aquat. Ecol. 2020, 54, 721–728. [Google Scholar] [CrossRef]
- Yuan, G.; Fu, H.; Zhang, M.; Lou, Q.; Dai, T.; Jeppesen, E. Effects of plant size on the growth of the submersed macrophyte Vallisneria spinulosa S.Z.Yan at different light intensities: Implications for lake restoration. Hydrobiologia 2020, 847, 3609–3619. [Google Scholar] [CrossRef]
- Malea, L.; Nakou, K.; Papadimitriou, A.; Exadactylos, A.; Orfanidis, S. Physiological Responses of the Submerged Macrophyte Stuckenia pectinata to High Salinity and Irradiance Stress to Assess Eutrophication Management and Climatic Effects: An Integrative Approach. Water 2021, 13, 1706. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, Z.; Sun, L.; Fu, H.; Peng, H.; Jeppesen, E. Asexual reproduction for overwintering of the submersed macrophyte Vallisneria spinulosa at different light intensities. Aquat. Sci. 2022, 84, 13. [Google Scholar] [CrossRef]
- Yuan, J.; Bai, Z.; Ye, S.; Liu, H.; Wang, Y.; Li, F.; Xie, Y.; Gao, A.; Wu, A. High-light inhibition of two submerged macrophytes in a shallow water experiment. AoB Plants 2022, 14, plac009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Hu, W.; Wang, J.; Cui, Y.; Li, L. Response of Growth-Related Traits of Submerged Macrophytes to Light Reduction: A Meta-Analysis. Sustainability 2023, 15, 5918. https://doi.org/10.3390/su15075918
Gao J, Hu W, Wang J, Cui Y, Li L. Response of Growth-Related Traits of Submerged Macrophytes to Light Reduction: A Meta-Analysis. Sustainability. 2023; 15(7):5918. https://doi.org/10.3390/su15075918
Chicago/Turabian StyleGao, Jing, Wei Hu, Jiawei Wang, Yichong Cui, and Liuxin Li. 2023. "Response of Growth-Related Traits of Submerged Macrophytes to Light Reduction: A Meta-Analysis" Sustainability 15, no. 7: 5918. https://doi.org/10.3390/su15075918