Next Article in Journal
Agroecological Approaches in the Context of Innovation Hubs
Next Article in Special Issue
The Non-Linear Relationship between Air Pollution, Labor Insurance and Productivity: Multivariate Adaptive Regression Splines Approach
Previous Article in Journal
A Machine-Learning Approach for Automatic Grape-Bunch Detection Based on Opponent Colors
Previous Article in Special Issue
Mixed Exponentially Weighted Moving Average—Moving Average Control Chart with Application to Combined Cycle Power Plant
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Adjustment of Measurement Error Effects on Dispersion Control Chart with Distribution-Free Quality Variable

Department of Statistics, National Chengchi University, Taipei 116011, Taiwan
*
Author to whom correspondence should be addressed.
Sustainability 2023, 15(5), 4337; https://doi.org/10.3390/su15054337
Submission received: 24 January 2023 / Revised: 23 February 2023 / Accepted: 24 February 2023 / Published: 28 February 2023
(This article belongs to the Special Issue Statistical Process Control in Sustainable Industries)

Abstract

:
In industrial processes, control charts are useful tools to monitor the quality of products and detect possibly out-of-control processes. While many types of control charts have been available for data analysts, they were developed by assuming that the variables are precisely measured. In applications, however, measurement error is ubiquitous when data are falsely recorded by investigators or imprecisely collected by unadjusted machines. Even though the impacts of measurement error for different types of control charts have been explored, error-corrected control charts are still unavailable. In this study, we propose a new dispersion control chart with error correction to fill out this research gap. Our key idea is to convert the observed distribution-free process variables into a flexible sign statistic, and then adopt a function to adjust the measurement error effects on the sign statistic. Finally, we develop an exponentially weight-moving average dispersion control chart with measurement error correction based on the corrected sign statistic. The proposed error-corrected dispersion control chart not only eliminates measurement error effects, but also provides more reliable control limits for monitoring process dispersion. Throughout the numerical examination, we find that the proposed error-corrected dispersion control chart is effective in handling moderate and large levels of measurement error and shows good out-of-control detection performance. Finally, the proposed error-corrected dispersion control chart is implemented in the semiconductor data.

1. Introduction

Statistical process control (SPC) is a useful tool to maintain the quality of the product and detect possibly out-of-control (OC) processes. Many methods have been developed and widely applied since the work of Shewhart [1], including the X ¯ chart used to monitor the mean of the process, and R or S chart adopted to monitor the dispersion of the process. However, they are not sensitive to detecting small shifts. To remedy this, Robert [2] proposed an exponentially weighted moving average (EWMA) chart, which improves out-of-control detection performance against the Shewhart control chart for the mean and dispersion with small shifts.
Another critical concern of Shewhart charts is the requirement of the normally distributed data, which is usually violated in applications. To improve this shortcoming, several distribution-free methods have been explored. To name a few, Amin et al. [3] proposed the sign chart based on sign-test statistics to control process center and variability. Bakir [4,5] proposed the Shewhart type that is based on the sign test or signed ranks of grouped observations to monitor a process center. These charts do not require the distribution to be symmetric, and they are applicable in various situations. Yang et al. [6] proposed the nonparametric EWMA sign chart to monitor the process target. Yang et al. [7] proposed the nonparametric EWMA sign chart to monitor the process mean. Chowdhury et al. [8] proposed the Shewhart–Cucconi (SC) chart to monitor a process location and scale. Although these methods address the issue of requiring normality assumptions, they may not necessarily perform better when the sample size is large. Yang and Arnold [9,10] developed a distribution-free dispersion control chart, whose monitoring statistic will not be influenced by out-of-control mean. Tang et al. [11] proposed an AEWMA median chart with known or estimated parameters to monitor the mean value. Riaz et al. [12] proposed an NPSNDH control chart based on sign test statistics to monitor process location. These charts solve the issue of distributional assumptions but, unfortunately, cannot be directly applied in more general situations that involve measurement errors.
Those existing methods are under the assumption that data are precisely measured. In applications, however, measurement error is ubiquitous when data are falsely recorded by the investigators or imprecisely collected by unadjusted machines. This feature may incur the wrong conclusion or induce an incorrect control chart. In the past literature, measurement error effects have been investigated based on several types of control charts. For example, for location and scale processes, Mittag and Stemann [13] proved stochastic measurement error has considerable effects on Shewhart X ¯ S control charts. Linna and Woodall [14] examined measurement error effects on Shewhart X ¯ and S 2 charts by using covariable models and linearly increasing variance models. Stemann and Weihs [15] compared the ability of the EWMA- X ¯ S chart and the Shewhart X ¯ S chart with measurement error and found that the EWMA- X ¯ S chart is superior. To monitor the mean process with measurement error, Maravelakis et al. [16] examined the effect of measurement error on EWMA- X ¯ charts for mean by using a covariable model, multiple measurements, and a linearly increasing variance model. Abbas et al. [17] proposed EWMA control charts using auxiliary variables in the form of regression estimates to monitor process means. Daryabari et al. [18] examined measurement error effects on the Maximum Exponentially Weighted Moving Average and Mean Squared deviation (MAX EWMAMS) control chart, which can monitor mean and variance processes; Noor-ul-Amin et al. [19] examined measurement error effects with an auxiliary variable for EWMA-Z control charts by using a covariable model, multiple measurements, and a linearly increasing variance model. Asif et al. [20] described measurement error effects on the hybrid exponentially weighted moving average (HEWMA) control chart by using a covariable model, multiple measurements, and a linearly increasing variance model. Huwang and Hung [21] examined the effect of measurement error on the sample generalized variance chart and the likelihood ratio test chart for monitoring multivariate process variability. Nojavan et al. [22] examined the effect of measurement error on Mann–Whitney and signed-rank charts for monitoring the process center when the distribution is unknown. While these methods discuss the effect of different measurement error models on control charts, they do not provide suitable strategies to correct for measurement error effects.
In addition to continuous random variables, p control charts subject to error-prone binary random variables have also been explored. For example, Case [23] showed that inspection error rates affected the OC curve of a p control chart and proposed the compensating p chart to make the actual OC curve into the proximity of the desired OC curve. Lu et al. [24] examined the effect of inspection error on run-length control charts and presented the adjusted control limits for the run-length charts to partially compensate for the shifts of the average number inspected (ANI) curves with inspection error. Shu and Wu [25] used fuzzy set theory to construct a fuzzy- p control chart and monitor the imprecise fraction of nonconforming items. Daryabari [26] examined the performance of the Bernoulli CUSUM chart in the presence of measurement error. Chen and Yang [27] proposed an error-corrected EWMA p control chart to monitor the changes in defection rate. These methods examine or correct for the impacts of measurement error on control charts, providing us with a good direction for addressing the issue of measurement error.
Although some methods have been developed to reduce the effect of measurement error, such as Case [23], Shu and Wu [25], and Chen and Yang [27], few approaches are available to correct for measurement error effects when monitoring continuous random variables. Most methods assume the true quality characteristics and the measurement error are normal distributions. On the contrary, a few studies only discuss the effect of measurement error on process dispersion. Therefore, we propose a new approach to correct measurement error effects for monitoring process dispersion. Specifically, we apply the dispersion statistic of the sign chart proposed by Yang and Arnold [9,10] to transform continuous random variables into discrete ones. After that, we develop an error-corrected EWMA variance control chart by adopting a corrected proportion (e.g., Chen and Yang [27]). Our contribution is to propose an error-eliminated and distribution-free dispersion control chart, which provides reliable control limits and effectively detects out-of-control processes.
The remainder is organized as follows. In Section 2, following Yang and Arnold [10], we introduce the general framework of the EWMA variance chart and discuss measurement error effects for the EWMA variance chart. We also propose a valid approach to correct measurement error effects. To assess the performance of detecting out-of-control process dispersion, we examine the out-of-control average run length ( A R L 1 ) and compare the performance of the EWMA variance with/without measurement error correction in Section 3. In Section 4, we examine the robustness of the proposed chart by considering different distributions of true observation and various levels of measurement error. In Section 5, we apply the proposed variance control chart to analyze the SECOM data set from the UCI Machine Learning Repository [28] and compare the detection performance with the EWMA variance chart with measurement error. A summary is given in Section 5.

2. Using the Error-Corrected EWMA Variance Chart to Monitor Process Dispersion

2.1. Design of the EWMA Variance Chart

Yang and Arnold [9,10] proposed a dispersion monitoring statistic whose variance will not be influenced by the out-of-control mean and integrated it with the sign test method to construct the distribution-free EWMA dispersion control charts. We adopted the general framework of the EWMA dispersion control chart in Yang and Arnold [9,10], and described it as follows.
Let n be the sample size, and let t denote the number of sampling periods. For the t t h sampling period and the j t h observation with j = 1 , , n and t = 1 , , , let X t , j be continuous random samples coming from an in-control continuous process X 0 with unknown distribution and variance σ 2 .
To monitor the process variance under the unknown distribution, we can use the sign method to convert the continuous variable to a binary variable. Specifically, under the in-control process, define
Y t ,   j = ( X t ,   2   j X t , 2   j 1 ) 2 2
for a fixed t and j = 1 , 2 , , 0.5 n . Based on the transformation (1), we denote Y 0 as the random variable of the in-control process, then we obtain E ( Y 0 ) = σ 2 . We can see that the statistic Y 0   is an unbiased estimator of   σ 2 , and it will not be influenced by the mean of X t ,   2   j .
Moreover, by (1), define an indicator function
I t , j = { 1 ,     i f   Y t , j > σ 2 0 ,     otherwise   for   fixed   t   and   j = 1 , 2 , , 0.5 n .
Denote V t as the sum of indicators of function at the t t h sampling period, i.e.,
V t = j = 1 0.5 n I t , j ~ B i n ( 0.5 n , p 0 )   for   t   =   1 , , ,
where p 0 P ( Y 0 > σ 2 ) for the in-control process.
From (3), let
P t = V t 0.5 n   for   t   =   1 , , ,
To monitor the variance process, we can construct an EWMA variance chart based on (4), and the EWMA statistic at t time is defined as
E W M A P t = λ P t + ( 1 λ ) E W M A P t 1
for t = 1 ,   2 , , , where λ is a smoothing parameter, and λ ( 0 , 1 ] .
We let the starting EWMA charting statistic, E W M A P 0 , t = 0 , be the mean of P t , i.e., E W M A P 0 = p 0 . The mean and the variance of E W M A P t are, respectively, derived as
E ( E W M A P t ) = p 0
and
V a r ( E W M A P t ) = p 0 ( 1 p 0 ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) .  
Assume that there is an upward or downward out-of-control process dispersion; hence, two one-sided EWMA variance charts are considered. The control limits ( ( U C L 1 , L C L 1 ) and ( U C L 2 , L C L 2 ) ) of the two one-sided EWMA variance charts are, respectively, as follows.
U C L 1 = p 0 + L 1 p 0 ( 1 p 0 ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) , L C L 1 = ,
and
U C L 2 = , L C L 2   =   p 0 L 2 p 0 ( 1 p 0 ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) ,
where L 1 and L 2 are determined to satisfy the preset in-control average run length ( A R L 0 ).
To calculate the L 1 and L 2 , we first define run length ( R L ), which is the first number of points that will point beyond the control limits. The average run length ( A R L ) is the mean of R L . With given the A R L , one can adopt a numerical algorithm summarized in Algorithm 1 to determine L 1 and L 2 .
To assess the performance of process monitoring, we primarily examine the A R L 0 , in-control median run length ( M R L ), and in-control standard deviation of run length ( S D R L ), denoted as M R L 0 and S D R L 0 . We employ Monte Carlo simulation to compute A R L 0 , M R L 0 , S D R L 0 , and let A R L ^ 0 , M R L ^ 0 , S D R L ^ 0 denote resulting values. The A R L 0 is usually set as 370.4 and 200 . In this study, we set A R L 0 = 370.4 . In principle, larger values of S D R L 0 indicate we need more R L to ensure the A R L ^ 0 is precise enough and close to prespecified A R L 0 . Generally, the distribution of R L is skewed; hence, M R L is a robust version of the A R L , and we can use M R L 0 to measure the central tendency.
We further adopt the algorithm in Appendix A to run the simulation and assess the control limits of the EWMA variance chart ( U C L 1 and L C L 2 ), considering p 0 = 0.1 ( 0.05 ) 0.45 , A R L 0 = 370.4 and λ = 0.05 . Numerical results are placed in Table 1, where some values of L 2 do not exist since L C L 2 may not converge under small p 0 and n . We find that the widths of the two control charts become narrower when p 0 or the sample size n increases.

2.2. The EWMA Variance Chart with Measurement Error

In applications, instead of observing X t , j , we usually collect the surrogate version of X t , j , denoted as X t , j * . To characterize X t , j and X t , j * , we adopt the classical measurement error model
X t , j * = X t , j + ε t , j ,
where ε t , j is a random sample with E ( ε t , j )   =   0 and V a r ( ε t , j ) = δ 2 2 σ 2 for some positive constant δ 2 . We assume that ε t , j is independent of X t , j . By (8), it is straightforward that the variance of X t , j * is equal to σ 2 + δ 2 2 σ 2 .
To construct the variance control chart with measurement error, we can use the same method in Section 2.1, and define
Y t , j * = ( X t ,   2 j * X t , 2 j 1 * ) 2 2 ,
and
I t , j * = { 1 , if   Y t , j * > σ 2 + δ 2 2 σ 2 0 , otherwise
for fixed t and j = 1 , 2 , , 0.5 n .
Similarly, let Y 0 * denote the observed in-control random variable, then we obtain E ( Y 0 * ) = σ 2 + δ 2 2 σ 2 .
We denote V t * as the sum of I t , j * at the t t h sampling period, i.e.,
V t * = j = 1 0.5 n I t , j * ~ B i n ( 0.5 n , p 0 * )   for     t   =   1 , , ,
where p 0 * P ( Y 0 * > σ 2 + δ 2 2 σ 2 ) is an error-prone probability based on the in-control process.
To find the relationship between p 0 and p 0 * , we need to analyze the possible relative situations for ( Y 0 > σ 2 ,   Y 0 < σ 2 ) and ( Y 0 * > σ 2 + δ 2 2 σ 2 ,   Y 0 * < σ 2 + δ 2 2 σ 2 ) . There are four situations, (1) given Y 0 > σ 2 , and Y 0 * > σ 2 + δ 2 2 σ 2 , (2) given Y 0 < σ 2 , and Y 0 * < σ 2 + δ 2 2 σ 2 , (3) given Y 0 > σ 2 , and Y 0 * < σ 2 + δ 2 2 σ 2 , and (4) given Y 0 < σ 2 , and Y 0 * > σ 2 + δ 2 2 σ 2 . For (1) and (2) situations, we can define their proportions as
π 1 = P ( Y 0 * > σ 2 + δ 2 2 σ 2 | Y 0 > σ 2 ) and π 2 = P ( Y 0 * < σ 2 + δ 2 2 σ 2 | Y 0 < σ 2 ) .
Hence,
1 π 1 = P ( Y 0 * < σ 2 + δ 2 2 σ 2 | Y 0 > σ 2 ) , and 1 π 2 = P ( Y 0 * > σ 2 + δ 2 2 σ 2 | Y 0 < σ 2 ) .
We may derive the relationship of p 0 and p 0 * is
p 0 * = π 1 p 0 + ( 1 π 2 ) ( 1 p 0 ) and 1 p 0 * = ( 1 π 1 ) p 0 + π 2 ( 1 p 0 ) .
Denote the error-prone proportion statistic is
P t * = V t * 0.5 n     for     t   =   1 , , .
The EWMA statistic with measurement error based on the statistic P t * is given by
E W M A P t * = λ P t * + ( 1 λ ) E W M A P t 1 * ,
for t = 1 ,   2 , , , where λ is a smoothing parameter, λ ( 0 , 1 ] .
The starting EWMA charting statistic for t = 0 , E W M A P 0 * , is given by E ( E W M A P t * ) = p 0 * . Therefore, the mean and the variance of E W M A P t * are
E ( E W M A P t * ) = p 0 * and V a r ( E W M A P t * ) = p 0 * ( 1 p 0 * ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) .
Consequently, we can construct the two one-sided EWMA variance charts with measurement error as follows.
U C L 3 * = p 0 * + L 3 p 0 * ( 1 p 0 * ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) , L C L 3 * = ,
and
U C L 4 * = , L C L 4 * =   p 0 * L 4 p 0 * ( 1 p 0 * ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) ,
where L 3 and L 4 are determined to satisfy the preset A R L 0 . L 3 and L 4 can be determined by the similar steps in the algorithm in Appendix A. Compared with (6) and (14) or (7) and (15), the key difference is the involvement of the error-prone proportion p 0 * . Since p 0 * is different from p 0 due to measurement error (8), it is expected to see that two one-sided control limits (14) and (15) can be contaminated by measurement error, yielding unreliable detection. The calculated A R L 0 , M R L 0 , and S D R L 0 of the EWMA variance chart with measurement errors are denoted as A R L ^ 0 * , M R L ^ 0 * , and S D R L ^ 0 * .
To see the impact of measurement error on U C L 3 * or L C L 4 * , we find values of L 3 and L 4 under the prespecified A R L 0 370.4 ,   λ = 0.05 , p 0 = 0.1 ( 0.05 ) 0.45 , and 0.5 n = 1 ,   2 ,   3 ,   4 ,   5 ,   10 ,   15 ,   20 . Here, we assume that, from historical experience, π 1 = π 2 = 0.95 . From (11), given p 0 , p 0 * are calculated and p 0 * = 0.140 ,   0.185 ,   0.230 ,   0.275 ,   0.320 ,   0.365 ,   0.41 ,   0.455 . Similar to the findings in Section 2.1, there are some values of L 4 that do not exist (see Table 2). From Table 2, we find that the widths of the two control charts become narrower when p 0 * or the sample size n increases. Compare the widths of the control limits of the EWMA variance chart with and without measurement error, say ( U C L 1 , L C L 2 ) with ( U C L 3 * , L C L 4 * ), we find that the width of the control limits with measurement error ( U C L 3 * and L C L 4 * ) is larger. It indicates the out-of-control detection ability of the EWMA variance chart with measurement error would be worse than that of the true EWMA variance chart.

2.3. Design of the Error-Corrected EWMA Variance Chart

In Section 2.2, we find that the proposed EWMA variance chart with measurement error may induce worse out-of-control detection performance. To remedy this, we aim to propose a method to correct for measurement error effects.
From (11), we know the relationship of p 0 and p 0 * , but we have no information on the true value of p 0 . Hence, we let p 0 * * be the estimator of p 0 . Because we know the relationship of p 0 and p 0 * , we may derive the relationship of p 0 * and p 0 * * as
p 0 * = π 1 p 0 * * + ( 1 π 2 ) ( 1 p 0 * * ) .
Consequently, the error-corrected estimate p 0 * * is
p 0 * * p 0 * + π 2 1 π 1 + π 2 1 .
The error-corrected statistic P t * * used to estimate the true statistic P t using P t * is expressed as
P t * * = P t * + π 2 1 π 1 + π 2 1 .
Hence, the mean and variance of P t * * are, respectively, given by
E ( P t * * ) = p 0 * + π 2 1 π 1 + π 2 1 and V a r ( P t * * ) = p 0 * ( 1 p 0 * ) n ( π 1 + π 2 1 ) 2 .
The charting statistic of the error-corrected EWMA variance chart is
E W M A P t * * = λ P t * * + ( 1 λ ) E W M A P t 1 * *
for time t = 1 ,   2 , , where λ is a smoothing parameter, λ ( 0 , 1 ] .
The starting value of E W M A P t * * , t = 0 , is given by E W M A P 0 * * = E ( E W M A P t * * ) = p 0 * * . The mean and the variance of E W M A P t * * are, respectively, given by
E ( E W M A P t * * ) = p 0 * + π 2 1 π 1 + π 2 1 and V a r ( E W M A P t * * ) = p 0 * ( 1 p 0 * ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) ( π 1 + π 2 1 ) 2 .
Based on the mean and variance of E W M A P t * * , the control limits of the two one-sided error-corrected EWMA variance charts are expressed as follows.
U C L 5 * * = p 0 * * + L 5 p 0 * ( 1 p 0 * ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) ( π 1 + π 2 1 ) 2 , L C L 5 * * = ,
and
U C L 6 * * = , L C L 6 * *   = p 0 * * L 6 p 0 * ( 1 p 0 * ) λ [ 1 ( 1 λ ) 2 t ] n ( 2 λ ) ( π 1 + π 2 1 ) 2 ,
where L 5 and L 6 are determined to satisfy the preset A R L 0 .
The calculated A R L 0 , M R L 0 , and S D R L 0 of the error-corrected EWMA variance chart are denoted as A R L ^ 0 * * , M R L ^ 0 * * , and S D R L ^ 0 * * . To assess the performance of corrected control charts, we mainly examine the setting π 1 = π 2 = 0.95 ,   λ = 0.05 , p 0 = 0.1 ( 0.05 ) 0.45 , and 0.5 n = 1 ,   2 ,   3 ,   4 ,   5 ,   10 ,   15 ,   20 with the prespecified A R L 0 370.4 .
Numerical results, including U C L 5 * * , L C L 6 * * , L 5 , L 6 , A R L ^ 0 * * , M R L ^ 0 * * , and S D R L ^ 0 * * , are summarized in Table 3.
Table 3 shows that p 0 = p 0 * * , the values of L 6 do not exist when 0.5n = 1, 2, and the widths of the two control charts become narrower when p 0 * * or the sample size n increases. Compared with Table 1, Table 2 and Table 3, we find that the values of the error-corrected control limits ( U C L 5 * * and L C L 6 * * ) in Table 3 are much closer to the reality control limits ( U C L 1 and L C L 2 ) in Table 1 than the control limits with measurement error ( U C L 3 * and L C L 4 * ). It is evidence that the control limits of the error-corrected EWMA variance charts are reliable for monitoring process dispersion when measurement error exists in the process.

3. Performance of the Error-Corrected EWMA Variance Chart

To assess the out-of-control detection performance of the proposed error-corrected charts, we conduct A R L for the out-of-control dispersion, denoted A R L 1 . Detailed steps for A R L 1 computation are shown in Algorithm 2. In principle, the smaller value of A R L 1 means the better detection ability for a control chart.
We follow the setting in Section 2 to generate out-of-control samples. After that, we apply the control limits obtained in Section 2 to evaluate A R L 1 . The calculated A R L 1 of the EWMA variance chart without measurement error, with measurement error, and error-corrected EWMA variance chart are denoted as A R L ^ 1 , A R L ^ 1 * , and A R L ^ 1 * * . Hence, we use L 1 and L 2 to calculate A R L ^ 1 , use L 3 and L 4 to calculate A R L ^ 1 * , and use L 5 and L 6 to calculate A R L ^ 1 * * .
When the process is out-of-control, the process variance of true value X 0 shifts from σ 2 to δ 1 2 σ 2 . Denote Y 1 as the out-of-control random variable, then E ( Y 1 ) = δ 1 2 σ 2 . The process variance of the observed value X 0 * shifts from σ 2 + δ 2 2 σ 2 to δ 1 2 σ 2 + δ 2 2 σ 2 and denote Y 1 * as the out-of-control random variable, then E ( Y 1 * ) = δ 1 2 σ 2 + δ 2 2 σ 2 . Denote the out-of-control proportions for the process without and with measurement error as p 1 P ( Y 1 > σ 2 ) and p 1 * P ( Y 1 * > σ 2 + δ 2 2 σ 2 ) , respectively. Same as Section 2, the relationship of p 1 and p 1 * can be rewritten as follows.
p 1 * = π 1 p 1 + ( 1 π 2 ) ( 1 p 1 ) .
Here, we assume that the values of π 1 and π 2 are the same as in Section 2.
Let p 1 * * to be the estimator of p 1 . Similarly, we know the relationship of p 1 * and p 1 * * is
p 1 * = π 1 p 1 * * + ( 1 π 2 ) ( 1 p 1 * * ) .
Consequently, the error-corrected estimate p 1 * * is p 1 * * = p 1 * + π 2 1 π 1 + π 2 1 .
To see the impact of measurement error on A R L 1 , we prespecify A R L 0 370.4 ,   λ = 0.05 , π 1 = π 2 = 0.95 , p 0 = 0.2 ,   0.3 ,   0.4 , p 1 = 0.1 ( 0.1 ) 0.9 , and 0.5 n = 1 ,   2 ,   3 ,   4 ,   5 ,   10 ,   15 ,   20 . From (19) and (20), given p 1 ,   p 1 * are calculated and p 1 * = 0.14 ,   0.23 ,   0.32 ,   0.41 ,   0.5 ,   0.59 ,   0.68 ,   0.77 ,   0.86 , and given p 1 * , p 1 * * are calculated and p 1 * * = 0.1 ( 0.1 ) 0.9 . We further find that p 1 = p 1 * * .
Table 4, Table 5 and Table 6 illustrate the resulting A R L 1 s of the three charts. When p 1 (or p 1 * or p 1 * * ) is far away from p 0 (or p 0 * or p 0 * * ), the A R L ^ 1 (or A R L ^ 1 * or A R L ^ 1 * * ) decreases. We compare the out-of-control detection performance of the proposed error-corrected EWMA variance chart and the EWMA variance chart with and without measurement error. We find that A R L ^ 1 * * is very closer to A R L ^ 1 and is smaller than A R L ^ 1 * , which indicates that the error-corrected EWMA variance chart can detect the out-of-control process correctly, and almost has the same detection ability as that of the EWMA variance chart without measurement error. The EWMA variance chart with measurement error detects the out-of-control variance inefficiently. That is, the larger measurement error leads to a worse out-of-control detection ability. It is evidence to show the impact of measurement error on detecting the out-of-control variance.

4. Example

In this section, we implement the error-corrected EWMA variance control chart to analyze the SECOM data that are available in the UC Irvine Machine Learning Repository [28]. A complex modern semiconductor manufacturing process is normally under consistent surveillance via the monitoring of signals/variables collected from sensors and/or process measurement points. The data set includes 591 variables, 1567 in-control data, and 104 out-of-control data. To demonstrate the application of the proposed variance control chart, we take the second variable column as a quality variable with measurement error. For in-control observed data X 0 * , we take 300 in-control observations. We take thirty samples of size 10 for the 300 observations. We do not need to know the distribution of X 0 * . Based on the samples from the in-control process, the empirical estimate of σ 0 2 * is given by σ ^ 0 2 * = 1709.029 .
For out-of-control observed data X 1 * , we take 90 out-of-control observations. We take nine samples of size 10 for the 90 observations. We do not need to know the distribution of X 1 * , either. The empirical estimator of the out-of-control variance is given by σ ^ 1 2 * = δ 1 2 σ ^ 0 2 * = 3611.624 . Hence, δ 1 = 3611.624 1709.029 = 1.453 . We find the out-of-control variance is much larger than the in-control variance. Hence, we only consider the one-sided EWMA variance chart with the U C L .
P t * is the sample proportion of ( Y t , j * > 1709.029 ) for j = 1 , , 10 and t = 1 , , 30 . The estimate of p 0 * is using p ^ 0 * = t = 1 30 P t * 30 = 0.287 . The L 3 of the U C L 3 * of the EWMA variance control chart with measurement error is 2.757 and U C L 3 * = 0.473 for λ = 0.05 and A R L ^ 0 * 370.4 . For constructing the error-corrected variance control chart, we need to know the two proportions of truly classified π 1 and π 2 . We specify several combination values for ( π 1 ,   π 2 ) and examine the impact of measurement error. In this study, we specify δ 2 = 0.3 ,   0.5 ,   0.75 , and consider ( π 1 ,   π 2 ) = ( 0.823 ,   0.918 ) , ( 0.720 ,   0.870 ) and ( 0.616 ,   0.821 ) . Hence, the corresponding error-corrected proportion is p ^ 0 * * = 0.277 , 0.266 , and 0.247 . By implementing the estimate procedure in Section 2.3, the error-corrected L 5 and U C L 5 * * under δ 2 = 0.3 ,   0.5 ,   0.75 , λ = 0.05 and A R L ^ 0 * * 370.4 are summarized in Table 7.
Figure 1 is the EWMA variance charts with measurement error for monitoring the in-control samples and the out-of-control samples. The EWMA variance chart with measurement error detects out-of-control signals in the fifth sample. Figure 2 is the error-corrected EWMA variance charts with different values of δ 2 for the same data and the error-corrected EWMA variance charts detect out-of-control signals in the fourth sample under δ 2 = 0.3 , in the third sample under δ 2 = 0.5 and δ 2 = 0.75 . Therefore, the ability of the out-of-control detection performance of the error-corrected EWMA variance chart is better than the EWMA variance chart with measurement error in this example.

5. Conclusions

In this paper, we develop a new variance control chart with the correction of measurement error for a distribution-free continuous observed quality variable. Our idea is to consider the EWMA variance chart for a process with non-normal or unknown distribution and investigates the effects of measurement error on the EWMA variance chart. To correct the effects of measurement error, we propose the error-corrected variance control chart. Numerical results justify the validity of the proposed error-corrected variance control chart. The control limits of the error-corrected EWMA variance chart are more reliable, and the corresponding out-of-control detection ability is very close to the EWMA variance chart without measurement error. On the contrary, without suitable correction of measurement error effects, we find that the control limits and the out-of-control detection ability of the variance control chart with measurement error are extremely unreliable, especially when moderate and large levels of measurement error are involved. As commented by a referee, it is interesting to compare with other existing methods to show the advantages of our proposed method. However, to the best of our knowledge, few methods have been available to correct for measurement error effects when constructing control charts. We will keep exploring alternative approaches and then compare them with our method in the near future.

Author Contributions

Conceptualization: S.-F.Y. and L.-P.C.; methodology: S.-F.Y. and L.-P.C.; software: C.-K.L.; validation: S.-F.Y., L.-P.C. and C.-K.L.; formal analysis: C.-K.L.; investigation: S.-F.Y. and L.-P.C.; data curation: C.-K.L.; writing—original draft preparation: C.-K.L., S.-F.Y. and L.-P.C.; visualization: C.-K.L.; supervision: S.-F.Y. and L.-P.C.; funding acquisition: S.-F.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by The National Science and Technology Council, grant number 110-2118-M-004-006 MY2.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The SECOM data can be found in UC Irvine Machine Learning Repository (UCI Machine Learning Repository: SECOM data set).

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

Algorithm 1 The Monte Carlo simulation steps to find L 1 and L 2 in U C L 1 and L C L 2 of the EWMA variance chart with given A R L 0
1:Given in-control p 0 , λ , n and a value of A R L 0 .
2:Set a < L 1   ( or   L 2 ) < b , with a = 0.01 and b = 5 .
3:Monte Carlo procedure:
4:for  m from 1 to M and set M = 10000 perform the following:
5:    Let E W M A P 0 = p 0 , and t = 1 .
6:    Simulate X t from B i n ( n , p 0 ) , and calculate p ^ t = X t n ;
7:        if  t = 1  then
8:                   E W M A P 1 = λ p ^ 1 + ( 1 λ ) E W M A P 0 .
9:        end if
10:        if  t 1  then
11:                   E W M A P t = λ p ^ t + ( 1 λ ) E W M A P t 1 .
12:        end if
13:    Give L 1 (or L 2 ) and calculate U C L 1 (or L C L 2 );
14:        if  E W M A P t U C L 1 (or L C L 2 ), then
15:                  take t m = t as run length, let m m + 1 . Go to step line 5.
16:        end if
17:        if  E W M A P t U C L 1 (or   L C L 2 ) then
18:                   t t + 1 . Go to line 6.
19:        end if
20:end for
21:Calculate m = 1 M t m M , take it to be the estimator of the A R L 0 , denoted as A R L ^ 0 , and determine L 1 (or L 2 ) by | A R L 0 A R L ^ 0 | < 1 , subject to a < L 1   ( or   L 2 ) < b .
22:return L 1 (or L 2 ).
Algorithm 2 The Monte Carlo simulation steps to calculate A R L 1 for p 1
1:Given out-of-control p 1 , λ , n , p 0 , and L 1 (or L 2 ), where L 1 (or L 2 ) is determined by assigned A R L 0 in Algorithm 1..
2:if  p 1 > p 0  then
3:    we used one-sided U C L 1 , which be calculated by L 1 .
4:end if
5:if  p 1 < p 0  then
6:    we used one-sided L C L 2 , which be calculated by L 2 .
7:end if
8:Monte Carlo procedure:
9:for  m from 1 to M and set M = 10000 perform the following:
10:    Let E W M A P 0 = p 0 , and t = 1 .
11:    Simulate X t from B i n ( n , p 1 ) , and calculate p ^ t = X t n ;
12:        if  t = 1  then
13:                   E W M A P 1 = λ p ^ 1 + ( 1 λ ) E W M A P 0 .
14:        end if
15:        if  t 1  then
16:                   E W M A P t = λ p ^ t + ( 1 λ ) E W M A P t 1 .
17:        end if
18:    Give L 1 (or L 2 ) and calculate U C L 1 (or L C L 2 );
19:        if  E W M A P t U C L 1 (or L C L 2 ), then
20:                  take t m = t as run length, let m m + 1 . Go to step line 10.
21:        end if
22:        if  E W M A P t U C L 1 (or   L C L 2 ) then
23:                   t t + 1 . Go to line 11.
24:        end if
25:end for
26:return  m = 1 M t m M , and take it to be the estimator of the A R L 1 .

References

  1. Shewhart, W.A. Some applications of statistical methods to the analysis of physical and engineering data. Bell Syst. Tech. J. 1924, 3, 43–87. [Google Scholar] [CrossRef]
  2. Roberts, S.W. Control chart tests based on geometric moving averages. Technometrics 1959, 1, 239–250. [Google Scholar] [CrossRef]
  3. Amin, R.W.; Reynolds, M.R., Jr.; Saad, B. Nonparametric quality control charts based on the sign statistic. Commun. Stat. Theory Methods 1995, 24, 1597–1623. [Google Scholar] [CrossRef]
  4. Bakir, S.T. A distribution-free Shewhart quality control chart based on signed-ranks. Qual. Eng. 2004, 16, 613–623. [Google Scholar] [CrossRef]
  5. Bakir, S.T. Distribution-free quality control charts based on signed-rank-like statistics. Commun. Stat.-Theory Methods 2006, 35, 743–757. [Google Scholar] [CrossRef]
  6. Yang, S.F.; Lin, J.S.; Cheng, S.W. A new nonparametric EWMA sign control chart. Expert Syst. Appl. 2011, 38, 6239–6243. [Google Scholar] [CrossRef]
  7. Yang, S.F.; Cheng, T.C.; Hung, Y.C.; Cheng, S.W. A new chart for monitoring service process mean. Qual. Reliab. Eng. Int. 2012, 28, 377–386. [Google Scholar] [CrossRef]
  8. Chowdhury, S.; Mukherjee, A.; Chakraborti, S. A new distribution-free control chart for joint monitoring of unknown location and scale parameters of continuous distributions. Qual. Reliab. Eng. Int. 2014, 30, 191–204. [Google Scholar] [CrossRef]
  9. Yang, S.F.; Arnold, B.C. A simple approach for monitoring business service time variation. Sci. World J. 2014, 2014, 238719. [Google Scholar] [CrossRef] [Green Version]
  10. Yang, S.F.; Arnold, B.C. A new approach for monitoring process variance. J. Stat. Comput. Simul. 2016, 86, 2749–2765. [Google Scholar] [CrossRef]
  11. Tang, A.; Castagliola, P.; Hu, X.; Sun, J. The adaptive EWMA median chart for known and estimated parameters. J. Stat. Comput. Simul. 2019, 89, 844–863. [Google Scholar] [CrossRef]
  12. Riaz, M.; Abid, M.; Shabbir, A.; Nazir, H.Z.; Abbas, Z.; Abbasi, S.A. A non-parametric double homogeneously weighted moving average control chart under sign statistic. Qual. Reliab. Eng. Int. 2021, 37, 1544–1560. [Google Scholar] [CrossRef]
  13. Mittag, H.-J.; Stemann, D. Gauge imprecision effect on the performance of the X ¯     S control chart. J. Appl. Stat. 1998, 25, 307–317. [Google Scholar] [CrossRef]
  14. Linna, K.W.; Woodall, W.H. Effect of measurement error on Shewhart control charts. J. Qual. Technol. 2001, 33, 213–222. [Google Scholar] [CrossRef]
  15. Stemann, D.; Weihs, C. The EWMA-XS-control chart and its performance in the case of precise and imprecise data. Stat. Pap. 2001, 42, 207. [Google Scholar] [CrossRef]
  16. Maravelakis, P.; Panaretos, J.; Psarakis, S. EWMA chart and measurement error. J. Appl. Stat. 2004, 31, 445–455. [Google Scholar] [CrossRef] [Green Version]
  17. Abbas, N.; Riaz, M.; Does, R.J. An EWMA-type control chart for monitoring the process mean using auxiliary information. Commun. Stat. Theory Methods 2014, 43, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
  18. Daryabari, S.A.; Hashemian, S.M.; Keyvandarian, A.; Maryam, S.A. The effects of measurement error on the MAX EWMAMS control chart. Commun. Stat. Theory Methods 2017, 46, 5766–5778. [Google Scholar] [CrossRef]
  19. Noor-ul-Amin, M.; Riaz, A.; Safeer, A. Exponentially weighted moving average control chart using auxiliary variable with measurement error. Commun. Stat. Simul. Comput. 2020, 51, 1002–1014. [Google Scholar] [CrossRef]
  20. Asif, F.; Khan, S.; Noor-ul-Amin, M. Hybrid exponentially weighted moving average control chart with measurement error. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 801–811. [Google Scholar] [CrossRef]
  21. Huwang, L.; Hung, Y. Effect of measurement error on monitoring multivariate process variability. Stat. Sin. 2007, 17, 749–760. [Google Scholar]
  22. Nojavan, M.; Alishahi, M.; Rezaee, M.; Rahaee, M.A. The effect of measurement error on the performance of Mann-Whitney and Signed-Rank nonparametric control charts. Qual. Reliab. Eng. Int. 2021, 37, 2365–2383. [Google Scholar] [CrossRef]
  23. Case, K.E.J. The p control chart under inspection error. J. Qual. Technol. 1980, 12, 1–9. [Google Scholar] [CrossRef]
  24. Lu, X.S.; Xie, M.; Goh, T.N. An investigation of the effects of inspection errors on the run-length control charts. Commun. Stat. Simul. Comput. 2000, 29, 315–335. [Google Scholar] [CrossRef]
  25. Shu, M.-H.; Wu, H.C. Monitoring imprecise fraction of conforming items using p control charts. J. Appl. Stat. 2010, 37, 1283–1297. [Google Scholar] [CrossRef]
  26. Daryabari, S.A.; Malmir, B.; Amiri, A. Monitoring Bernoulli processes considering measurement errors and learning effect. Qual. Reliab. Eng. Int. 2019, 35, 1129–1143. [Google Scholar] [CrossRef]
  27. Chen, L.-P.; Yang, S.-F. A new p-control chart with measurement error correction. Qual. Reliab. Eng. Int. 2023, 23, 81–98. [Google Scholar] [CrossRef]
  28. McCann, M.; Johnston, A. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/datasets/SECOM (accessed on 1 December 2021).
Figure 1. (a) In-control SECOM data; (b) out-of-control SECOM data. The monitoring results of the variance control chart with measurement error for SECOM data.
Figure 1. (a) In-control SECOM data; (b) out-of-control SECOM data. The monitoring results of the variance control chart with measurement error for SECOM data.
Sustainability 15 04337 g001
Figure 2. (a) In-control SECOM data; (b) out-of-control SECOM data. The monitoring results of the error-corrected control chart for SECOM data.
Figure 2. (a) In-control SECOM data; (b) out-of-control SECOM data. The monitoring results of the error-corrected control chart for SECOM data.
Sustainability 15 04337 g002
Table 1. The L 1 and L 2 of the two one-sided EWMA variance charts with A R L 0 370.4 and λ = 0.05 for various 0.5 n .
Table 1. The L 1 and L 2 of the two one-sided EWMA variance charts with A R L 0 370.4 and λ = 0.05 for various 0.5 n .
0.5 n p 0 0.10.150.20.250.30.350.40.45 0.5 n p 0 0.10.150.20.250.30.350.40.45
1 L 1 2.613 2.487 2.415 2.377 2.317 2.269 2.243 2.208 5 L 1 2.346 2.291 2.284 2.260 2.236 2.215 2.206 2.201
U C L 1 0.226 0.292 0.355 0.415 0.470 0.523 0.576 0.626 U C L 1 0.150 0.209 0.265 0.320 0.373 0.426 0.477 0.528
A R L ^ 0 369.420 369.675 370.404 370.474 369.596 370.991 370.363 370.821 A R L ^ 0 370.226 370.838 370.620 371.295 369.494 370.277 369.487 370.062
M R L ^ 0 235.000 239.000 254.000 246.000 251.000 254.000 252.000 250.000 M R L ^ 0 243.000 251.000 248.000 246.000 244.500 251.000 248.000 249.000
S D R L ^ 0 412.550 403.998 389.989 398.119 383.980 395.516 387.791 381.086 S D R L ^ 0 396.058 396.092 394.681 393.823 393.857 384.115 387.144 386.935
L 2 ---1.950 2.005 2.058 2.099 2.141 L 2 1.983 2.035 2.067 2.079 2.100 2.132 2.144 2.161
L C L 2 ---0.115 0.153 0.193 0.235 0.279 L C L 2 0.057 0.098 0.141 0.186 0.231 0.277 0.325 0.373
A R L ^ 0 ---370.255 369.771 370.948 370.163 370.738 A R L ^ 0 369.530 369.474 370.561 369.588 370.623 369.479 371.332 369.727
M R L ^ 0 ---257.000 251.500 256.000 249.000 251.000 M R L ^ 0 254.000 253.000 249.000 254.500 254.000 255.000 253.000 251.000
S D R L ^ 0 ---372.858 377.576 375.234 379.337 378.038 S D R L ^ 0 371.532 377.845 376.666 376.126 382.532 381.160 386.535 384.101
2 L 1 2.476 2.394 2.357 2.334 2.257 2.226 2.188 2.206 10 L 1 2.298 2.267 2.260 2.225 2.213 2.205 2.200 2.188
U C L 1 0.184 0.247 0.307 0.364 0.417 0.470 0.521 0.574 U C L 1 0.135 0.191 0.246 0.299 0.351 0.403 0.455 0.505
A R L ^ 0 369.991 370.072 370.145 371.292 369.780 370.679 370.073 369.673 A R L ^ 0 370.617 370.869 371.290 370.122 370.993 370.213 370.239 370.927
M R L ^ 0 243.000 245.000 243.000 237.000 253.000 247.000 246.000 245.000 M R L ^ 0 249.000 248.000 242.000 245.500 251.000 245.000 247.000 248.000
S D R L ^ 0 402.733 398.480 402.038 418.830 383.062 390.341 394.619 391.579 S D R L ^ 0 388.704 394.289 400.223 392.066 382.948 394.178 396.160 402.867
L 2 -1.929 1.994 2.038 2.077 2.096 2.130 2.160 L 2 2.042 2.069 2.104 2.107 2.127 2.141 2.156 2.166
L C L 2 -0.072 0.110 0.150 0.192 0.237 0.282 0.328 L C L 2 0.069 0.113 0.157 0.204 0.251 0.298 0.347 0.395
A R L ^ 0 -369.795 370.292 369.624 371.360 369.707 370.198 369.799 A R L ^ 0 369.625 370.507 369.704 370.791 369.860 370.264 370.703 370.200
M R L ^ 0 -254.000 253.000 255.000 258.000 257.500 252.500 248.000 M R L ^ 0 257.000 254.000 250.000 253.000 253.000 255.000 253.000 254.000
S D R L ^ 0 -366.828 374.765 372.839 370.337 375.441 382.434 387.196 S D R L ^ 0 372.408 381.782 384.500 383.480 384.760 384.321 386.322 383.801
3 L 1 2.413 2.379 2.297 2.260 2.258 2.247 2.211 2.191 15 L 1 2.278 2.256 2.244 2.225 2.207 2.199 2.193 2.188
U C L 1 0.167 0.229 0.285 0.340 0.396 0.449 0.500 0.551 U C L 1 0.128 0.183 0.237 0.290 0.342 0.393 0.444 0.495
A R L ^ 0 370.040 370.235 370.268 370.666 370.045 371.308 370.140 369.708 A R L ^ 0 369.836 370.626 371.081 370.033 370.043 369.848 369.514 370.129
M R L ^ 0 241.000 239.000 249.000 250.000 247.000 247.000 247.000 252.000 M R L ^ 0 248.000 241.000 253.000 247.000 249.000 245.000 252.000 248.000
S D R L ^ 0 410.201 419.206 388.305 393.618 394.359 393.442 392.217 382.364 S D R L ^ 0 393.615 397.972 393.131 387.314 393.538 398.568 387.483 390.523
L 2 1.903 1.987 2.039 2.070 2.096 2.119 2.128 2.142 L 2 2.060 2.099 2.111 2.130 2.140 2.151 2.160 2.164
L C L 2 0.047 0.084 0.125 0.167 0.211 0.257 0.304 0.351 L C L 2 0.074 0.119 0.165 0.212 0.259 0.308 0.356 0.405
A R L ^ 0 370.466 369.623 370.715 370.609 369.563 370.330 371.315 369.499 A R L ^ 0 369.405 369.883 369.477 370.392 370.871 370.095 370.566 369.836
M R L ^ 0 259.000 256.000 251.000 252.000 251.000 249.000 255.000 251.000 M R L ^ 0 252.000 254.000 248.000 253.000 253.000 254.000 246.000 248.000
S D R L ^ 0 365.805 373.471 378.276 378.575 380.180 386.924 381.078 380.577 S D R L ^ 0 380.427 378.320 383.260 388.381 381.714 386.921 387.769 390.595
4 L 1 2.397 2.323 2.283 2.283 2.238 2.231 2.207 2.201 20 L 1 2.261 2.244 2.234 2.213 2.209 2.199 2.191 2.185
U C L 1 0.158 0.216 0.273 0.329 0.382 0.435 0.487 0.538 U C L 1 0.124 0.179 0.232 0.284 0.336 0.388 0.438 0.489
A R L ^ 0 371.321 370.706 370.574 370.321 370.476 370.325 369.423 369.420 A R L ^ 0 371.387 369.791 369.980 369.997 369.858 370.371 369.666 371.246
M R L ^ 0 242.000 247.000 244.000 246.000 254.000 246.000 250.000 249.000 M R L ^ 0 251.000 242.000 244.000 250.000 248.000 247.000 245.000 258.000
S D R L ^ 0 407.499 395.937 401.268 404.545 384.346 397.136 390.870 395.529 S D R L ^ 0 391.442 400.053 394.166 386.493 394.756 394.480 399.119 384.545
L 2 1.953 2.020 2.054 2.083 2.098 2.108 2.146 2.155 L 2 2.078 2.106 2.123 2.132 2.143 2.154 2.160 2.171
L C L 2 0.053 0.092 0.134 0.178 0.223 0.270 0.316 0.364 L C L 2 0.078 0.123 0.170 0.217 0.265 0.313 0.362 0.411
A R L ^ 0 370.922 371.149 370.306 370.275 369.723 371.398 371.107 370.641 A R L ^ 0 369.451 371.155 369.614 371.117 369.757 370.893 370.751 371.368
M R L ^ 0 259.000 250.000 248.500 255.000 249.000 250.000 251.000 248.000 M R L ^ 0 253.000 250.000 253.000 247.000 248.000 252.000 250.500 247.000
S D R L ^ 0 371.410 379.139 380.352 373.165 382.879 383.836 392.866 380.232 S D R L ^ 0 385.076 382.976 385.942 388.587 395.258 393.000 389.536 392.700
Table 2. The L 3 and L 4 of the two one-sided EWMA variance charts with measurement error for A R L 0 370.4 ,   λ = 0.05 , π 1 = π 2 = 0.95 , and various 0.5 n .
Table 2. The L 3 and L 4 of the two one-sided EWMA variance charts with measurement error for A R L 0 370.4 ,   λ = 0.05 , π 1 = π 2 = 0.95 , and various 0.5 n .
0.5 n p 0 0.10.150.20.250.30.350.40.45 0.5 n p 0 0.10.150.20.250.30.350.40.45
p 0 *   0.140.1850.230.2750.320.3650.410.455 p 0 * 0.140.1850.230.2750.320.3650.410.455
1 L 3 2.491 2.432 2.394 2.333 2.302 2.273 2.237 2.204 5 L 3 2.307 2.300 2.259 2.252 2.232 2.212 2.203 2.196
U C L 3 * 0.278 0.336 0.391 0.442 0.492 0.540 0.586 0.631 U C L 3 * 0.197 0.249 0.298 0.347 0.395 0.441 0.488 0.533
A R L ^ 0 * 370.802 369.803 370.455 370.887 370.380 370.442 371.052 369.831 A R L ^ 0 * 369.915 369.956 369.653 370.981 370.374 369.885 370.169 371.130
M R L ^ 0 * 247.000 249.000 242.000 252.000 251.000 252.000 256.000 253.000 M R L ^ 0 * 247.000 238.000 255.000 248.000 249.500 253.000 253.000 248.000
S D R L ^ 0 * 396.316 393.807 400.055 389.693 382.636 390.279 385.377 379.721 S D R L ^ 0 * 390.467 402.049 386.321 400.442 394.180 387.687 380.805 393.004
L 4 ---1.981 2.030 2.067 2.109 2.141 L 4 2.026 2.061 2.086 2.092 2.123 2.135 2.148 2.157
L C L 4 * ---0.133 0.168 0.206 0.244 0.284 L C L 4 * 0.090 0.128 0.167 0.208 0.249 0.291 0.334 0.378
A R L ^ 0 * ---369.655 371.288 371.229 370.521 369.669 A R L ^ 0 * 370.871 371.144 370.446 371.216 370.873 370.741 370.893 371.057
M R L ^ 0 * ---252.000 253.500 258.000 255.000 253.000 M R L ^ 0 * 253.000 257.000 251.000 246.500 247.000 251.000 252.500 244.000
S D R L ^ 0 * ---374.445 379.185 369.119 374.733 377.145 S D R L ^ 0 * 376.860 374.430 384.758 394.268 392.898 389.435 384.292 396.941
2 L 3 2.407 2.360 2.339 2.296 2.243 2.221 2.198 2.192 10 L 3 2.281 2.264 2.239 2.236 2.215 2.202 2.195 2.189
U C L 3 * 0.235 0.289 0.341 0.391 0.438 0.486 0.532 0.579 U C L 3 * 0.180 0.230 0.278 0.326 0.372 0.419 0.465 0.510
A R L ^ 0 * 370.529 369.800 370.701 369.584 370.267 371.126 370.981 371.179 A R L ^ 0 * 369.598 371.205 369.898 370.620 370.152 370.686 371.031 370.697
M R L ^ 0 * 247.000 251.000 241.000 244.000 248.000 247.000 246.000 252.000 M R L ^ 0 * 243.000 247.000 246.000 249.000 247.000 252.000 246.000 250.000
S D R L ^ 0 * 394.420 397.566 409.576 404.872 386.432 393.633 395.366 385.613 S D R L ^ 0 * 402.437 394.855 395.043 400.215 396.627 389.155 396.764 393.875
L 4 -1.977 2.023 2.063 2.088 2.114 2.137 2.158 L 4 2.061 2.098 2.110 2.127 2.145 2.148 2.156 2.170
L C L 4 * -0.098 0.134 0.171 0.210 0.250 0.291 0.333 L C L 4 * 0.104 0.144 0.185 0.227 0.269 0.313 0.356 0.400
A R L ^ 0 * -370.171 371.315 371.041 369.703 369.635 370.214 370.588 A R L ^ 0 * 370.503 369.659 371.018 370.553 371.151 370.695 369.468 369.858
M R L ^ 0 * -257.000 252.000 259.000 256.000 251.000 252.000 250.000 M R L ^ 0 * 250.000 252.000 256.000 249.000 247.000 251.000 246.000 245.000
S D R L ^ 0 * -373.830 377.031 370.843 374.409 380.628 376.959 387.839 S D R L ^ 0 * 374.628 382.189 380.017 388.631 398.728 387.840 393.845 395.435
3 L 3 2.384 2.312 2.274 2.256 2.252 2.247 2.206 2.187 15 L 3 2.254 2.243 2.221 2.224 2.216 2.200 2.189 2.186
U C L 3 * 0.216 0.268 0.318 0.368 0.417 0.465 0.510 0.556 U C L 3 * 0.172 0.221 0.269 0.316 0.363 0.409 0.455 0.500
A R L ^ 0 * 370.679 369.730 370.148 371.339 369.787 370.887 370.664 370.063 A R L ^ 0 * 370.050 370.031 371.010 370.186 369.899 369.702 369.413 370.462
M R L ^ 0 * 242.000 250.000 244.000 250.000 238.000 244.000 248.000 249.000 M R L ^ 0 * 250.000 252.000 249.000 247.000 249.000 251.000 254.000 245.500
S D R L ^ 0 * 410.674 384.391 398.588 390.102 403.263 399.591 393.939 380.186 S D R L ^ 0 * 387.818 386.994 393.219 395.215 392.916 389.165 385.537 400.136
L 4 1.974 2.026 2.058 2.089 2.106 2.124 2.126 2.149 L 4 2.092 2.110 2.122 2.133 2.151 2.153 2.165 2.169
L C L 4 * 0.077 0.112 0.150 0.189 0.229 0.270 0.313 0.356 L C L 4 * 0.110 0.151 0.193 0.236 0.279 0.322 0.366 0.410
A R L ^ 0 * 370.497 370.783 371.038 369.720 371.089 370.909 371.201 371.095 A R L ^ 0 * 370.113 371.373 369.544 369.748 371.290 370.283 370.542 370.016
M R L ^ 0 * 251.000 253.000 255.000 249.000 253.000 252.000 251.000 249.000 M R L ^ 0 * 253.500 250.000 247.000 251.000 251.000 253.000 246.000 250.000
S D R L ^ 0 * 379.630 373.100 377.646 383.434 378.893 387.068 389.182 385.862 S D R L ^ 0 * 382.921 386.978 390.430 388.225 388.648 384.561 391.979 388.679
4 L 3 2.333 2.288 2.286 2.257 2.241 2.228 2.194 2.189 20 L 3 2.249 2.237 2.224 2.213 2.205 2.191 2.188 2.187
U C L 3 * 0.205 0.256 0.307 0.356 0.404 0.451 0.496 0.542 U C L 3 * 0.168 0.216 0.264 0.310 0.357 0.403 0.448 0.494
A R L ^ 0 * 369.840 369.469 371.300 369.582 370.869 370.429 371.232 371.146 A R L ^ 0 * 370.625 370.400 369.594 370.624 370.552 369.730 369.765 371.371
M R L ^ 0 * 250.000 241.000 245.000 245.500 253.000 247.000 247.000 250.500 M R L ^ 0 * 248.000 249.000 246.000 254.000 247.000 248.500 245.000 252.500
S D R L ^ 0 * 389.850 402.562 402.794 388.964 379.662 396.789 401.228 383.538 S D R L ^ 0 * 393.430 390.740 393.528 386.900 394.144 391.991 393.345 390.015
L 4 2.005 2.047 2.075 2.092 2.097 2.129 2.149 2.160 L 4 2.099 2.125 2.120 2.144 2.147 2.157 2.167 2.173
L C L 4 * 0.084 0.121 0.160 0.200 0.242 0.283 0.325 0.369 L C L 4 * 0.114 0.155 0.198 0.241 0.284 0.328 0.372 0.416
A R L ^ 0 * 370.030 371.203 370.534 369.814 370.413 370.822 370.202 369.665 A R L ^ 0 * 369.858 370.184 369.891 371.118 370.419 371.095 370.893 369.904
M R L ^ 0 * 254.000 254.000 252.000 250.000 253.000 256.000 250.000 251.000 M R L ^ 0 * 248.000 252.000 246.000 250.000 253.000 252.000 254.000 253.000
S D R L ^ 0 * 376.628 383.430 384.793 387.164 382.458 386.103 388.277 383.637 S D R L ^ 0 * 383.411 391.298 390.441 388.031 389.177 391.143 391.470 389.982
Table 3. The L 5 and L 6 of the two one-sided error-corrected EWMA variance charts with A R L 0 370.4 , λ = 0.05 , π 1 = π 2 = 0.95 , and various 0.5 n .
Table 3. The L 5 and L 6 of the two one-sided error-corrected EWMA variance charts with A R L 0 370.4 , λ = 0.05 , π 1 = π 2 = 0.95 , and various 0.5 n .
0.5n p 0 0.10.150.20.250.30.350.40.450.5n p 0 0.10.150.20.250.30.350.40.45
p 0 * 0.140.1850.230.2750.320.3650.410.455 p 0 * 0.140.1850.230.2750.320.3650.410.455
p 0 * * 0.10.150.20.250.30.350.40.45 p 0 * * 0.10.150.20.250.30.350.40.45
1 L 5 2.036 2.057 2.062 2.076 2.048 2.032 2.009 1.986 5 L 5 1.830 1.898 1.953 1.972 1.982 1.978 1.974 1.980
U C L 5 * * 0.226 0.292 0.354 0.415 0.470 0.524 0.576 0.626 U C L 5 * * 0.151 0.209 0.265 0.320 0.374 0.426 0.477 0.528
A R L ^ 0 * * 370.770 370.683 371.201 369.870 370.799 369.690 371.359 370.972 A R L ^ 0 * * 371.146 370.054 371.091 370.070 370.337 369.840 371.005 369.472
M R L ^ 0 * * 239.000 245.000 246.500 243.000 254.000 252.000 255.000 246.000 M R L ^ 0 * * 252.000 249.000 252.000 247.000 254.000 249.000 251.000 241.000
S D R L ^ 0 * * 416.265 397.770 394.942 404.319 386.555 382.843 381.767 390.021 S D R L ^ 0 * * 390.322 393.370 391.522 395.568 385.764 392.892 386.398 399.644
L 6 ---1.702 1.773 1.835 1.881 1.925 L 6 1.543 1.684 1.768 1.819 1.857 1.901 1.926 1.943
L C L 6 * * ---0.115 0.153 0.193 0.235 0.279 L C L 6 * * 0.057 0.098 0.141 0.186 0.231 0.277 0.325 0.373
A R L ^ 0 * * ---369.917 370.980 370.897 369.765 370.653 A R L ^ 0 * * 371.182 369.456 369.496 369.440 370.906 370.649 369.878 370.064
M R L ^ 0 * * ---251.000 244.000 246.000 258.000 254.000 M R L ^ 0 * * 243.000 255.000 240.000 242.000 251.000 245.500 243.000 260.000
S D R L ^ 0 * * ---376.610 376.881 375.256 371.011 376.873 S D R L ^ 0 * * 376.943 377.758 382.803 379.653 372.559 375.615 383.931 372.138
2 L 5 1.923 1.981 2.014 2.033 1.995 1.986 1.963 1.979 10 L 5 1.791 1.876 1.930 1.943 1.964 1.968 1.974 1.970
U C L 5 * * 0.184 0.247 0.307 0.364 0.417 0.470 0.521 0.574 U C L 5 * * 0.135 0.191 0.246 0.299 0.352 0.403 0.455 0.505
A R L ^ 0 * * 370.195 370.640 370.492 370.156 370.959 369.700 370.735 370.452 A R L ^ 0 * * 370.693 369.773 370.496 371.399 371.164 370.424 370.563 371.194
M R L ^ 0 * * 246.000 252.000 248.500 241.000 253.000 250.000 251.000 248.000 M R L ^ 0 * * 253.000 251.000 243.500 247.000 253.000 247.000 248.000 244.000
S D R L ^ 0 * * 396.609 393.710 400.906 411.828 383.304 387.863 387.221 387.546 S D R L ^ 0 * * 385.966 388.521 396.175 396.374 389.315 398.319 395.113 401.072
L 6 -1.597 1.706 1.779 1.836 1.869 1.910 1.932 L 6 1.589 1.712 1.800 1.839 1.881 1.909 1.933 1.948
L C L 6 * * -0.072 0.110 0.150 0.192 0.237 0.282 0.328 L C L 6 * * 0.069 0.113 0.157 0.204 0.251 0.298 0.347 0.395
A R L ^ 0 * * -369.974 369.845 369.810 370.751 370.001 370.264 369.740 A R L ^ 0 * * 369.830 369.761 371.347 370.448 371.368 370.626 370.933 370.719
M R L ^ 0 * * -241.000 260.000 253.500 244.000 255.000 258.000 249.000 M R L ^ 0 * * 241.000 253.000 256.000 251.000 249.000 250.000 252.000 249.000
S D R L ^ 0 * * -376.916 373.371 377.784 375.023 371.790 375.188 375.349 S D R L ^ 0 * * 374.742 371.335 371.302 373.453 373.179 379.957 379.488 383.361
3 L 5 1.872 1.970 1.962 1.967 2.000 2.005 1.980 1.968 15 L 5 1.771 1.868 1.917 1.945 1.955 1.958 1.962 1.968
U C L 5 * * 0.167 0.229 0.285 0.340 0.396 0.449 0.500 0.551 U C L 5 * * 0.128 0.183 0.237 0.290 0.342 0.393 0.444 0.495
A R L ^ 0 * * 369.966 369.694 369.705 369.553 371.260 369.851 369.868 371.235 A R L ^ 0 * * 369.586 371.052 369.834 369.490 370.212 370.171 370.816 369.704
M R L ^ 0 * * 245.000 239.500 250.500 252.000 246.500 242.000 251.000 253.000 M R L ^ 0 * * 253.000 248.000 243.000 245.000 247.000 249.000 247.000 246.000
S D R L ^ 0 * * 394.683 409.185 389.435 387.567 400.738 405.672 382.863 383.664 S D R L ^ 0 * * 384.480 392.424 395.926 399.772 398.196 390.475 392.052 392.359
L 6 1.481 1.644 1.744 1.806 1.853 1.882 1.912 1.936 L 6 1.603 1.737 1.806 1.859 1.892 1.918 1.936 1.950
L C L 6 * * 0.047 0.084 0.125 0.167 0.211 0.257 0.304 0.351 L C L 6 * * 0.074 0.119 0.165 0.212 0.259 0.308 0.356 0.405
A R L ^ 0 * * 370.514 370.885 370.204 369.635 370.776 370.103 370.658 371.103 A R L ^ 0 * * 369.706 369.446 371.059 369.896 370.847 369.979 370.660 369.638
M R L ^ 0 * * 240.000 257.000 249.000 251.000 254.000 252.000 245.000 250.000 M R L ^ 0 * * 241.000 254.000 245.000 244.000 242.000 255.000 242.000 244.000
S D R L ^ 0 * * 379.844 374.058 377.115 370.562 381.193 378.334 372.995 381.300 S D R L ^ 0 * * 375.379 373.600 374.213 377.326 376.303 371.170 378.973 379.919
4 L 5 1.871 1.919 1.954 1.995 1.979 1.989 1.975 1.980 20 L 5 1.760 1.860 1.912 1.934 1.956 1.960 1.967 1.967
U C L 5 * * 0.158 0.216 0.273 0.329 0.382 0.435 0.486 0.538 U C L 5 * * 0.124 0.179 0.232 0.284 0.336 0.388 0.438 0.489
A R L ^ 0 * * 370.667 369.462 370.856 370.562 371.128 369.641 370.488 370.015 A R L ^ 0 * * 370.958 370.013 369.811 370.117 370.702 370.188 369.775 370.498
M R L ^ 0 * * 248.000 252.000 243.000 243.000 247.000 245.500 249.000 245.000 M R L ^ 0 * * 251.500 250.000 251.000 248.000 249.000 252.000 247.500 252.000
S D R L ^ 0 * * 405.430 393.077 397.028 404.027 389.157 395.987 392.472 396.368 S D R L ^ 0 * * 390.757 389.009 391.911 391.459 397.959 389.407 395.704 388.175
L 6 1.520 1.672 1.757 1.818 1.855 1.885 1.924 1.938 L 6 1.617 1.743 1.816 1.861 1.895 1.921 1.936 1.952
L C L 6 * * 0.053 0.092 0.134 0.178 0.223 0.270 0.316 0.364 L C L 6 * * 0.078 0.123 0.170 0.217 0.265 0.313 0.362 0.411
A R L ^ 0 * * 370.920 369.486 371.219 371.277 370.547 370.518 370.474 370.682 A R L ^ 0 * * 370.281 371.365 369.645 371.218 370.567 371.139 369.561 370.783
M R L ^ 0 * * 255.000 243.000 245.000 252.000 244.000 260.000 246.000 239.000 M R L ^ 0 * * 251.000 253.000 249.000 242.000 258.000 245.000 244.000 250.000
S D R L ^ 0 * * 370.550 372.249 372.176 379.388 370.533 379.291 375.253 376.105 S D R L ^ 0 * * 374.017 372.668 373.120 372.286 376.836 370.779 377.065 376.040
Table 4. The A R L 1 s of the three EWMA variance charts when p 0 = 0.2 , λ = 0.05 , π 1 = π 2 = 0.95 , and A R L 0 370.4 .
Table 4. The A R L 1 s of the three EWMA variance charts when p 0 = 0.2 , λ = 0.05 , π 1 = π 2 = 0.95 , and A R L 0 370.4 .
0.5 n p 1 0.10.20.30.40.50.60.70.80.9
p 1 * 0.140.230.320.410.50.590.680.770.86
p 1 * * 0.10.20.30.40.50.60.70.80.9
1 A R L ^ 1 -370.404 48.113 18.703 10.363 6.915 5.120 4.051 3.400
A R L ^ 1 * -370.455 59.239 23.333 12.995 8.600 6.274 4.896 3.985
A R L ^ 1 * * -371.201 48.160 18.565 10.362 6.900 5.114 4.044 3.401
2 A R L ^ 1 27.153 370.145 28.772 10.382 5.618 3.599 2.543 1.858 1.394
A R L ^ 1 * 34.662 370.701 35.115 12.707 6.821 4.328 3.017 2.213 1.669
A R L ^ 1 * * 27.015 370.492 28.817 10.338 5.588 3.595 2.546 1.869 1.402
3 A R L ^ 1 17.492 370.268 21.545 7.706 4.192 2.757 2.043 1.607 1.285
A R L ^ 1 * 25.712 370.148 28.186 10.363 5.809 3.850 2.758 2.068 1.556
A R L ^ 1 * * 17.523 369.705 21.552 7.721 4.209 2.767 2.046 1.598 1.288
4 A R L ^ 1 14.691 370.574 17.866 6.250 3.426 2.207 1.577 1.229 1.057
A R L ^ 1 * 20.767 371.300 21.406 7.524 4.063 2.640 1.875 1.426 1.150
A R L ^ 1 * * 14.731 370.856 17.572 6.262 3.430 2.208 1.580 1.234 1.057
5 A R L ^ 1 12.426 370.620 14.982 5.486 3.165 2.181 1.636 1.294 1.083
A R L ^ 1 * 17.481 369.653 18.424 6.648 3.694 2.441 1.768 1.386 1.150
A R L ^ 1 * * 12.430 371.091 15.024 5.529 3.161 2.177 1.640 1.295 1.081
10 A R L ^ 1 7.839 371.290 8.507 3.010 1.689 1.215 1.051 1.007 1.000
A R L ^ 1 * 10.420 369.898 11.027 3.989 2.244 1.548 1.212 1.061 1.007
A R L ^ 1 * * 7.821 370.496 8.511 2.994 1.685 1.217 1.053 1.006 1.000
15 A R L ^ 1 5.875 371.081 6.410 2.352 1.405 1.103 1.016 1.001 1.000
A R L ^ 1 * 7.654 371.010 8.084 3.018 1.771 1.276 1.073 1.010 1.000
A R L ^ 1 * * 5.896 369.834 6.365 2.331 1.402 1.103 1.015 1.001 1.000
20 A R L ^ 1 4.616 369.980 4.942 1.793 1.160 1.021 1.001 1.000 1.000
A R L ^ 1 * 6.104 369.594 6.373 2.305 1.365 1.077 1.009 1.000 1.000
A R L ^ 1 * * 4.617 369.811 4.930 1.796 1.165 1.021 1.001 1.000 1.000
Table 5. The A R L 1 s of the three EWMA variance charts when p 0 = 0.3 , λ = 0.05 , π 1 = π 2 = 0.95 , and A R L 0 370.4 .
Table 5. The A R L 1 s of the three EWMA variance charts when p 0 = 0.3 , λ = 0.05 , π 1 = π 2 = 0.95 , and A R L 0 370.4 .
0.5 n p 1 0.10.20.30.40.50.60.70.80.9
p 1 * 0.140.230.320.410.50.590.680.770.86
p 1 * * 0.10.20.30.40.50.60.70.80.9
1 A R L ^ 1 20.215 55.228 369.596 55.213 20.982 11.411 7.283 5.111 3.827
A R L ^ 1 * 24.235 65.200 370.380 66.986 26.277 14.773 9.829 7.103 5.493
A R L ^ 1 * * 20.207 55.327 370.799 55.604 20.920 11.369 7.239 5.124 3.842
2 A R L ^ 1 11.731 33.986 369.780 35.338 13.020 7.197 4.657 3.298 2.505
A R L ^ 1 * 14.311 40.631 370.267 41.469 15.181 8.217 5.233 3.683 2.777
A R L ^ 1 * * 11.709 33.823 370.959 35.303 13.115 7.193 4.658 3.314 2.503
3 A R L ^ 1 8.669 25.058 370.045 25.667 9.078 4.848 3.063 2.048 1.406
A R L ^ 1 * 10.393 30.228 369.787 30.174 10.671 5.657 3.505 2.350 1.632
A R L ^ 1 * * 8.674 25.091 371.260 25.682 9.032 4.867 3.048 2.052 1.405
4 A R L ^ 1 6.935 20.175 370.476 20.928 7.498 4.088 2.657 1.864 1.380
A R L ^ 1 * 8.510 24.835 370.869 25.348 9.036 4.918 3.242 2.327 1.727
A R L ^ 1 * * 6.939 20.145 371.128 21.026 7.483 4.102 2.656 1.867 1.385
5 A R L ^ 1 5.769 17.194 369.494 16.992 5.785 3.018 1.930 1.369 1.095
A R L ^ 1 * 7.363 21.094 370.374 20.977 7.280 3.885 2.457 1.693 1.243
A R L ^ 1 * * 5.761 17.170 370.337 17.045 5.795 3.021 1.931 1.375 1.090
10 A R L ^ 1 3.731 10.175 370.993 10.618 3.886 2.193 1.457 1.130 1.013
A R L ^ 1 * 3.886 11.945 370.152 12.460 4.355 2.358 1.581 1.206 1.041
A R L ^ 1 * * 3.722 10.247 371.164 10.637 3.882 2.190 1.462 1.127 1.013
15 A R L ^ 1 2.588 7.445 370.043 7.747 2.804 1.582 1.146 1.019 1.000
A R L ^ 1 * 3.221 9.274 369.899 9.195 3.265 1.780 1.227 1.040 1.003
A R L ^ 1 * * 2.582 7.449 370.212 7.712 2.798 1.576 1.145 1.018 1.000
20 A R L ^ 1 2.026 6.012 369.858 6.158 2.220 1.315 1.051 1.003 1.000
A R L ^ 1 * 2.552 7.312 370.552 7.212 2.545 1.419 1.082 1.008 1.000
A R L ^ 1 * * 2.019 6.010 370.702 6.130 2.217 1.309 1.050 1.002 1.000
Table 6. The A R L 1 s of the three EWMA variance charts when p 0 = 0.4 , λ = 0.05 , π 1 = π 2 = 0.95 , and A R L 0 370.4 .
Table 6. The A R L 1 s of the three EWMA variance charts when p 0 = 0.4 , λ = 0.05 , π 1 = π 2 = 0.95 , and A R L 0 370.4 .
0.5 n p 1 0.10.20.30.40.50.60.70.80.9
p 1 * 0.140.230.320.410.50.590.680.770.86
p 1 * * 0.10.20.30.40.50.60.70.80.9
1 A R L ^ 1 12.330 22.771 60.580 370.363 61.333 23.735 13.063 8.622 6.316
A R L ^ 1 * 14.809 27.070 70.377 371.052 70.666 27.655 15.209 9.893 7.169
A R L ^ 1 * * 12.277 22.830 60.493 371.359 61.423 23.614 13.018 8.622 6.292
2 A R L ^ 1 7.401 13.516 38.026 370.073 38.297 13.624 7.451 5.007 3.751
A R L ^ 1 * 8.093 15.492 43.587 370.981 44.619 16.145 8.731 5.650 4.188
A R L ^ 1 * * 7.373 13.578 37.927 370.735 38.151 13.717 7.493 5.005 3.759
3 A R L ^ 1 5.180 9.723 27.989 370.140 28.614 10.274 5.620 3.747 2.706
A R L ^ 1 * 6.257 11.785 33.473 370.664 33.857 12.098 6.680 4.403 3.163
A R L ^ 1 * * 5.162 9.745 27.993 369.868 28.911 10.262 5.638 3.725 2.718
4 A R L ^ 1 4.578 8.135 23.101 369.423 22.797 7.805 4.110 2.480 1.558
A R L ^ 1 * 5.319 9.583 27.069 371.232 26.819 9.357 4.960 3.034 1.937
A R L ^ 1 * * 4.582 8.132 23.069 370.488 22.635 7.805 4.109 2.465 1.554
5 A R L ^ 1 3.494 6.659 19.258 369.487 19.461 6.945 3.796 2.447 1.643
A R L ^ 1 * 4.168 7.811 22.522 370.169 22.841 8.004 4.336 2.799 1.935
A R L ^ 1 * * 3.502 6.624 19.208 371.005 19.478 6.943 3.807 2.457 1.639
10 A R L ^ 1 2.032 3.993 11.366 370.239 11.582 4.054 2.173 1.402 1.070
A R L ^ 1 * 2.588 4.760 13.463 371.031 13.302 4.596 2.464 1.583 1.167
A R L ^ 1 * * 2.031 3.992 11.356 370.563 11.528 4.055 2.180 1.402 1.072
15 A R L ^ 1 1.530 2.916 8.368 369.514 8.549 3.146 1.740 1.182 1.013
A R L ^ 1 * 1.576 3.201 9.642 369.413 10.016 3.567 1.974 1.308 1.049
A R L ^ 1 * * 1.528 2.904 8.330 370.816 8.577 3.128 1.742 1.182 1.012
20 A R L ^ 1 1.146 2.179 6.617 369.666 6.743 2.374 1.315 1.033 1.001
A R L ^ 1 * 1.391 2.688 7.905 369.765 8.133 2.959 1.662 1.168 1.016
A R L ^ 1 * * 1.147 2.173 6.584 369.775 6.750 2.375 1.321 1.033 1.000
Table 7. The L 5 and U C L 5 * * based on error-corrected EWMA variance chart for SECOM data under δ 2 = 0.3 ,   0.5 ,   0.75 .
Table 7. The L 5 and U C L 5 * * based on error-corrected EWMA variance chart for SECOM data under δ 2 = 0.3 ,   0.5 ,   0.75 .
δ 2 π 1 π 2 p ^ 0 * * L 5 U C L 5 * *
0.30.8230.9180.2771.6520.348
0.50.7200.8700.2661.2980.337
0.750.6160.8210.2470.9430.316
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Yang, S.-F.; Chen, L.-P.; Lin, C.-K. Adjustment of Measurement Error Effects on Dispersion Control Chart with Distribution-Free Quality Variable. Sustainability 2023, 15, 4337. https://doi.org/10.3390/su15054337

AMA Style

Yang S-F, Chen L-P, Lin C-K. Adjustment of Measurement Error Effects on Dispersion Control Chart with Distribution-Free Quality Variable. Sustainability. 2023; 15(5):4337. https://doi.org/10.3390/su15054337

Chicago/Turabian Style

Yang, Su-Fen, Li-Pang Chen, and Cheng-Kuan Lin. 2023. "Adjustment of Measurement Error Effects on Dispersion Control Chart with Distribution-Free Quality Variable" Sustainability 15, no. 5: 4337. https://doi.org/10.3390/su15054337

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop