# Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Solar Model

^{11}m. This correction factor can be estimated using the following equations:

#### 2.2. Schematic and Energy Model of Hybrid Solar Thermal Plant

#### 2.3. Hybrid Solar Thermal Plant Exergy Model

#### 2.4. Description of the Working Fluids

^{3}/kg, and for the helium cycle, that value is 1.13 m

^{3}/kg. Generally, the most considerable volume changes occur during this cycle, affecting power production.

## 3. Results and Discussion

#### 3.1. Energy Analysis for Solar Radiation Conditions in Colombia

^{2}/day and ${\overline{D}}_{h}$= 1.68 kWh/m

^{2}/day [43], and an annual average day $n$ = 180 are assumed. Figure 4 presents the ${I}_{bh}$ for the annual mean values of radiation in Barranquilla (black squares). Additionally, the ${I}_{bh}$ values for an average day of March when ${\overline{H}}_{h}$ is maximum (blue squares) are presented for Barranquilla, compared to the ${I}_{bh}$ values estimated for Seville (red circles) when ${\overline{H}}_{h}$ is maximum in July. The hourly average temperature values for the city of Barranquilla taken from [63] are also presented to agree with the solar resource estimation, which will also be done every hour. Finally, a lower heating value of 42624 kJ/kg is taken from Gas Natural S.A. ESP’s natural gas quality report.

#### 3.2. Plant Energy Analysis

#### 3.3. Exergy Analysis of the Hybrid Solar Thermal Plant

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Chen, L.; Zhang, W.; Sun, F. Power, efficiency, entropy-generation rate and ecological optimization for a class of generalized irreversible universal heat-engine cycles. Appl. Energy
**2007**, 84, 512–525. [Google Scholar] [CrossRef] - Obaideen, K.; AlMallahi, M.N.; Al-Alami, A.H.; Ramadan, M.; Abdelkareem, M.A.; Shehata, N.; Olabi, A. On the contribution of solar energy to sustainable developments goals: Case study on Mohammed bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids
**2021**, 12, 100123. [Google Scholar] [CrossRef] - Mills, D. Advances in solar thermal electricity technology. Sol. Energy
**2004**, 76, 19–31. [Google Scholar] [CrossRef] - Najjar, Y.S.; Zaamout, M.S. Comparative performance of closed cycle gas turbine engine with heat recovery using different gases. Heat Recover. Syst. CHP
**1992**, 12, 489–495. [Google Scholar] [CrossRef] - Al-Attab, K.; Zainal, Z. Externally fired gas turbine technology: A review. Appl. Energy
**2015**, 138, 474–487. [Google Scholar] [CrossRef] - Olumayegun, O.; Wang, M.; Kelsall, G. Closed-cycle gas turbine for power generation: A state-of-the-art review. Fuel
**2016**, 180, 694–717. [Google Scholar] [CrossRef] - Ulrich, H. Closed-Cycle Gas Turbines: Operating Experience and Future Potential; ASME Press: New York, NY, USA, 2005. [Google Scholar]
- Wright, D.E.; Tignac, L.L. Status Report—Advanced Heat Exchanger Technology for a CCGT Power Generation System. J. Eng. Power
**1983**, 105, 348–353. [Google Scholar] [CrossRef] - Holt, C.F.; Boiarski, A.A.; Carlton, H.E. The Gas Turbine Heat Exchanger in the Fluidized Bed Combustor. J. Eng. Power
**1983**, 105, 438–445. [Google Scholar] [CrossRef] - Abram, T.; Ion, S. Generation-IV nuclear power: A review of the state of the science. Energy Policy
**2008**, 36, 4323–4330. [Google Scholar] [CrossRef] - Vera, D.; Jurado, F.; Carpio, J. Study of a downdraft gasifier and externally fired gas turbine for olive industry wastes. Fuel Process. Technol.
**2011**, 92, 1970–1979. [Google Scholar] [CrossRef] - Pantaleo, A.; Camporeale, S.; Shah, N. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy. Energy Convers. Manag.
**2013**, 75, 202–213. [Google Scholar] [CrossRef] - Cocco, D.; Deiana, P.; Cau, G. Performance evaluation of small size externally fired gas turbine (EFGT) power plants integrated with direct biomass dryers. Energy
**2006**, 31, 1459–1471. [Google Scholar] [CrossRef] - Soltani, S.; Mahmoudi, S.; Yari, M.; Rosen, M. Thermodynamic analyses of an externally fired gas turbine combined cycle integrated with a biomass gasification plant. Energy Convers. Manag.
**2013**, 70, 107–115. [Google Scholar] [CrossRef] - Dunham, M.T.; Iverson, B.D. High-efficiency thermodynamic power cycles for concentrated solar power systems. Renew. Sustain. Energy Rev.
**2014**, 30, 758–770. [Google Scholar] [CrossRef] [Green Version] - Heller, P.; Pfänder, M.; Denk, T.; Tellez, F.; Valverde, A.; Fernandez, J.; Ring, A. Test and evaluation of a solar powered gas turbine system. Sol. Energy
**2006**, 80, 1225–1230. [Google Scholar] [CrossRef] - Chen, Y.; Cheng, Y.; Sun, M. Physical Mechanisms on Plasmon-Enhanced Organic Solar Cells. J. Phys. Chem. C
**2021**, 125, 21301–21309. [Google Scholar] [CrossRef] - Chen, Y.; Cheng, Y.; Sun, M. Nonlinear plexcitons: Excitons coupled with plasmons in two-photon absorption. Nanoscale
**2022**, 14, 7269–7279. [Google Scholar] [CrossRef] - Barigozzi, G.; Perdichizzi, A.; Gritti, C.; Guaiatelli, I. Techno-economic analysis of gas turbine inlet air cooling for combined cycle power plant for different climatic conditions. Appl. Therm. Eng.
**2015**, 82, 57–67. [Google Scholar] [CrossRef] - Livshits, M.; Kribus, A. Solar hybrid steam injection gas turbine (STIG) cycle. Sol. Energy
**2012**, 86, 190–199. [Google Scholar] [CrossRef] - Olivenza-León, D.; Medina, A.; Calvo-Hernández, A. Thermodynamic modeling of a hybrid solar gas-turbine power plant. Energy Convers. Manag.
**2015**, 93, 435–447. [Google Scholar] [CrossRef] - Santos, M.; Merchán, R.; Medina, A.; Hernández, A.C. Seasonal thermodynamic prediction of the performance of a hybrid solar gas-turbine power plant. Energy Convers. Manag.
**2016**, 115, 89–102. [Google Scholar] [CrossRef] - Merchán, R.; Santos, M.; Reyes-Ramírez, I.; Medina, A.; Hernández, A.C. Modeling hybrid solar gas-turbine power plants: Thermodynamic projection of annual performance and emissions. Energy Convers. Manag.
**2017**, 134, 314–326. [Google Scholar] [CrossRef] - Liu, Y.; Wang, Y.; Huang, D. Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy
**2019**, 189, 115900. [Google Scholar] [CrossRef] - Kulhánek, M.; Dostál, V. Supercritical carbon dioxide cycles thermodynamic analysis and comparison. In Supercritical CO
_{2}Power Cycle, Proceedings of Supercritical CO_{2}Power Cycle Symposium, Troy, NY, USA, 29–30 April 2009; EEUU: Boulder, CO, USA, 2011. [Google Scholar] - Liao, J.; Liu, X.; Zheng, Q.; Zhang, H. Analysis of the power generation cycle characteristics of supercritical carbon dioxide. J. Eng. Therm. Energy Power
**2016**, 31, 40–46. [Google Scholar] - Wang, X.; Yang, Y.; Zheng, Y.; Dai, Y. Exergy and exergoeconomic analyses of a supercritical CO
_{2}cycle for a cogeneration application. Energy**2017**, 119, 971–982. [Google Scholar] [CrossRef] - Wang, X.; Dai, Y. Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the ORC for a recompression supercritical CO2 cycle waste heat recovery: A comparative study. Appl. Energy
**2016**, 170, 193–207. [Google Scholar] [CrossRef] - Akbari, A.D.; Mahmoudi, S.M. Thermoeconomic analysis & optimization of the combined supercritical CO
_{2}(carbon dioxide) recompression Brayton/organic Rankine cycle. Energy**2014**, 78, 501–512. [Google Scholar] [CrossRef] - Bae, S.J.; Ahn, Y.; Lee, J.; Lee, J.I. Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide Rankine cycle combined fuel cell. In Proceedings of the ASME Turbo Expo, Düsseldorf, Germany, 16–20 June 2014; Volume 3B. [Google Scholar]
- Cengel, Y.A.; Boles, M.E. Thermodynamics: An Engineering Approach; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Santos, M.; Miguel-Barbero, C.; Merchán, R.; Medina, A.; Hernández, A.C. Roads to improve the performance of hybrid thermosolar gas turbine power plants: Working fluids and multi-stage configurations. Energy Convers. Manag.
**2018**, 165, 578–592. [Google Scholar] [CrossRef] [Green Version] - McDonald, C.F. Helium turbomachinery operating experience from gas turbine power plants and test facilities. Appl. Therm. Eng.
**2012**, 44, 108–142. [Google Scholar] [CrossRef] - Bamrnert, K.; Groschup, G. Status report on closed-cycle power plants in the federal republic of Germany. J. Eng. Gas Turbines Power
**1977**, 99, 37–46. [Google Scholar] [CrossRef] - Baxi, C.; Telengator, A.; Razvi, J. Rotor scale model tests for power conversion unit of GT-MHR. Nucl. Eng. Des.
**2012**, 251, 344–348. [Google Scholar] [CrossRef] - Osigwe, E.O.; Gad-Briggs, A.; Nikolaidis, T. Feasibility of a Helium Closed-Cycle Gas Turbine for UAV Propulsion. Appl. Sci.
**2021**, 11, 28. [Google Scholar] [CrossRef] - Alali, A.E.; Al-Shboul, K.F. Performance analysis of the closed Brayton power cycle in a small-scale pebble bed gas cooled reactor using different working fluids. Ann. Nucl. Energy
**2018**, 121, 316–323. [Google Scholar] [CrossRef] - Tesio, U.; Guelpa, E.; Verda, V. Multi-objective optimization of helium power cycle for thermo-chemical energy storage in concentrated solar power. Energy Convers. Manag. X
**2021**, 12, 100116. [Google Scholar] [CrossRef] - Gueymard, C. Prediction and Performance Assessment of Mean Hourly Global Radiation. Sol. Energy
**2000**, 68, 285–303. [Google Scholar] [CrossRef] - Gueymard, C.A.; Ruiz-Arias, J.A. Extensive worldwide validation and climate sensitivity analysis of direct irradiance predictions from 1-min global irradiance. Sol. Energy
**2016**, 128, 1–30. [Google Scholar] [CrossRef] - Mejdoul, R.; Taqi, M.; Ben, S.; Hassan, U.; Mohammedia, I.I. The Mean Hourly Global Radiation Prediction Models Investigation in Two Different Climate Regions in Morocco. Int. J. Renew. Energy Res.
**2012**, 2, 608–617. [Google Scholar] - Yao, W.; Li, Z.; Xiu, T.; Lu, Y.; Li, X. New decomposition models to estimate hourly global solar radiation from the daily value. Sol. Energy
**2015**, 120, 87–99. [Google Scholar] [CrossRef] - Power Data Access Viewer. 2020. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 1 March 2020).
- Goswami, Y. Principles of Solar Engineering, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015. [Google Scholar]
- Moreno-Gamboa, F.; Escudero-Atehortua, A.; Nieto-Londoño, C. Performance evaluation of external fired hybrid solar gas-turbine power plant in Colombia using energy and exergy methods. Therm. Sci. Eng. Prog.
**2020**, 20, 100679. [Google Scholar] [CrossRef] - Romero, M.; Buck, R.; Pacheco, J.E. An update on solar central receiver systems, projects, and technologies. J. Sol. Energy Eng.
**2002**, 124, 98–108. [Google Scholar] [CrossRef] - Duffie, J.; Beckman, W. Solar Engineering of Thermal Processes, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Chen, L.; Ni, N.; Sun, F. FTT Performance of a closed regenerative brayton cycle coupled to variable-temperature heat reservoir. In Proceedings of the International Conference on Marine Engineering, Varna, Bulgaria, 2–7 June 1996; pp. 371–1996. [Google Scholar]
- Zhai, H.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z. Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas. Appl. Energy
**2009**, 86, 1395–1404. [Google Scholar] [CrossRef] - Zare, V.; Hasanzadeh, M. Energy and exergy analysis of a closed Brayton cycle-based combined cycle for solar power tower plants. Energy Convers. Manag.
**2016**, 128, 227–237. [Google Scholar] [CrossRef] - Atif, M.; Al-Sulaiman, F.A. Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations. Renew. Sustain. Energy Rev.
**2017**, 68, 153–167. [Google Scholar] [CrossRef] - Yue, T.; Lior, N. Thermal hybrid power systems using multiple heat sources of different temperature: Thermodynamic analysis for Brayton cycles. Energy
**2018**, 165, 639–665. [Google Scholar] [CrossRef] - Petela, R. Exergy of undiluted thermal radiation. Sol. Energy
**2003**, 74, 469–488. [Google Scholar] [CrossRef] - Parrot, L.E. Theoretical upper limit to the conversion efficiency of solar energy. Sol. Energy
**1978**, 21, 227–229. [Google Scholar] [CrossRef] - Neises, T.; Turchi, C. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications. Energy Procedia
**2014**, 49, 1187–1196. [Google Scholar] [CrossRef] [Green Version] - Lee, H.J.; Kim, H.; Jang, C. Compatibility of Candidate Structural Materials in High-Temperature S-CO2 Environment. In Proceedings of the 4th International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, PA, USA, 9–10 September 2014; pp. 1–9. [Google Scholar]
- Ahn, Y.; Bae, S.J.; Kim, M.; Cho, S.K.; Baik, S.; Lee, J.I.; Cha, J.E. Review of supercritical CO2 power cycle technology and current status of research and development. Nucl. Eng. Technol.
**2015**, 47, 647–661. [Google Scholar] [CrossRef] [Green Version] - Chai, L.; Tassou, S.A. A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Therm. Sci. Eng. Prog.
**2020**, 18, 100543. [Google Scholar] [CrossRef] - CarbonDioxide—CoolProp 6.3.1dev Documentation. Available online: http://www.coolprop.org/dev/fluid_properties/fluids/CarbonDioxide.html (accessed on 21 March 2020).
- Modelica Association. Modelica.Media.Air.DryAirNasa. Available online: https://doc.modelica.org/Modelica%204.0.0/Resources/helpWSM/Modelica/Modelica.Media.Air.DryAirNasa.html (accessed on 20 March 2021).
- Helium—CoolProp 6.3.1dev Documentation. Available online: http://www.coolprop.org/dev/fluid_properties/fluids/Helium.html (accessed on 21 March 2020).
- Moreno-Gamboa, F.; Nieto-Londoño, C. Hybrid Brayton Multi-stage Concentrated Solar Power Plant Energy and Exergy Performance Study. J. Energy Resour. Technol.
**2021**, 143, 1–11. [Google Scholar] [CrossRef] - Ramírez-Cerpa, E.; Acosta-Coll, M.; Vélez-Zapata, J. Análisis de condiciones climatológicas de precipitaciones de corto plazo en zonas urbanas: Caso de estudio Barranquilla, Colombia. Idesia
**2017**, 35, 87–94. [Google Scholar] [CrossRef] - Kotas, T.J. The Exergy Method of Thermal Plant Analysis; Kreiger Publishing Company: Malabar, FL, USA, 1995. [Google Scholar]

**Figure 3.**$p-T$ diagram (

**a**), $p-v$ diagram (

**b**), for the cycles with the different conditions to be simulated.

**Figure 5.**Power evolution throughout the day. (

**a**) shows that the $C{O}_{2}$ cycle generates an average power of 3680.03 kW, 3.3% lower than the average power of the air cycle; (

**b**) shows results for the $TSC{O}_{2}$ cycle with an average power generation of 5018 kW, and the helium ($He$ ) cycle with an average power of 9957.39 kW.

**Figure 10.**Influence of pressure ratio on cycle power. (

**a**) shows the power cycle curves as a function of pressure ratio variation for the supercritical cycles ($TSC{O}_{2}$, $SC{O}_{2}$ ), the air cycle, and the $C{O}_{2}$ cycle; (

**b**) presents the evolution of the power values of the helium cycle, where it is observed that, that with this working fluid, it is possible to produce more power than the studied cycles; however, the maximum power is obtained at ${r}_{p}$ = 4.8.

**Figure 15.**Evolution of the exergy destruction fraction of each component for the cycles $TSC{O}_{2}$ (

**a**), $SC{O}_{2}$ (

**b**), $C{O}_{2}$ (

**c**), and $He$ (

**d**).

Exergy Destruction Fractions | Night (Average) | 12 m (Noon) |
---|---|---|

$F{\dot{E}}_{d,t}$ (Turbine) | 0.05421 | 0.048560 |

$F{\dot{E}}_{d,c}$ (Compressor) | 0.07169 | 0.064210 |

$F{\dot{E}}_{d,r}$ (Regenerator) | 0.00709 | 0.006932 |

$F{\dot{E}}_{d,a}$ (Environmental H. E.) | 0.2948 | 0.266884 |

$F{\dot{E}}_{d,cc}$ (Combustion Chamber) | 0.57219 | 0.369223 |

$F{\dot{E}}_{d,he}$ (Heliostat Field) | 0 | 0.189661 |

$F{\dot{E}}_{d,rc}$ (Central Receptor) | 0 | 0.054451 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Moreno-Gamboa, F.; Escudero-Atehortua, A.; Nieto-Londoño, C.
Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle. *Sustainability* **2022**, *14*, 9479.
https://doi.org/10.3390/su14159479

**AMA Style**

Moreno-Gamboa F, Escudero-Atehortua A, Nieto-Londoño C.
Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle. *Sustainability*. 2022; 14(15):9479.
https://doi.org/10.3390/su14159479

**Chicago/Turabian Style**

Moreno-Gamboa, Faustino, Ana Escudero-Atehortua, and César Nieto-Londoño.
2022. "Alternatives to Improve Performance and Operation of a Hybrid Solar Thermal Power Plant Using Hybrid Closed Brayton Cycle" *Sustainability* 14, no. 15: 9479.
https://doi.org/10.3390/su14159479