Analytical and Numerical Investigation of Nanowire Transistor X-ray Detector
Abstract
:1. Introduction
2. Main Structure and Design Parameters
3. Model Description
4. TCAD Simulation Techniques
4.1. Simulation Models
4.2. Simulation Tools Calibration
5. Results and Discussions
5.1. Leakage Current
5.2. Transient Simulation
5.3. Effect of Doping Concentration on the Gain
5.4. Effect of Flux Density on the Transistor Gain
5.5. Effect of Biasing Voltage on the Transistor Current
5.6. Effect of Flux Density on the Current
5.7. Effect of Orientation of the X-ray Beam
6. Effect of Displacement Damage
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kivisaari, P.; Berg, A.; Karimi, M.; Storm, K.; Limpert, S. Optimization of Current Injection in AlGaInP Core-Shell Nanowire Light-Emitting Diodes. Nano Lett. 2017, 17, 3599–3606. [Google Scholar] [CrossRef] [PubMed]
- Wernersson, L.E.; Thelander, C.; Lind, E.; Samuelson, L. III–V Nanowires-extending a narrowing road. Proc. IEEE 2010, 98, 2047–2060. [Google Scholar] [CrossRef]
- Kim, D.M.; Jeong, Y.H. Nanowire Field Effect Transistors: Principles and Applications; Springer: Berlin, Germany, 2014; Volume 43. [Google Scholar]
- Yang, B.; Buddharaju, K.D.; Teo, S.H.G.; Singh, N.; Lo, G.Q. Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET. IEEE Electron Device Lett. 2008, 29, 791–794. [Google Scholar] [CrossRef]
- Wallentin, J.; Ek, M.; Wallenberg, L.R.; Samuelson, L.; Borgström, M.T. Electron Trapping in InP Nanowire FETs with Stacking Faults. Nano Lett. 2012, 12, 151–155. [Google Scholar] [CrossRef]
- Garnett, E.C.; Brongersma, M.L.; Cui, Y.; McGehee, M.D. Nanowire solar cells. Annu. Rev. Mater. Res. 2011, 41, 269–295. [Google Scholar] [CrossRef][Green Version]
- Wallentin, J.; Anttu, N.; Asoli, D.; Huffman, M.; Åberg, I.; Magnusson, M.H.; Siefer, G.; Fuss-Kailuweit, P.; Dimroth, F.; Witzigmann, B.; et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 2013, 339, 1057–1060. [Google Scholar] [CrossRef][Green Version]
- Prashant, D.V.; Agnihotri, S.K.; Samajdar, D.P. Efficient GaAs nanowire solar cells with carrier selective contacts: FDTD and device analysis. Mater. Sci. Semicond. Process. 2022, 141, 106410. [Google Scholar] [CrossRef]
- Im, J.H.; Luo, J.; Franckevičius, M.; Pellet, N.; Gao, P.; Moehl, T.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Grätzel, M.; Park, N.G. Nanowire perovskite solar cell. Nano Lett. 2015, 15, 2120–2126. [Google Scholar] [CrossRef]
- Patzke, G.R.; Kontic, R.; Shiolashvili, Z.; Makhatadze, N.; Jishiashvili, D. Hydrazine-assisted formation of indium phosphide (InP)-based nanowires and core-shell composites. Materials 2012, 6, 85–100. [Google Scholar] [CrossRef]
- Otnes, G.; Barrigón, E.; Sundvall, C.; Svensson, K.E.; Heurlin, M. Understanding InP Nanowire Array Solar Cell Performance by Nanoprobe-Enabled Single Nanowire Measurements. Nano Lett. 2018, 18, 3038–3046. [Google Scholar] [CrossRef]
- Maslov, A.V.; Ning, C.Z. Reflection of guided modes in a semiconductor nanowire laser. Appl. Phys. Lett. 2003, 83, 1237–1239. [Google Scholar] [CrossRef]
- Greytak, A.B.; Barrelet, C.J.; Li, Y.; Lieber, C.M. Semiconductor nanowire laser and nanowire waveguide electrooptic modulators. Appl. Phys. Lett. 2005, 87, 151103. [Google Scholar] [CrossRef][Green Version]
- Mourik, V.; Zuo, K.; Frolov, S.M.; Plissard, S.R.; Bakkers, E.P.A.M.; Kouwenhoven, L.P. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 2012, 336, 1003–1007. [Google Scholar] [CrossRef][Green Version]
- Wang, J.F.; Gudiksen, M.S.; Duan, X.F.; Cui, Y.; Lieber, C.M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001, 293, 1455–1457. [Google Scholar] [CrossRef][Green Version]
- Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.A.; Aplin, D.P.R.; Park, J.; Bao, X.Y.; Lo, Y.H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003–1009. [Google Scholar] [CrossRef]
- Pettersson, H.; Trägårdh, J.; Persson, A.I.; Landin, L.; Hessman, D.; Samuelson, L. Infrared photodetectors in heterostructure nanowires. Nano Lett. 2006, 6, 229–232. [Google Scholar] [CrossRef]
- Pettersson, H.; Zubritskaya, I.; Nghia, N.T.; Wallentin, J.; Borgström, M.T. Electrical and optical properties of InP nanowire ensemble p+−i−n+ photodetectors. Nanotechnology 2012, 23, 135201. [Google Scholar] [CrossRef][Green Version]
- Jain, V.; Nowzari, A.; Wallentin, J.; Borgström, M.T.; Messing, M.E. Study of photocurrent generation in InP nanowire-based p+-i-n+ photodetectors. Nano Res. 2014, 7, 544–552. [Google Scholar] [CrossRef]
- Favre-Nicolin, V.; Mastropietro, F.; Eymery, J.; Camacho, D.; Niquet, Y.M.; Borg, B.M.; Messing, M.E.; Wernersson, L.E.; Algra, R.E.; Bakkers, E.P.A.M.; et al. Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging. New J. Phys. 2010, 12, 035013. [Google Scholar] [CrossRef]
- Newton, M.C.; Leake, S.J.; Harder, R.; Robinson, I.K. Threedimensional imaging of strain in a single ZnO nanorod. Nat. Mater. 2010, 9, 120–124. [Google Scholar] [CrossRef]
- Diaz, A.; Mocuta, C.; Stangl, J.; Mandl, B.; David, C.; Vila- Comamala, J.; Chamard, V.; Metzger, T.H.; Bauer, G. Coherent diffraction imaging of a single epitaxial InAs nanowire using a focused X-ray beam. Phys. Rev. B 2009, 79, 125324. [Google Scholar] [CrossRef][Green Version]
- Wallentin, J.; Osterhoff, M.; Wilke, R.N.; Persson, K.-M.; Wernersson, L.-E.; Sprung, M.; Salditt, T. Hard X-ray Detection Using a Single 100 nm Diameter Nanowire. Nano Lett. 2014, 14, 7071–7076. [Google Scholar] [CrossRef] [PubMed]
- Zapf, M.; Ritzer, M.; Liborius, L.; Johannes, A.; Hafermann, M.; Schonherr, S.; Segura-Ruiz, J.; Martinez-Criado, G.; Prost, W.; Ronning, C. Hot electrons in a nanowire hard X-ray detector. Nat. Commun. 2020, 11, 4729. [Google Scholar] [CrossRef] [PubMed]
- Chayanun, L.; Hrachowina, L.; Björling, A.; Borgström, M.T.; Wallentin, J. Direct three-dimensional imaging of an X-ray nanofocus using a single 60 nm diameter nanowire device. Nano Lett. 2020, 20, 8326–8331. [Google Scholar] [CrossRef] [PubMed]
- Chayanun, L. Nanowire Devices for X-ray Detection. Ph.D. Thesis, Lund University, Lund, Sweden, 2020. [Google Scholar]
- Mimura, H.; Handa, S.; Kimura, T.; Yumoto, H.; Yamakawa, D.; Yokoyama, H.; Matsuyama, S.; Inagaki, K.; Yamamura, K.; Sano, Y. Breaking the 10-nm barrier in hard-X-ray focusing. Nat. Phys. 2010, 6, 122–125. [Google Scholar] [CrossRef][Green Version]
- Döring, F.; Robisch, A.L.; Eberl, C.; Osterhoff, M.; Ruhlandt, A.; Liese, T.; Schlenkrich, F.; Hoffmann, S.; Bartels, M.; Salditt, T.; et al. Sub-5 nm hard X-ray point focusing by a combined Kirkpatrick-Baez mirror and multilayer zone plate. Opt. Express 2013, 21, 19311–19323. [Google Scholar] [CrossRef][Green Version]
- Ellakany, A.; Abouelatta, M.; Shaker, A.; Sayah, G.T.; El-Banna, M. TCAD simulation of a proposed 3D CdZnTe detector. J. Eng. 2017, 2017, 574–576. [Google Scholar] [CrossRef]
- Kamehama, H.; Kawahito, S.; Shrestha, S.; Nakanishi, S.; Yasutomi, K.; Takeda, A.; Tsuru, T.G.; Arai, Y. A low-noise X-ray astronomical silicon-on-insulator pixel detector using a pinned depleted diode structure. Sensors 2018, 18, 27. [Google Scholar] [CrossRef][Green Version]
- Suzuki, Y.; Fukuda, Y.; Nagashima, Y.; Kan, H. An indium phosphide solid state detector: A possible low energy gamma and neutrino detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detect. Assoc. Equip. 1989, 275, 142–148. [Google Scholar] [CrossRef]
- Ko, W.S.; Bhattacharya, I.; Tran, T.T.D.; Ng, K.W.; Adair Gerke, S.; Chang-Hasnain, C. Ultrahigh responsivity-bandwidth product in a compact InP nanopillar phototransistor directly grown on silicon. Sci. Rep. 2016, 6, 33368. [Google Scholar] [CrossRef][Green Version]
- Ko, W.S.; Bhattacharya, I.; Tran, T.; Ng, K.W.; Chang-Hasnain, C. InP nanowire avalanche photodiode and bipolar junction phototransistor integrated on silicon substrate. In Proceedings of the 26th International Conference on Indium Phosphide and Related Materials (IPRM), Montpellier, France, 11–15 May 2014; pp. 1–2. [Google Scholar]
- Jeddi, H. InP/InAsP Quantum Discs-in-Nanowire Array Photodetectors: Design, Fabrication and Optical Performance. Ph.D. Thesis, Lund University, Lund, Sweden, 2022. [Google Scholar]
- Minot, E.D.; Kelkensberg, F.; Van Kouwen, M.; Van Dam, J.A.; Kouwenhoven, L.P.; Zwiller, V.; Borgström, M.T.; Wunnicke, O.; Verheijen, M.A.; Bakkers, E.P. Single quantum dot nanowire LEDs. Nano Lett. 2007, 7, 367–371. [Google Scholar] [CrossRef][Green Version]
- Joyce, H.J.; Wong-Leung, J.; Yong, C.-K.; Docherty, C.J.; Paiman, S.; Gao, Q.; Tan, H.H.; Jagadish, C.; Lloyd-Hughes, J.; Herz, L.M.; et al. Ultralow surface recombination velocity in InP nanowires probed by terahertz spectroscopy. Nano Lett. 2012, 12, 5325–5330. [Google Scholar] [CrossRef][Green Version]
- Zekry, A. Electronic Devices; Dar El Hakeem Press: Cairo, Egypt, 1998. [Google Scholar]
- Sze, S.M.; Li, Y.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Streetman, B.G.; Banerjee, S. Solid State Electronic Devices; Prentice Hall: Hoboken, NJ, USA, 2000; Volume 4. [Google Scholar]
- Neamen, D.A. Semiconductor Physics and Devices: Basic Principles; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Kittel, C.; McEuen, P. Introduction to Solid State Physics; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. [Google Scholar] [CrossRef]
- Zhang, A.Y. Silicon Nanowire Phototransistor: Designing, Fabricating and Characterizing a High Responsivity, Broadband Photodetector. Ph.D. Thesis, University of California, San Diego, CA, USA, 2010. [Google Scholar]
- Boylestad, R.L.; Nashelsky, L. Electronic Devices and Circuit Theory; Prentice Hall: Hoboken, NJ, USA, 2012. [Google Scholar]
- Atlas User’s Manual; Silvaco Inc.: Santa Clara, CA, USA. Available online: https://silvaco.com/products/tcad/device_simulation/atlas/atlas.html (accessed on 1 December 2022).
- McGregor, D.S.; Hermon, H. Room-temperature compound semiconductor radiation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detect. Assoc. Equip. 1997, 395, 101–124. [Google Scholar] [CrossRef]
- McMorrow, D.; Als-Nielsen, J. Elements of Modern X-ray Physics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Persson, K.M.; Berg, M.; Borg, M.B.; Jun, W.; Johansson, S.; Svensson, J.; Jansson, K.; Lind, E.; Wernersson, L.E. Extrinsic and Intrinsic Performance of Vertical InAs Nanowire MOSFETs on Si Substrates. Mater. J. 2013, 60, 2761–2767. [Google Scholar] [CrossRef][Green Version]
- Barnaby, H.J.; Schrimpf, R.D.; Galloway, K.F.; Li, X.; Yang, J.; Liu, C. Displacement damage in bipolar junction transistors: Beyond Messenger-Spratt. IEEE Trans. Nucl. Sci. 2016, 64, 149–155. [Google Scholar] [CrossRef]
- Liu, Y. Radiation damage in InP/InAs heterostructure nanowires. Appl. Phys. Lett. 2014, 104, 143104. [Google Scholar]
- Ding, F. X-ray irradiation induced defects and the effect on the photoluminescence of InP nanowires. Nanoscale Res. Lett. 2014, 9, 62. [Google Scholar]
- Verschuuren, M.A. Radiation-induced surface states in InP nanowires. Nano Lett. 2012, 12, 4546–4551. [Google Scholar]
- Bhattacharya, I. Nanophotonic Devices Based on Indium Phosphide Nanopillars Grown Directly on Silicon. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2017. [Google Scholar]
Description | Value | Unit |
---|---|---|
Nanowire diameter | 100 | nm |
N-doping concentration | 1019 | cm−3 |
P-dope concentration | 1015 | cm−3 |
Active region length | 1.4 | µm |
Length between electrodes | 3.2 | µm |
Description | Value | Unit |
---|---|---|
Bulk Lifetime (τBG) | 10−9 | s |
Mobility (µ) | 200 | cm2/V.s |
Energy gap (Eeg) | 1.34 | eV |
Density (ρ) | 4.79 | g/cm3 |
Atomic number: Indium (In): Phosphorus (P) | 49 16 |
Photon Flux (Ph./s) | Gain | NEP (keV) | S/N |
---|---|---|---|
6.2 × 107 | 1.214 × 104 | 1.0325 × 104 | 70.71 |
3.5 × 108 | 2.080 × 103 | 4.2754 × 103 | 79.07 |
2.0 × 109 | 0.360 × 103 | 1.7796 × 103 | 83.72 |
Structure | Material | Diameter (nm) | Gain | Detection Range | REF |
---|---|---|---|---|---|
Phototransistor (NPN) | InP | 100 | 0.36 × 103~104 | X-ray | Our work |
FET (N+NN+) | InP | 100 | 103~105 | X-ray | [23] |
FET (N+NN+) | InP | 60 | 0.34 | X-ray | [25] |
Phototransistor (NPN) | Si | 100 | 103~105 | UV | [43] |
FET (N+NN+) | InGaP | 175 | 0.34 | X-ray | [26] |
Phototransistor (NPN) | InP | 53.2 | VL | [53] | |
FET (N+NN+) | ZnO | 1200 | 2 × 108 | UV | [16] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellakany, A.; Zekry, A.; Abouelatta, M.; Shaker, A.; Sayah, G.T.; El-Banna, M.M. Analytical and Numerical Investigation of Nanowire Transistor X-ray Detector. Materials 2023, 16, 2637. https://doi.org/10.3390/ma16072637
Ellakany A, Zekry A, Abouelatta M, Shaker A, Sayah GT, El-Banna MM. Analytical and Numerical Investigation of Nanowire Transistor X-ray Detector. Materials. 2023; 16(7):2637. https://doi.org/10.3390/ma16072637
Chicago/Turabian StyleEllakany, Abdelhady, Abdelhalim Zekry, Mohamed Abouelatta, Ahmed Shaker, Gihan T. Sayah, and Mohamed M. El-Banna. 2023. "Analytical and Numerical Investigation of Nanowire Transistor X-ray Detector" Materials 16, no. 7: 2637. https://doi.org/10.3390/ma16072637