# Channel Characterization and SC-FDM Modulation for PLC in High-Voltage Power Lines

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

#### Objectives and Contributions

## 2. HV-PLC Channel

#### 2.1. HF Signal Propagation along Power Lines

#### 2.2. PLC-Channel Frequency Response

#### 2.3. Study Case

## 3. Noise in PLC Channels

- The same HV line as a source: corona noise and impulsive noise due to power-switch operations and faults in the line. Other factors such as surge and fault protection circuitry can be added to the PLC-channel model in order to improve it. Furthermore, the study of these components on the channel response can be found in the literature, such as in [3,22].
- Interference with other electronic equipment that operates in the same frequency band: radio and navigation stations, other PLC equipment, etc.

#### Corona Noise

## 4. System Model

#### 4.1. Single-Carrier Frequency-Division Multiple

- Structure of complex exponential sequences implies that each information symbol at the input distributes its energy uniformly over the entire output vector bandwidth. Consequently, deep fades are spread across the entire bandwidth and no particular data symbols are greatly affected. This process whitens the channel and helps each data symbol to experiment SNR close to the average.
- Coding and decoding processes can be performed by using the fast Fourier transform (FFT) algorithm, which has reduced complexity.

#### 4.2. Computational Structure and Simulation Model

## 5. Performance Analysis

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- IEEE Guide for Power-Line Carrier Applications. In IEEE Std 643-2004 (Revision of IEEE Std 643-1980); IEEE: New York, NY, USA, 2005; pp. 1–140. Available online: https://sourceforge.net/projects/openccg/ (accessed on 17 April 2022).
- Suljanovic, N.; Mujcic, A.; Zajc, M.; Tasic, J. Computation of high-frequency and time characteristics of corona noise on HV power line. IEEE Trans. Power Deliv.
**2005**, 20, 71–79. [Google Scholar] [CrossRef] - Mujcic, A.; Suljanovic, N.; Zajc, M.; Tasic, J. Power line noise model appropriate for investigation if channel coding methods. In Proceedings of the The IEEE Region 8 EUROCON 2003, Computer as a Tool, Ljubljana, Slovenia, 22–24 September 2003; Volume 1, pp. 299–303. [Google Scholar] [CrossRef]
- Turin, W.; Sondhi, M. Modeling error sources in digital channels. IEEE J. Sel. Areas Commun.
**1993**, 11, 340–347. [Google Scholar] [CrossRef] - Naredo, J.L.; Silva, J.L.; Romero, R.; Moreno, P. Application of Approximated Modal Analysis Methods for PLC System Design. IEEE Trans. Power Deliv.
**1987**, 2, 57–63. [Google Scholar] [CrossRef] - Naredo, J.L.; Soudack, A.C. Extension of Senn’s method to the analysis of PLC systems applied to delta transmission lines. IEEE Proc.
**1989**, 136, 353–360. [Google Scholar] [CrossRef] - Tonello, A.M.; Pecile, F. Efficient Architectures for Multiuser FMT Systems and Application to Power Line Communications. IEEE Trans. Commun.
**2009**, 57, 1275–1279. [Google Scholar] [CrossRef] - Crussiere, M.; Baudais, J.Y.; Helard, J.F. Adaptive spread-spectrum multicarrier multiple-access over wirelines. IEEE J. Sel. Areas Commun.
**2006**, 24, 1377–1388. [Google Scholar] [CrossRef] [Green Version] - Del Re, E.; Fantacci, R.; Morosi, S.; Seravalle, R. Comparison of CDMA and OFDM techniques for downstream power-line communications on low voltage grid. IEEE Trans. Power Deliv.
**2003**, 18, 1104–1109. [Google Scholar] [CrossRef] - Kuhn, M.; Berger, S.; Hammerstrom, I.; Wittneben, A. Power line enhanced cooperative wireless communications. IEEE J. Sel. Areas Commun.
**2006**, 24, 1401–1410. [Google Scholar] [CrossRef] [Green Version] - Ribeiro, M.; Duque, C.; Romano, J. An interconnected type-1 fuzzy algorithm for impulsive noise cancellation in multicarrier-based power line communication systems. IEEE J. Sel. Areas Commun.
**2006**, 24, 1364–1376. [Google Scholar] [CrossRef] - Maiga, A.; Baudais, J.Y.; JHélard, e.F. Increase in multicast OFDM data rate in PLC network using adaptive LP-OFDM. In Proceedings of the 2009 2nd International Conference on Adaptive Science & Technology (ICAST), Accra, Ghana, 14–16 January 2009; pp. 384–389. [Google Scholar] [CrossRef] [Green Version]
- Wedepohl, L.M. Wave propagation in nonhomogeneous multiconductor systems using the concept of natural modes. Proc. Inst. Electr. Eng.
**1966**, 113, 622–626. [Google Scholar] [CrossRef] - Wedepohl, L.M.; Wasley, R.G. Propagation of carrier signals in homogeneous, nonhomogeneous and mixed multiconductor systems. Proc. Inst. Electr. Eng.
**1968**, 115, 179–186. [Google Scholar] [CrossRef] - Pena-Campos, F.; Carrasco-Alvarez, R.; Longoria-Gandara, O.; Parra-Michel, R. Estimation of Fast Time-Varying Channels in OFDM Systems Using Two-Dimensional Prolate. IEEE Trans. Wirel. Commun.
**2013**, 12, 898–907. [Google Scholar] [CrossRef] - Giacoumidis, E.; Lin, Y.; Wei, J.; Aldaya, I.; Tsokanos, A.; Barry, L.P. Harnessing machine learning for fiber-induced nonlinearity mitigation in long-haul coherent optical OFDM. Future Internet
**2019**, 11, 2. Available online: https://www.mdpi.com/1999-5903/11/1/2 (accessed on 17 April 2022). [CrossRef] [Green Version] - Raviv, L.o.; Leshem, A. Scheduling for Multi-User Multi-Input Multi-Output Wireless Networks with Priorities and Deadlines. Future Internet
**2019**, 11, 172. Available online: https://www.mdpi.com/1999-5903/11/8/172 (accessed on 17 April 2022). [CrossRef] [Green Version] - Wedepohl, L.M. Application of matrix methods to the solution of travelling-wave phenomena in polyphase systems. Proc. Inst. Electr. Eng.
**1963**, 110, 2200–2212. Available online: https://digital-library.theiet.org/content/journals/10.1049/piee.1963.0314 (accessed on 17 April 2022). [CrossRef] - Sartenaer, T.; Delogne, P. Deterministic modeling of the (shielded) outdoor power line channel based on the multiconductor transmission line equations. IEEE J. Sel. Areas Commun.
**2006**, 24, 1277–1291. [Google Scholar] [CrossRef] - Paul, C.R. Analysis of Multiconductor Transmission Lines, 2nd ed.; Wiley-IEEE Press: New York, NY, USA, 2007; Available online: https://www.wiley.com/en-sg/Analysis+of+Multiconductor+Transmission+Lines%2C+2nd+Edition-p-9780470131541 (accessed on 17 April 2022).
- Gary, C. Approche Complete de la Propagation Multifilaire en Haute Frequence par Utilisation des Matrices Complexes. E.D.F Bull. Dir. Etudes Rech.
**1976**, B, 5–20. [Google Scholar] - Ortiz, V.; Gutierrez, J.; Naredo, J. Frequency domain analysis of FCL equipped transmission systems for protection applications. In Proceedings of the 2004 IEEE/PES Transmision and Distribution Conference and Exposition: Latin America (IEEE Cat. No. 04EX956), Sao Paulo, Brazil, 8–11 November 2004; pp. 560–565. [Google Scholar] [CrossRef]
- Khan, F. LTE for 4G Mobile Broadband: Air Interface Technologies and Performance, 1st ed.; Cambridge University Press: Cambridge, UK, 2009; Available online: https://www.cambridge.org/core/books/lte-for-4g-mobile-broadband/C4E5D8F016328EC81FC8F46B0B296BAD (accessed on 17 April 2022).
- Noune, M.; Nix, A. Frequency-domain precoding for single carrier frequency-division multiple access. IEEE Commun. Mag.
**2009**, 47, 68–74. [Google Scholar] [CrossRef] [Green Version] - Myung, H.G.; Lim, J.; Goodman, D.J. Single carrier FDMA for uplink wireless transmission. IEEE Veh. Technol. Mag.
**2006**, 1, 30–38. [Google Scholar] [CrossRef] - Zhang, X.; Shen, X.S.; Xie, L.L. Uplink Achievable Rate and Power Allocation in Cooperative LTE-Advanced Networks. IEEE Trans. Veh. Technol.
**2016**, 65, 2196–2207. [Google Scholar] [CrossRef]

**Figure 4.**Coupling equipment. (

**a**) Wave trap. (

**b**) Receiving-end line tuner. (

**c**) Transmitting-end line tuner.

**Figure 7.**Power spectral density of the corona noise for the test-case line with 400 kV in the frequency range of operation $[50,550]$ kHz.

**Figure 11.**BER vs. SNR comparison of the proposed conventional OFDM communication system among each of the couplings with ${N}_{p}=16$, $FFT=256$, 64 QAM and $BW=200$ kHz.

**Figure 12.**BER vs. SNR comparison of the proposed SC-FDM communication system among each of the couplings with ${N}_{p}=16$, $FFT=256$, 64 QAM and $BW=200$ kHz.

**Figure 13.**BER vs. Eb/N0 comparison of the proposed SC-FDM communication system among each of the couplings with ${N}_{p}=16$, $FFT=256$, 64 QAM and $BW=200$ kHz.

**Figure 14.**BER vs. SNR comparison of the proposed OFDM and SC-FDM communication systems for the ${A}_{{c}_{5}}$ with ${N}_{p}=16$, $FFT=256$, 64 QAM and $BW=200$ kHz. Solid lines represent the results using the proposed channel model and dashed lines represent the results obtained with Senn’s channel model.

**Figure 15.**BER vs. SNR comparison of the proposed OFDM and SC-FDM communication system for the ${A}_{{c}_{5}}$ with ${N}_{p}=16$, $FFT=256$ and $BW=200$ kHz. Configurations cover 64 QAM SC-FDM, 64 and 32 QAM conventional OFDM.

**Figure 16.**BER vs. SNR comparison of the proposed SC-FDM and SC-LMS communication system for the ${A}_{{c}_{5}}$ with ${N}_{p}=16$, $FFT=256$ and $BW=64$ kHz, 8 QAM, ${F}_{c}=150$ kHz.

$A{c}_{1}=[1,-1,0]/[1,-1,0]$ | |
---|---|

$A{c}_{2}=[1,-1,0]/[1,0,-1]$ | |

Couplings | $A{c}_{3}=[1,0,-1]/[1,0,-1]$ |

$A{c}_{4}=[0,1,-1]/[1,-1,0]$ | |

$A{c}_{5}=[1,-1,0]/[0,1,-1]$ |

Parameter | Value |
---|---|

Coupling capacitor | 4246 pF |

Blocking inductor | 0.8166 mH |

Central frequency | 210 kHz |

Bandwidth | 400 kHz |

Wave Trap | |

${L}_{1}$ | 0.8166 mH |

${C}_{1}$ | 703 pF |

${L}_{2}$ | 0.2026 mH |

${C}_{2}$ | 2835 pF |

Line Tuner | |

${L}_{1}$ | 0.1353 mH |

${C}_{1}$ | 4.246 pF |

${L}_{2}$ | 0.5454 mH |

${C}_{2}$ | 1053 pF |

Parameter | Value |
---|---|

FFT size | $N=256$ |

CP | ${N}_{g}=(1/16)N$ |

Sampling frequency | ${F}_{s}=200$ kHz |

Carrier frequency | ${F}_{c}=150$ kHz |

Data carriers | ${N}_{D}=220$ |

Pilot carriers | ${N}_{P}=16$ |

Guard carriers | ${N}_{G}=20$ |

BER | OFDM Conventional | SC-FDM Proposed |
---|---|---|

${10}^{-3}$ | 16.5 dB (SRN) | 15 dB (SNR) |

${10}^{-4}$ | 19 dB (SRN) | 17 dB (SNR) |

${10}^{-5}$ | 22.5 dB (SRN) | 18 dB (SNR) |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Del Puerto-Flores, J.A.; Naredo, J.L.; Peña-Campos, F.; Del-Valle-Soto, C.; Valdivia, L.J.; Parra-Michel, R.
Channel Characterization and SC-FDM Modulation for PLC in High-Voltage Power Lines. *Future Internet* **2022**, *14*, 139.
https://doi.org/10.3390/fi14050139

**AMA Style**

Del Puerto-Flores JA, Naredo JL, Peña-Campos F, Del-Valle-Soto C, Valdivia LJ, Parra-Michel R.
Channel Characterization and SC-FDM Modulation for PLC in High-Voltage Power Lines. *Future Internet*. 2022; 14(5):139.
https://doi.org/10.3390/fi14050139

**Chicago/Turabian Style**

Del Puerto-Flores, Jose Alberto, José Luis Naredo, Fernando Peña-Campos, Carolina Del-Valle-Soto, Leonardo J. Valdivia, and Ramón Parra-Michel.
2022. "Channel Characterization and SC-FDM Modulation for PLC in High-Voltage Power Lines" *Future Internet* 14, no. 5: 139.
https://doi.org/10.3390/fi14050139