# Predicting New Materials for Hydrogen Storage Application

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Prediction of Hydride Crystal Structures

#### 2.1. Structural complexity

#### 2.2. Tailor made complex hydrides

## 3. Structural Investigation: A Challenging Task

**Figure 1.**Structural competition between different possible structural arrangements for KAlH${}_{4}$.

Unit-cell dimensions (Å) | Positional parameters | |

Theory | Experiment | |

KGaH${}_{4}$ type: | K ($4c$) : 0.1778, 1/4, 0.1621 | K ($4c$) : 0.1775(7), 1/4, 0.1598(9) |

a = 9.009 (8.814${}^{a}$; 8.736${}^{b}$) | Al ($4c$) : 0.5663, 1/4, 0.8184 | Al ($4c$) : 0.5659(6), 1/4, 0.8201(7) |

b = 5.767 (5.819${}^{a}$; 5.725${}^{b}$) | H1 ($4c$) : 0.4034, 1/4, 0.9184 | D1 ($4c$) : 0.4063(5), 1/4, 0.9250(4) |

c = 7.399 (7.331${}^{a}$; 7.260${}^{b}$) | H2 ($4c$) : 0.7055, 1/4, 0.9623 | D2 ($4c$) : 0.7153(5), 1/4, 0.9611(6) |

H3 ($8d$) : 0.4194, 0.9810, 0.3127 | D3 ($8d$) : 0.4181(3), 0.9791(4), 0.3137(4) |

ICSD formula | Example | Number of entries | Independent structures |

$AX$ | LiH | 3710 | 58 |

$A{X}_{2}$ | MgH${}_{2}$ | 3375 | 98 |

$ABX$ | KSbZn | 391 | 69 |

$AB{X}_{2}$ | AgInTe${}_{2}$ | 17 | 7 |

$AB{X}_{3}$ | NaMgH${}_{3}$ | 6639 | 30 |

$AB{X}_{4}$ | LiAlH${}_{4}$ | 2015 | 103 |

$AB{X}_{5}$ | CaAlH${}_{5}$ | 317 | 45 |

$AB{X}_{6}$ | GaBH${}_{6}$ | 377 | 32 |

$A{B}_{2}{X}_{4}$ | MgCs${}_{2}$H${}_{4}$ | 4790 | 131 |

$A{B}_{3}{X}_{4}$ | Ag${}_{3}$PO${}_{4}$ | 226 | 26 |

$A{B}_{3}{X}_{5}$ | MgCs${}_{3}$H${}_{5}$ | 173 | 34 |

$A{B}_{2}{X}_{6}$ | RuSr${}_{2}$H${}_{6}$ | 1344 | 36 |

$A{B}_{3}{X}_{6}$ | Li${}_{3}$AlH${}_{6}$ | 465 | 43 |

$A{B}_{2}{X}_{7}$ | Sr${}_{2}$AlH${}_{7}$ | 243 | 34 |

$A{B}_{2}{X}_{8}$ | Ca(BH${}_{4}$)${}_{2}$ | 271 | 50 |

${A}_{3}{B}_{4}{X}_{10}$ | Mg${}_{3}$Cs${}_{4}$D${}_{1}0$ | 6 | 3 |

${A}_{6}{B}_{7}{X}_{26}$ | Ba${}_{6}$Mg${}_{7}$D${}_{2}6$ | 62 | 12 |

$ABC{X}_{5}$ | TiTaKO${}_{5}$ | 127 | 12 |

$ABC{X}_{6}$ | LiMgAlH${}_{6}$ | 158 | 18 |

$AB{C}_{2}{X}_{6}$ | LiAlK${}_{2}$H${}_{6}$ | 1957 | 23 |

$AB{C}_{3}{X}_{12}$ | CaLi(BH${}_{4}$)${}_{3}$ | 18 | 8 |

$A{B}_{2}{C}_{4}{X}_{16}$ | CaLi${}_{2}$(BH${}_{4}$)${}_{4}$ | 27 | 9 |

#### Magnesium borohydride Mg(BH${}_{4}$)${}_{2}$: A challenging case

**Figure 2.**Crystal structure of Mg(BH${}_{4}$)${}_{2}$: (a) from theoretically obtained low energy structure (Tetragonal I4m2), (b) experimentally identified low temperature structure (Hexagonal, $P{6}_{1}$).

## 4. Search for Potential Metastable Phases

**Figure 3.**(a) Calculated volume versus total energy curves for AlH${}_{3}$. Magnified versions of the corresponding transition points are shown on (b) and (c) at right-hand side of the figure.

## 5. Stabilizing Meta-Stable Phases by Substitution

**Figure 4.**Theoretically calculated (left panel) and experimentally observed (right panel) pressure vs. volume relation for MgH${}_{2}$. Pressure stability regions for the different modifications are indicated.

## 6. Conclusions

## Acknowledgements

## References

- Block, J.; Gray, A.P. Thermal decomposition of lithium aluminum hydride. Inorg. Chem.
**1965**, 4, 304–305. [Google Scholar] [CrossRef] - Dilts, J.A.; Ashby, E.C. Thermal decomposition of complex metal hydrides. Inorg. Chem.
**1972**, 11, 1230–1236. [Google Scholar] [CrossRef] - Bogdanovic, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys Compd.
**1997**, 253, 1–9. [Google Scholar] [CrossRef] - Bogdanovic, B.; Brand, R.A.; Marjanovic, A.; Schwikardi, M.; Tölle. Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J. Alloys Compd.
**2000**, 302, 36–58. [Google Scholar] [CrossRef] - Brinks, H.W.; Hauback, B.C.; Norby, P.; Fjellvåg, H. The decomposition of LiAlD
_{4}studied by in situ x-ray and neutron diffraction. J. Alloys Compd.**2003**, 351, 222–227. [Google Scholar] [CrossRef] - Jensen, C.M.; Gross, K. Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material. J. Appl. Phys. A: Mater. Sci. Process.
**2001**, 72, 213–219. [Google Scholar] [CrossRef] - Morioka, H.; Kakizaki, K.; Chung, S.C.; Yamada, A. Reversible hydrogen decomposition of KAlH
_{4}. J. Alloys Compd.**2003**, 353, 310–314. [Google Scholar] [CrossRef] - Pinkerton, F.E.; Meisner, G.P.; Meyer, M.S.; Balogh, M.P.; Kundrat, M.D. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li
_{3}BN_{2}H_{8}. J. Phys. Chem. B**2005**, 109, 6–8. [Google Scholar] [CrossRef] [PubMed] - Orimo, S.; Fujii, H.; Ikeda, K. Notable hydriding properties of a nanostructured composite material of the Mg
_{2}Ni-H system synthesized by reactive mechanical grinding. Acta Mater.**1997**, 45, 331–341. [Google Scholar] [CrossRef] - Zaluska, A.; Zaluski, L.; Strom-Olsen, J.O. Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd.
**1999**, 288, 217–225. [Google Scholar] [CrossRef] - Huot, J.; Liang, G.; Schultz, R. Mechanically alloyed metal hydride systems. Appl. Phys. A: Mater. Sci. Process.
**2001**, 72, 187–195. [Google Scholar] [CrossRef] - Huot, J.; Pelletier, J.F.; Lurio, L.B.; Sutton, M.; Schulz, R. Investigation of dehydrogenation mechanism of MgH
_{2}Nb nanocomposites. J. Alloys Compd.**2003**, 348, 319–324. [Google Scholar] [CrossRef] - Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2003: Technical Plan. U.S. Department of Energy. Energy Efficiency and Renewable Energy. Available online at http://www.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/storage.pdf/ accessed 14 December 2009.
- Service, R.F. Hydrogen Cars: Fad or the Future? Science
**2009**, 324, 1257–1259. [Google Scholar] [CrossRef] [PubMed] - Yvon, K.; Fischer, P. Hydrogen in Intermetallic Compounds, Topics in Applied Physics; Schlapbach, L., Ed.; Springer: Berlin, Germany, 1988; p. 87. [Google Scholar]
- Sørby, M.H.; Brinks, H.W.; Fossdal, A.; Thorshaug, K.; Hauback, B.C. The crystal structure and stability of K
_{2}NaAlH_{6}. J. Alloys Compd.**2006**, 415, 284–287. [Google Scholar] [CrossRef] - Grove, H.; Brinks, H.W.; Heyn, R.H.; Wu, F.-J.; Opalka, S.M.; Tang, X.; Laube, B.L.; Hauback, B.C. The structure of LiMg(AlD
_{4})_{3}. J. Alloys Compd.**2008**, 455, 249–254. [Google Scholar] [CrossRef] - Ravnsbæk, D.; Filinchuk, Y.; Cerenius, Y.; Jakobsen, H.J.; Besenbacher, F.; Skibsted, J.; Jensen, T.R. A series of mixed-metal borohydrides. Angew. Chem. Int. Ed.
**2009**, 48, 6659–6663. [Google Scholar] [CrossRef] [PubMed] - Yvon, K. Encyclopedia of Inorganic Chemistry; King, R.B., Ed.; Wiley: New York, NY, USA, 1994; Volume 3, p. 1401. [Google Scholar]
- Zhang, Q.A.; Nakamura, Y.; Oikawa, K.; Kamiyama, T.; Akiba, E. New alkaline earth aluminum hydride with one-dimensional zigzag chains of [AlH
_{6}]: Synthesis and crystal structure of BaAlH_{5}. Inorg. Chem.**2002**, 41, 6941–6943. [Google Scholar] [CrossRef] [PubMed] - Bertheville, B.; Fischer, P.; Yvon, K. High-pressure synthesis and crystal structures of new ternary caesium magnesium hydrides, CsMgH
_{3}, Cs_{4}Mg_{3}H_{1}0 and Cs_{2}MgH_{4}. J. Alloys Compd.**2002**, 330-332, 152–156. [Google Scholar] [CrossRef] - Zaluska, A.; Zaluski, L. New catalytic complexes for metal hydride systems. J. Alloys Compds.
**2005**, 404-406, 706–711. [Google Scholar] [CrossRef] - Inorganic Crystal Structure Database; Gmelin Institut.: Germany, February 2006.
- Hector, L.G., Jr.; Herbst, J.F. Density functional theory for hydrogen storage materials: Successes and opportunities. J. Phys: Condens. Matter
**2008**, 20, 064229. [Google Scholar] [CrossRef] - Skriver, H.L. Crystal structure from one-electron theory. Phys. Rev. B
**1985**, 31, 1909–1923. [Google Scholar] [CrossRef] - Söderlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M. A unified picture of the crystal structures of metals. Nature
**1995**, 374, 524–525. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Fjellvåg, H.; Kjekshus, A. Crystal structure of KAlH
_{4}from first princible calculation. J. Alloys Compd.**2003**, 363, L7–L11. [Google Scholar] - Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B
**1994**, 50, 17953–17979. [Google Scholar] [CrossRef] - Kresse, G.; Joubert, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B
**1999**, 59, 1758–1775. [Google Scholar] [CrossRef] - Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B
**1993**, 47, R558–561. [Google Scholar] [CrossRef] - Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.
**1996**, 6, 15–50. [Google Scholar] [CrossRef] - Perdew, J.P.; Burke, S.; Ernzerhof, M. Generalized gradient approximation made simple Phys. Rev. Lett.
**1996**, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] - Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B
**1992**, 46, 6671–6687. [Google Scholar] [CrossRef] - Hauback, B.C.; Brinks, H.W.; Fjellvåg, H. Accurate structure of LiAlD
_{4}studied by combined powder neutron and x-ray diffraction. J. Alloys Comp.**2002**, 346, 184–189. [Google Scholar] [CrossRef] - Belskii, V.K.; Bulychev, B.M.; Golubeva, A.V. The repeated definition of the structure NaAlH
_{4}. Acta Crystallogr. Sec. B**1979**, 35, 1454–1456. [Google Scholar] - Vajeeston, P.; Ravindran, P.; Vidya, R.; Fjellvåg, H.; Kjekshus, A. Pressure-induced phase of NaAlH
_{4}: A potential candidate for hydrogen storage? Appl. Phys. Lett.**2003**, 82, 2257–2259. [Google Scholar] [CrossRef] - Soulié, J.P.; Renaudin, G.; Eerny, R.; Yvon, K. Lithium boro-hydride LiBH
_{4}: I. Crystal structure. J. Alloys Comp.**2002**, 346, 200–205. [Google Scholar] [CrossRef] - Irodova, A.V.; Somenkov, V.A.; Kurchatovy, I.V.; Bakum, S.I.; Kuznetsova, S.F.; Kurnakov, N.S. Structure of NaGaH
_{4}(D_{4}). Z. Phys. Chem.**1989**, 163, 239–242. [Google Scholar] [CrossRef] - Davis, R.L.; Kennardy, C.H.L. Structure of sodium tetradeuteroborate, NaBD
_{4}. J. Solid State Chem.**1985**, 59, 393–396. [Google Scholar] [CrossRef] - Gingl, F.; Yvon, K.; Fischer, P. Strontium magnesium tetrahydride (SrMgH
_{4}): A new ternary alkaline earth hydride. J. Alloys Comp.**1992**, 187, 105–111. [Google Scholar] [CrossRef] - Backum, S.I.; Irodova, A.V.; Kuznetsova, S.F.; Lyakhovitskaya, O.I.; Nozik, Y.Z.; Somenkov, V.A. Crystal structure of KGaH
_{4}. Russ. J. Coord. Chem.**1990**, 16, 1210–1214. [Google Scholar] - Hauback, B.C.; Brinks, H.W.; Heyn, R.H.; Blom, R.; Fjellvåg, H. The crystal structure of KAlD
_{4}. J. Alloys Compd.**2005**, 394, 35–38. [Google Scholar] [CrossRef] - Bastide, J.-P.; Claudy, P.; Letoffe, J.-M.; Hajri, J.E. Preparation and characterization of potassium tetrahydroaluminate (KAlH
_{4}). Rev. Chim. Mineral.**1987**, 24, 248–263. [Google Scholar] - Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. Crystal structure and high-pressure study of BeH
_{2}from First Princible Calculation. Appl. Phys. Lett.**2004**, 84, 34–36. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. Pressure-induced structural transitions in MgH
_{2}. Phys. Rev. Lett.**2002**, 89, 175506. [Google Scholar] [CrossRef] [PubMed] - Luo, W.; Ahuja, R. Ab initio prediction of high-pressure structural phase transition in BaH
_{2}. J. Alloys Compd.**2007**, 446-447, 405–408. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Fjellvåg, H. Novel high pressure phases of β-AlH
_{3}: A density-functional study. Chem. Matt.**2008**, 20, 5997–6002. [Google Scholar] [CrossRef] - Ke, X.; Kuwabara, A.; Tanaka, I. Cubic and orthorhombic structures of aluminum hydride AlH
_{3}predicted by a first-principles study. Phys. Rev. B**2005**, 71, 184107. [Google Scholar] [CrossRef] - Chung, S.; Morioka, H. Thermochemistry and crystal structures of lithium, sodium and potassium alanates as determined by ab initio simulations. J. Alloys Compd.
**2004**, 372, 92–96. [Google Scholar] [CrossRef] - Scheicher, R.H.; Kim, D.Y.; Lebègue, S.; Arnaud, B.; Alouani, M.; Ahuja, R. Cubic metallic phase of aluminum hydride showing improved hydrogen desorption. Appl. Phys. Lett.
**2008**, 92, 201903. [Google Scholar] [CrossRef] - Pickard, C.J.; Needs, R.J. Metallization of aluminum hydride at high pressures: A first-principles study. Phys. Rev. B
**2007**, 76, 144114. [Google Scholar] [CrossRef] - Kim, D.Y.; Scheicher, R.H.; Ahuja, R. Dynamical stability of the cubic metallic phase of AlH
_{3}at ambient pressure: Density functional calculations. Phys. Rev. B**2008**, 78, 100102(R). [Google Scholar] [CrossRef] - Kim, E.; Kumar, R.; Weck, P.F.; Cornelius, A.L.; Nicol, M.; Vogel, S.C.; Zhang, J.; Hartl, M.; Stowe, A.C.; Daemen, L.; Zhao, Y. Pressure-driven phase transitions in NaBH
_{4}: Theory and experiments. J. Phys. Chem. B**2007**, 111, 13873–13876. [Google Scholar] [CrossRef] [PubMed] - Chellappa, R.S.; Chandra, D.; Somayazulu, M.; Gramsch, S.A.; Hemley, R.J. Pressure-induced phase transitions in LiNH
_{2}. J. Phys. Chem. B**2007**, 111, 10785–10789. [Google Scholar] [CrossRef] [PubMed] - Ke, X.; Chen, C.F. Thermodynamic functions and pressure-temperature phase diagram of lithium alanates by ab initio calculations. Phys. Rev. B
**2007**, 76, 024112. [Google Scholar] [CrossRef] - Hu, C.H.; Chen, D.M.; Wang, Y.M.; Xu, D.S.; Yang, K. First-principles investigations of the pressure-induced structural transitions in Mg(AlH
_{4})_{2}. J. Phys.: Condens. Matter**2007**, 19, 176205. [Google Scholar] [CrossRef] [PubMed] - Pitt, M.P.; Blanchard, D.; Hauback, B.C.; Fjellvåg, H.; Marshall, W.G. Pressure-induced phase transitions of the LiAlD
_{4}system. Phys. Rev. B**2005**, 72, 214113. [Google Scholar] [CrossRef] - Araujo, C.M.; Ahuja, R.; Talyzin, A.V.; Sundqvist, B. Pressure-induced structural phase transition in NaBH
_{4}. Phys. Rev. B**2005**, 72, 054125. [Google Scholar] [CrossRef] - Goncharenko, I.; Eremets, M.I.; Hanfland, M.; Tse, J.S.; Amboage, M.; Yao, Y.; Trojan, I.A. Pressure-induced hydrogen-dominant metallic state in aluminum hydride. Phys. Rev. Lett.
**2008**, 100, 045504. [Google Scholar] [CrossRef] [PubMed] - Vajeeston, P.; Ravindran, P.; Vidya, R.; Fjellvåg, H.; Kjekshus, A. Design of potential hydrogen-storage material using first-principle density-functional calculations. Cry. Growth Design
**2004**, 4, 471–477. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. A huge pressure-induced volume collapse in LiAlH
_{4}and its implications to hydrogen storage. Phys. Rev. B**2003**, 68, 212101. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. Structural phase stability in Alkali boro-tetrahydrides ABH
_{4}(A = Li, Na, K, Rb, Cs) from first principle calculation. J. Alloys Compd.**2005**, 387, 97–104. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. First-principles investigations of aluminum hydrides:
_{M3}AlH_{6}(M = Na, K). Phys. Rev. B**2005**, 71, 092103. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. A new series of high hydrogen content complex hydrides predicted from density functional calculations. Appl. Phys. Lett.
**2006**, 89, 071906. [Google Scholar] [CrossRef] - Klaveness, A.; Vajeeston, P.; Ravindran, P.; Fjellvåg, H.; Kjekshus, A. Structural prediction and bonding of BAlH
_{5}(B = Be, Ca, Sr) from first-principle calculations. J. Alloys Compd.**2007**, 433, 225–232. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Fjellvåg, H. Structural phase stability studies on MBeH
_{3}(M = Li, Na, K, Rb, Cs) from density functional calculations. Inorg. Chem.**2008**, 47, 508–514. [Google Scholar] [CrossRef] [PubMed] - Tse, J.S.; Klug, D.D.; Desgreniers, S.; Smith, J.S.; Flacau, R.; Liu, Z.; Hu, J.; Chen, N.; Jiang, D.T. Structural phase transition in CaH
_{2}at high pressures. Phys. Rev. B**2007**, 75, 134108. [Google Scholar] [CrossRef] - Nakamori, Y.; Miwa, K.; Ninomiya, A.; Li, H.; Ohba, N.; Towata, S.; ZKttel, A.; Orimo, V. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments. Phys. Rev. B
**2006**, 74, 045126. [Google Scholar] [CrossRef] - Wolverton, C.; Ozolins, V. Hydrogen storage in calcium alanate: First-principles thermodynamics and crystal structures. Phys. Rev. B
**2007**, 75, 064101. [Google Scholar] [CrossRef] - Majzoub, E.H.; Ozolin, V. Prototype electrostatic ground state approach to predicting crystal structures of ionic compounds: Application to hydrogen storage materials. Phys. Rev. B
**2008**, 77, 104115. [Google Scholar] [CrossRef] - Løvvik, O.M. Crystal structure of Ca(AlH
_{4})_{2}predicted from density-functional band-structure calculations. Phys. Rev. B**2005**, 71, 144111. [Google Scholar] [CrossRef] - Løvvik, O.M.; Swang, O. Structure and stability of possible new alanates. Europhys. Lett.
**2004**, 67, 607–613. [Google Scholar] [CrossRef] - Lodziana, Z.; Vegge, T. Structural stability of complex hydrides: LiBH
_{4}revisited. Phys. Rev. Lett.**2004**, 93, 145501. [Google Scholar] [CrossRef] [PubMed] - Alapati, S.V.; Johnson, J.K.; Sholl, D.S. Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. J. Phys. Chem. B
**2006**, 110, 8769–8776. [Google Scholar] [CrossRef] [PubMed] - Hu, C.H.; Oganov, A.R.; Wang, Y.M.; Zhou, H.Y.; Lyakhov, A.; Hafner, J. Crystal structure prediction of LiBeH
_{3}using ab initio total-energy calculations and evolutionary simulations. J. Chem. Phys.**2008**, 129, 234105. [Google Scholar] [CrossRef] [PubMed] - Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. First principles investigations on MMgH
_{3}(M = Li, Na, K, Rb, Cs) hydrides. J. Alloys Compd.**2008**, 450, 327–337. [Google Scholar] [CrossRef] - Blum, V.; Zunger, A. Prediction of ordered structures in the bcc binary systems of Mo, Nb, Ta, and W from first-principles search of approximately 3,000,000 possible configurations. Phys. Rev. B
**2005**, 72, 020104(R). [Google Scholar] [CrossRef] - Bush, T.S.; Catlow, C.R.A.; Battle, P.D. Evolutionary programming techniques for predicting inorganic crystal structures. J. Mater. Chem.
**1995**, 5, 1269–1272. [Google Scholar] [CrossRef] - Oganov, A.R.; Glass, C.W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys.
**2006**, 124, 244704. [Google Scholar] [CrossRef] [PubMed] - Woodley, S.M. Prediction of crystal structures using evolutionary algorithms and related techniques. Struct. Bonding (Berlin)
**2004**, 110, 95–132. [Google Scholar] - Martonak, R.; Laio, A.; Parrinello, M. Predicting crystal structures: The Parrinello-Rahman method revisited. Phys. Rev. Lett.
**2003**, 90, 075503. [Google Scholar] [CrossRef] [PubMed] - Wales, D.J.; Doye, J.P.K. Global optimization by Basin-Hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 Atoms. J. Phys. Chem. A
**1997**, 101, 5111–5116. [Google Scholar] [CrossRef] - Li, Z.; Scheraga, H.A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. USA
**1987**, 84, 6611–6615. [Google Scholar] [CrossRef] [PubMed] - Pannetier, J.; Bassasalsina, J.; Rodriguez-Carvajal, J.; Caignaert, V. Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature (London)
**1990**, 346, 343–345. [Google Scholar] [CrossRef] - Schön, J.C.; Jansen, M. First step towards planning of syntheses in solid-state chemistry: Determination of promising structure candidates by global optimization. Angew. Chem.
**1996**, 35, 1286–1304. [Google Scholar] [CrossRef] - Le Bail, A. Inorganic structure prediction with GRINSP. J. Appl. Crystallogr.
**2005**, 38, 389–395. [Google Scholar] [CrossRef] - Godecker, S. Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys.
**2004**, 120, 9911–9917. [Google Scholar] [CrossRef] [PubMed] - Konoplev, V.N.; Bakulina, V.M. Some properties of magnesium borohydride. Izv. Akad. Nauk SSSR Ser. Khim.
**1971**, 1, 159–161. [Google Scholar] [CrossRef] - Plešek, J.; Heřmánek, S. Chemistry of boranes IV. Preparation, properties and behavior of magnesium borohydride towards Lewis bases. Collect. Czech. Chem. Commun.
**1966**, 31, 3845–3858. [Google Scholar] [CrossRef] - Kuznetsov, V.A.; Dymova, T.N. Evaluation of the standard enthalpies and isobaric potentials of the formation of certain complex hydrides. Russ. Chem. Bull.
**1971**, 20, 204–208. [Google Scholar] [CrossRef] - Sarner, S.F. Propellant Chemistry, 1st ed.; Reinhold Publishing Corporation: New York, NY, USA, 1966. [Google Scholar]
- Charkin, O.P.; Bonaccorsi, R.; Tomasi, J.; Zyubin, A. S.; Gorbik, A.A. Nonempirical calculation of the structure and stability of magnesium borohydride molecules with consideration of the electronic correlation in the Moeller-Plesset 4/6-31G**. Zh. Neorg. Khim.
**1987**, 32, 2644–2648. [Google Scholar] - Majzoub, E.H.; Ozolins, V. International Symposium on MetalHydrogen Systems, Maui, HI, USA, October 1-6, 2006; Abstract in MH-2006. p. 12.
- Bonaccorsi, R.; Charkin, O.P.; Tomasi, J. Nonempirical study of the structure and stability of beryllium, magnesium, and calcium borohydrides. Inorg. Chem.
**1991**, 30, 2964–2969. [Google Scholar] [CrossRef] - Ozolins, V.; Majzoub, E.H.; Wolverton, C. First-principles prediction of a ground state crystal structure of magnesium borohydride. Phys. Rev. Lett.
**2008**, 100, 135501. [Google Scholar] [CrossRef] [PubMed] - Her, J.H.; Stephens, P.W.; Gao, Y.; Soloveichik, G.L.; Rijssenbeek, J.; Andrusb, M.; Zhaob, J.C. Structure of unsolvated magnesium borohydride Mg(BH
_{4})_{2}. Acta Crystallogr. Sect. B**2007**, 63, 561–568. [Google Scholar] [CrossRef] [PubMed] - Cerny, R.; Filinchuk, Y.; Hagemann, H.; Yvon, K. Magnesium borohydride: Synthesis and crystal structure. Angew. Chem. Int. Ed.
**2007**, 46, 5765–5767. [Google Scholar] [CrossRef] [PubMed] - Filinchuk, Y.; Černý, R.; Hagemann, H. Insight into Mg(BH
_{4})_{2}with synchrotron x-ray diffraction: structure revision, crystal chemistry, and anomalous thermal expansion. Chem. Mater.**2009**, 21, 925–933. [Google Scholar] [CrossRef] - Zhou, X.F.; Quan, A.R.; Zhou, J.; Xu, B.; Tian, Y.; Wang, H.R. Crystal structure and stability of magnesium borohydride from first principles. Phys. Rev. B
**2009**, 79, 212102. [Google Scholar] [CrossRef] - Brower, F.M.; Matzek, N.E.; Reigler, P.F.; Rinn, H.W.; Roberts, C.B.; Schmidt, D.L.; Snover, J.A.; Terada, K. Preparation and properties of aluminum hydride. J. Am. Chem. Soc.
**1976**, 98, 2450–2453. [Google Scholar] [CrossRef] - Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature
**2001**, 414, 353–358. [Google Scholar] [CrossRef] [PubMed] - Turley, J.W.; Rinn, H.W. Crystal structure of aluminum hydride. Inorg. Chem.
**1969**, 8, 18–22. [Google Scholar] [CrossRef] - Brinks, H.W.; Istad-Lem, A.; Hauback, B.C. Mechanochemical synthesis and crystal structure of α’-AlD
_{3}and α-AlD_{3}. Phys. Chem. B**2006**, 110, 25833–25837. [Google Scholar] [CrossRef] [PubMed] - Brinks, H.W.; Langley, W.; Jensen, C.M.; Graetz, J.; Reilly, J.J.; Hauback, B.C. Synthesis and crystal structure of β-AlD
_{3}. J. Alloys Compd.**2006**, 433, 180–183. [Google Scholar] [CrossRef] - Yartys, V.A.; Denys, R.V.; Maehlen, J.P.; Frommen, C.; Fichtner, M.; Bulychev, B.M.; Emerich, H. Double-bridge bonding of aluminium and hydrogen in the crystal structure of γ-AlH
_{3}. Inorg. Chem.**2007**, 46, 1051–1055. [Google Scholar] [CrossRef] [PubMed] - Zogal, O.J.; Vajda, P.; Beuneu, F.; Pietraszko, A. Lattice damage and Al-metal precipitation in 2.5 MeV-electron-irradiated AlH
_{3}. Eur. Phys. J. B**1998**, 2, 451–456. [Google Scholar] [CrossRef] - Aguayo, A.; Singh, D.J. Electronic structure of the complex hydride NaAlH4. Phys. Rev. B
**2004**, 69, 155103. [Google Scholar] [CrossRef] - Wolverton, C.; Ozolins, V.; Asta, M. Hydrogen in aluminum: First-principles calculations of structure and thermodynamics. Phys. Rev. B
**2004**, 69, 144109. [Google Scholar] [CrossRef] - Graetz, J.; Chaudhuri, S.; Lee, Y.; Vogt, T.; Muckerman, J.T.; Reilly, J. Pressure-induced structural and electronic changes in α-AlH
_{3}. Phys. Rev. B**2006**, 74, 214114. [Google Scholar] [CrossRef] - Baranowski, B.; Hochheimer, H.D.; Strossner, K.; Honle, W. High pressure x-ray investigation of AlH
_{3}and Al at room temperature. J. Less-Common Met.**1985**, 113, 341–347. [Google Scholar] [CrossRef] - Goncharenko, I.N.; Glazkov, V.P.; Irodova, A.V.; Somenkov, V.A. Neutron diffraction study of crystal structure and equation of state AlD
_{3}up to the pressure of 7.2 GPa. Physica B**1991**, 174, 117–120. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Kjekshus, A.; Fjellvåg, H. Lattice dynamic study on AlH
_{3}polymorphs. Unpublished work. - Dubrovinsky, L.S.; Dubrovinskaia, N.A.; Swamy, V.; Muscat, J.; Harrison, N.M.; Ahuja, R.; Holm, B.; Johansson, B. Materials science: The hardest known oxide. Nature
**2001**, 410, 653–654. [Google Scholar] [CrossRef] [PubMed] - Dubrovinskaia, N.A.; Dubrovinsky, L.S.; Ahuja, R.; Prokopenko, V.B.; Dmitriev, V.; Weber, J.P.; Osirio- Guillen, J.M.; Johanson, B. Experimental and theoretical identification of a new high-pressure TiO
_{2}polymorph. Phys. Rev. Lett.**2001**, 87, 275501. [Google Scholar] [CrossRef] [PubMed] - The Metal-Hydrogen System—Basic Bulk Properties; Fukai, Y. (Ed.) Springer-Verlag: Berlin, Germany, 1993.
- Griessen, R.; Riesterer, T. Hydrogen in Intermetallic Compounds I; Schlapbach, L., Ed.; Springer: Berlin, Germany, 1988; Volume 63, Topics Appl. Phys.; p. 219. [Google Scholar]
- Bogdanovic, B.; Bohmhammel, K.; Christ, B.; Reiser, A.; Schlichte, K.; Vehlen, R.; Wolf, U. Thermodynamic investigation of the magnesiumhydrogen system. J. Alloys Compd.
**1999**, 282, 84–82. [Google Scholar] [CrossRef] - Liang, G.; Huot, J.; Boily, S.; Van Neste, A.; Schulz, R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH
_{2}Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J. Alloys Compd.**1999**, 292, 247–252. [Google Scholar] [CrossRef] - Khrussanova, M.; Grigorova, E.; Mitov, I.; Radev, D.; Peshev, P. Hydrogen sorption properties of an MgTiVFe nanocomposite obtained by mechanical alloying. J. Alloys Compd.
**2001**, 327, 230–334. [Google Scholar] [CrossRef] - Robert, S.; Strom-Olsen, J.; Zaluski, L.; Alicja, Z. Nanocrystalline Mg or Be-based materials and use thereof for the transportation and storage of hydrogen. U.S. Pat. 5,964,965, 12 October 1999. [Google Scholar]
- NIST-JANAF Thermochemical Tables; Chase, M.W. (Ed.) American Institute of Physics: Woodbury, NY, USA, 1998; J. Phys. Chem. Ref. Data Monogr., No. 9.
- Zaluska, A.; Zaluski, L.; Ström-Olsen, J.O. Structure, catalysis and atomic reactions on the nano-scale: A systematic approach to metal hydrides for hydrogen storage. Appl. Phys. A: Mater. Sci. Process.
**2001**, 72, 157–165. [Google Scholar] [CrossRef] - Vajeeston, P.; Ravindran, P.; Hauback, B.C.; Fjellvåg, H.; Kjekshus, A.; Furuseth, S.; Hanfland, M. Structural stability and pressure-induced phase transitions in MgH
_{2}. Phys. Rev. B**2006**, 73, 224102. [Google Scholar] [CrossRef] - Bastide, J.P.; Bonnetot, B.; Letoffe, J.M.; Claudy, P. Polymorphisme de l’hydrure de magnesium sous haute pression. Mat. Res. Bull.
**1980**, 15, 1215–1224. [Google Scholar] [CrossRef] - Zachariasen, W.H.; Holley, C.E.; Stamper, J.F. The crystal and molecular structure of bis-biuret-zinc chloride. Acta Cryst. A
**1963**, 16, 352. [Google Scholar] [CrossRef] - Bortz, M.; Bertheville, B.; Bøttger, G.; Yvon, K. Structure of the high pressure phase γ-MgH
_{2}by neutron powder diffraction. J. Alloys Compd.**1999**, 287, L4–L6. [Google Scholar] [CrossRef] - Kyoi, D.; Sato, T.; Rönnebro, E.; Kitamura, N.; Ueda, A.; Ito, M.; Katsuyama, S.; Hara, S.; Noréus, D.; Sakai, T. A new ternary magnesiumtitanium hydride Mg7TiHx with hydrogen desorption properties better than both binary magnesium and titanium hydrides. J. Alloys Compd.
**2004**, 372, 213–217. [Google Scholar] [CrossRef] - Kyoi, D.; Sato, T.; Rönnebro, E.; Tsuji, Y.; Kitamura, N.; Ueda, A.; Ito, M.; Katsuyama, S.; Hara, S.; Noréus, D.; Sakai, T. A novel magnesiumvanadium hydride synthesized by a gigapascal-high-pressure technique. J. Alloys Compd.
**2004**, 375, 253. [Google Scholar] [CrossRef] - Kyoi, D.; Kitamura, N.; Tanaka, H.; Ueda, A.; Tanase, S.; Sakai, T. Hydrogen desorption properties of FCC super-lattice hydride Mg
_{7}NbH_{x}prepared by ultra-high pressure techniques. J. Alloys Compd.**2007**, 428, 268–273. [Google Scholar] [CrossRef] - Kyoi, D.; Sakai, T.; Kitamura, N.; Tanaka, H.; Ueda, A.; Tanase, S. Synthesis of FCC MgTa hydrides using GPa hydrogen pressure method and their hydrogen-desorption properties. J. Alloys Compd.
**2008**, 463, 306–310. [Google Scholar] [CrossRef] - Rönnebro, E.; Kyoi, D.; Kitano, A.; Kitano, Y.; Sakai, T. Hydrogen sites analysed by x-ray synchrotron diffraction, in Mg
_{7}TiH_{1316}made at gigapascal high-pressures. J. Alloys Compd.**2005**, 404-406, 68–72. [Google Scholar] [CrossRef] - Sato, T.; Kyoi, D.; Rönnebro, E.; Kitamura, N.; Sakai, T.; Noréus, D. Structural investigations of two new ternary magnesiumniobium hydrides, Mg
_{6.5}NbH_{∼14}and MgNb_{2}H_{∼4}. J. Alloys Compd.**2006**, 417, 230–234. [Google Scholar] [CrossRef]

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an-open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Vajeeston, P.; Ravindran, P.; Fjellvåg, H.
Predicting New Materials for Hydrogen Storage Application. *Materials* **2009**, *2*, 2296-2318.
https://doi.org/10.3390/ma2042296

**AMA Style**

Vajeeston P, Ravindran P, Fjellvåg H.
Predicting New Materials for Hydrogen Storage Application. *Materials*. 2009; 2(4):2296-2318.
https://doi.org/10.3390/ma2042296

**Chicago/Turabian Style**

Vajeeston, Ponniah, Ponniah Ravindran, and Helmer Fjellvåg.
2009. "Predicting New Materials for Hydrogen Storage Application" *Materials* 2, no. 4: 2296-2318.
https://doi.org/10.3390/ma2042296