Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries
Abstract
:1. Introduction
1.1. Brief History of ASEAN
1.2. Adverse Impact of Modernizing Agriculture, Trade, and Energy Consumption on the Environment
2. Literature Review
Interdependent Relationships amongst Agricultural Value Addition, Energy Usage, Carbon Emissions, and Trade Development
3. Research Methodology
3.1. Data and Sample
3.2. Econometric Model
4. Results and Discussion
4.1. Descriptive Statistics
4.2. Unit Root Test
4.3. Panel Cointegration and FMOL Results
4.4. Discussion of Results
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asumadu-Sarkodie, S.; Owusu, P.A. Forecasting Nigeria’s energy use by 2030, an econometric approach. Energy Sources Part B Econ. Plan. Policy 2016, 11, 990–997. [Google Scholar] [CrossRef]
- Bühler, D.; Schuetze, T.; Junge, R. Towards development of a label for zero emission buildings: A tool to evaluate potential zero emission buildings. Sustainability 2015, 7, 5071–5093. [Google Scholar] [CrossRef] [Green Version]
- Ortas, I.; Lal, R. Food security and climate change in West Asia. In Climate Change and Food Security in West Asia and North Africa; Springer: Berlin/Heidelberg, Germany, 2013; pp. 207–236. [Google Scholar]
- FAO. The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture; Food and Agriculture Organization (FAO) of the United Nation: Rome, Italy, 2014. [Google Scholar]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; pp. 153–188. [Google Scholar]
- Khan, I.; Han, L.; Khan, H.; Kim Oanh, L.T. Analyzing renewable and nonrenewable energy sources for environmental quality: Dynamic investigation in developing countries. Math. Probl. Eng. 2021, 2021, 3399049. [Google Scholar] [CrossRef]
- Parvez, A.M.; Lewis, J.D.; Afzal, M.T. Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook. Renew. Sustain. Energy Rev. 2021, 141, 110784. [Google Scholar] [CrossRef]
- Parvez, A.M.; Hafner, S.; Hornberger, M.; Schmid, M.; Scheffknecht, G. Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook. Renew. Sustain. Energy Rev. 2021, 141, 110756. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, W.; Tian, Y. Green supply chain management, environmental degradation, and energy: Evidence from Asian countries. Discret. Dyn. Nat. Soc. 2021, 2021, 5179964. [Google Scholar] [CrossRef]
- Bayrakcı, A.G.; Koçar, G. Utilization of renewable energies in Turkey’s agriculture. Renew. Sustain. Energy Rev. 2012, 16, 618–633. [Google Scholar] [CrossRef]
- Esty, D.C.; Winston, A. Green to Gold: How Smart Companies Use Environmental Strategy to Innovate, Create Value, and Build Competitive Advantage; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bakhtyar, B.; Kacemi, T.; Nawaz, M.A. A review on carbon emissions in Malaysian cement industry. Int. J. Energy Econ. Policy 2017, 7, 282–286. [Google Scholar]
- Ling, C.H.; Ahmed, K.; Binti Muhamad, R.; Shahbaz, M. Decomposing the trade-environment nexus for Malaysia: What do the technique, scale, composition, and comparative advantage effect indicate? Environ. Sci. Pollut. Res. 2015, 22, 20131–20142. [Google Scholar] [CrossRef] [Green Version]
- Fontini, F.; Pavan, G. The European Union Emission Trading System and technological change: The case of the Italian pulp and paper industry. Energy Policy 2014, 68, 603–607. [Google Scholar] [CrossRef]
- Solomon, N.; Ozoemena, N.; Sharma, G.; Shah, M. Renewable energy, urbanization, and ecological footprint linkage in CIVETS. Environ. Sci. Pollut. Res. Int. 2020, 27, 19616–19629. [Google Scholar]
- Amri, F.; Arouri, M.; Bélaïd, F. Economic Growth and Environmental Degradation. J. Energy Dev. 2019, 45, 159–174. [Google Scholar]
- Nathaniel, S.; Khan, S.A.R. The nexus between urbanization, renewable energy, trade, and ecological footprint in ASEAN countries. J. Clean. Prod. 2020, 272, 122709. [Google Scholar] [CrossRef]
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for deep learning in NLP. arXiv 2019, arXiv:1906.02243. [Google Scholar]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, A.; Sinha, A.; Sharif, A.; Siddique, M.; Irshad, S.; Anwar, W.; Malik, S. The nexus between urbanization, renewable energy consumption, financial development, and CO2 emissions: Evidence from selected Asian countries. Environ. Dev. Sustain. 2021, 10, 1–21. [Google Scholar] [CrossRef]
- Zhang, S.; Andrews-Speed, P.; Zhao, X.; He, Y. Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China’s policy approach to renewable energies. Energy Policy 2013, 62, 342–353. [Google Scholar] [CrossRef]
- Charfeddine, L.; Kahia, M. Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: A panel vector autoregressive (PVAR) analysis. Renew. Energy 2019, 139, 198–213. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor Golec, R.D.; Jacobs, H.; Flammini, A. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef] [Green Version]
- Santiago-De La Rosa, N.; González-Cardoso, G.; Figueroa-Lara, J.d.J.; Gutiérrez-Arzaluz, M.; Octaviano-Villasana, C.; Ramírez-Hernández, I.F.; Mugica-Álvarez, V. Emission factors of atmospheric and climatic pollutants from crop residues burning. J. Air Waste Manag. Assoc. 2018, 68, 849–865. [Google Scholar] [CrossRef] [Green Version]
- Najafi Alamdarlo, H. Water consumption, agriculture value added and carbon dioxide emission in Iran, environmental Kuznets curve hypothesis. Int. J. Environ. Sci. Technol. 2016, 13, 2079–2090. [Google Scholar] [CrossRef]
- Dogan, E.; Turkekul, B. CO2 emissions, real output, energy consumption, trade, urbanization and financial development: Testing the EKC hypothesis for the USA. Environ. Sci. Pollut. Res. 2016, 23, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Schelly, C.; Bessette, D.; Brosemer, K.; Gagnon, V.; Arola, K.L.; Fiss, A.; Pearce, J.M.; Halvorsen, K.E. Energy policy for energy sovereignty: Can policy tools enhance energy sovereignty? Sol. Energy 2020, 205, 109–112. [Google Scholar] [CrossRef]
- Soytas, U.; Sari, R.; Ewing, B.T. Energy consumption, income, and carbon emissions in the United States. Ecol. Econ. 2007, 62, 482–489. [Google Scholar] [CrossRef]
- Farhani, S.; Shahbaz, M. What role of renewable and non-renewable electricity consumption and output is needed to initially mitigate CO2 emissions in MENA region? Renew. Sustain. Energy Rev. 2014, 40, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Michieka, N.M.; Fletcher, J.; Burnett, W. An empirical analysis of the role of China’s exports on CO2 emissions. Appl. Energy 2013, 104, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Li, J.; Yang, Y. A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Trans. Mob. Comput. 2014, 13, 2689–2705. [Google Scholar] [CrossRef]
- Shahbaz, M.; Mahalik, M.K.; Shahzad, S.J.H.; Hammoudeh, S. Does the environmental K uznets curve exist between globalization and energy consumption? G lobal evidence from the cross-correlation method. Int. J. Financ. Econ. 2019, 24, 540–557. [Google Scholar] [CrossRef] [Green Version]
- Aziz, A.A.; Mustapha, N.H.N.; Ismail, R. Factors affecting energy demand in developing countries: A dynamic panel analysis. Int. J. Energy Econ. Policy 2013, 3, 1–6. [Google Scholar]
- Fudholi, A.; Zohri, M.; Rukman, N.S.B.; Nazri, N.S.; Mustapha, M.; Yen, C.H.; Mohammad, M.; Sopian, K. Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study. Renew. Sustain. Energy Rev. 2019, 100, 44–51. [Google Scholar] [CrossRef]
- Farhani, S.; Shahbaz, M.; Sbia, R.; Chaibi, A. What does MENA region initially need: Grow output or mitigate CO2 emissions? Econ. Model. 2014, 38, 270–281. [Google Scholar] [CrossRef]
- Shahbaz, M.; Van Hoang, T.H.; Mahalik, M.K.; Roubaud, D. Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis. Energy Econ. 2017, 63, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Pao, H.-T.; Yu, H.-C.; Yang, Y.-H. Modeling the CO2 emissions, energy use, and economic growth in Russia. Energy 2011, 36, 5094–5100. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Adom, P.K. Determinants of energy consumption in Kenya: A NIPALS approach. Energy 2018, 159, 696–705. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Sab, C.N.B.C. The impact of energy consumption and CO2 emission on the economic growth and financial development in the Sub Saharan African countries. Energy 2012, 39, 180–186. [Google Scholar] [CrossRef]
- Lean, H.H.; Smyth, R. CO2 emissions, electricity consumption and output in ASEAN. Appl. Energy 2010, 87, 1858–1864. [Google Scholar] [CrossRef]
- Sbia, R.; Shahbaz, M.; Hamdi, H. A contribution of foreign direct investment, clean energy, trade openness, carbon emissions and economic growth to energy demand in UAE. Econ. Model. 2014, 36, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Im, K.S.; Lee, J.; Tieslau, M. Panel LM unit-root tests with level shifts. Oxf. Bull. Econ. Stat. 2005, 67, 393–419. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Jebli, M.B.; Youssef, S.B.; Ozturk, I. Testing environmental Kuznets curve hypothesis: The role of renewable and non-renewable energy consumption and trade in OECD countries. Ecol. Indic. 2016, 60, 824–831. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Saboori, B.; Ozturk, I. Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy 2015, 76, 123–131. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Azam, A.; Bhatti, M.A. Natural Resources Depletion and Economic Growth: Evidence from ASEAN Countries. Pak. J. Econ. Stud. 2019, 2, 155–172. [Google Scholar]
- López-Menéndez, A.J.; Pérez, R.; Moreno, B. Environmental costs and renewable energy: Re-visiting the Environmental Kuznets Curve. J. Environ. Manag. 2014, 145, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Sovacool, B.K. Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity. Energy Policy 2009, 37, 2241–2248. [Google Scholar] [CrossRef]
- Pfeiffer, B.; Mulder, P. Explaining the diffusion of renewable energy technology in developing countries. Energy Econ. 2013, 40, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.A. Trade, the pollution haven hypothesis and the environmental Kuznets curve: Examining the linkages. Ecol. Econ. 2004, 48, 71–81. [Google Scholar] [CrossRef]
Countries | Trade | CO2 | Energy Consumption | Renewable Energy | Percentage of Renewnable Energy | Fossil Fuel Energy | Value Additon for Agriculture |
---|---|---|---|---|---|---|---|
Brunei Darussalam | 100.6454 | 7146.2 | 8137.61 | 1.014872 | 1.0% | 98.6781 | 1.916362 |
Cambodia | 126.844 | 4462.47 | 340.255 | 73.1183 | 24.3% | 28.4631 | 32.4379 |
Indonesia | 54.5348 | 4191.15 | 825.345 | 41.8603 | 6.8% | 65.6912 | 15.0814 |
Malaysia | 170.977 | 2070.70 | 2743.32 | 6.99212 | 1.2% | 97.4419 | 10.07581 |
Myanmar | 17.6956 | 13,467.7 | 310.676 | 78.6094 | 25.7% | 31.3462 | 40.8088 |
Philippines | 81.7242 | 85,807.5 | 459.149 | 32.5344 | 7.7% | 59.6105 | 14.0261 |
Singapore | 369.486 | 43,765.6 | 5154.63 | 2.55367 | 1.0% | 98.1414 | 2.046258 |
Thailand | 129.713 | 27,645.9 | 1678.28 | 24.0388 | 2.3% | 82.6625 | 11.53438 |
Vietnam | 154.028 | 12,034.3 | 567.021 | 43.9708 | 8.4% | 63.8029 | 20.3467 |
Variable | Definition | Unit |
---|---|---|
Trade | Trade | expressed in terms of percentage of total national GDP |
CO2 | Emissions of CO2 | expressed in terms of Kiloton per capita for country |
UseEne | Energy Usage | kg of oil equivalent per capita for country |
FFC | Fossil fuel energy consumption | expressed in terms of percentage of the net energy consumption by nation |
RenEne | Renewable energy consumption | expressed in terms of percentage of net energy consumption |
ValAGR | Value-added forestry fishing, and agriculture | expressed in terms of percentage of total national GDP |
Variables | CO2 | ValAGR | UseEne | FFC | RenEne | Trade |
---|---|---|---|---|---|---|
Mean | 5.732 | 16.871 | 2308.255 | 70.345 | 33.088 | 133.600 |
Median | 1.819 | 12.497 | 833.562 | 66.978 | 31.203 | 116.697 |
Maximum | 25.760 | 56.239 | 9987.447 | 103.000 | 87.630 | 439.327 |
Minimum | 0.183 | 0.025 | 254.275 | 20.641 | 0.013 | 0.171 |
Std. Dev. | 5.001 | 11.118 | 2634.280 | 23.331 | 28.450 | 98.550 |
Skewness | 1.696 | 1.110 | 1.456 | −0.254 | 0.567 | 1.523 |
Kurtosis | 5.242 | 4.043 | 3.833 | 1.888 | 2.014 | 4.737 |
Observations | 200.000 | 200.000 | 200.000 | 200.000 | 200.000 | 200.000 |
Test | Levin, Lin, and Chu | I’m Pesaran and Shin | ADF—Fisher Chi-Square | P.P.—Fisher Chi-Square | ||||
---|---|---|---|---|---|---|---|---|
Variables | Statistic | Prob. | Statistic | Prob. | Statistic | Prob. | Statistic | Prob. |
CO2 | −2.81 | 0.019 | 0.773 | 0.807 | 11.17 | 0.854 | 17.253 | 0.570 |
∆(CO2) | −5.203 *** | 0 | 60.308 *** | 0 | 137.028 *** | 0 | ||
UseEne | 0.118 | 0.558 | 0.785 | 0.80 | 11.910 | 0.808 | 16.044 | 0.59 |
∆(UseEne) | −3.266 *** | 0 | −2.710 *** | 0.005 | 31.111 *** | 0.009 | 109.805 *** | 0 |
FFC | − 1.388 * | 0.079 | 0.260 | 0.590 | 14.008 | 0.72 | 22.989 | 0.190 |
∆ (FFC) | −3.313 *** | 0.001 | 41.600 *** | 0.001 | 114.813 *** | 0 | ||
RenEne | −0.823 | 0.203 | 0.601 | 0.701 | 15.351 | 0.650 | 25.326 | 0.201 |
∆(RenEne) | −3.627 *** | 0 | −4.237 *** | 0 | 53.785 *** | 0 | 129.557 *** | 0 |
Trade | −1.942 ** | 0.027 | −1.1 | 0.140 | 27.509 * | 0.09 | 25.992 * | 0.091 |
∆(Trade) | −4.310 *** | 0 |
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
---|---|---|---|---|
Pedroni PP | −8.53522 | 0.000 | ||
Pedroni ADF | −2.78072 | 0.004 | ||
ValAGR | 0.188 ** | 0.071 | 2.3230 | 0.015 |
UseEne | 8.003 *** | 0.622 | 10.023 | 0.000 |
FFC | 0.480 *** | 0.053 | 7.584 | 0.000 |
RenEne | −0.348 *** | 0.042 | −10.027 | 0.000 |
Trade | −0.025 *** | 0.003 | −6.088 | 0.000 |
Model Diagnostics | ||||
R-square | 0.812161 | |||
Adj. R-square | 0.797885 | |||
S.E. of regression | 2.310778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Cherian, J.; Parvez, A.M.; Samad, S.; Sial, M.S.; Ali, M.A.; Khan, M.A. Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries. Sustainability 2022, 14, 3556. https://doi.org/10.3390/su14063556
Zhang J, Cherian J, Parvez AM, Samad S, Sial MS, Ali MA, Khan MA. Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries. Sustainability. 2022; 14(6):3556. https://doi.org/10.3390/su14063556
Chicago/Turabian StyleZhang, Jianwen, Jacob Cherian, Ashak Mahmud Parvez, Sarminah Samad, Muhammad Safdar Sial, Mohammad Athar Ali, and Mohammed Arshad Khan. 2022. "Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries" Sustainability 14, no. 6: 3556. https://doi.org/10.3390/su14063556
APA StyleZhang, J., Cherian, J., Parvez, A. M., Samad, S., Sial, M. S., Ali, M. A., & Khan, M. A. (2022). Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries. Sustainability, 14(6), 3556. https://doi.org/10.3390/su14063556