# LCL Filter Design with EMI Noise Consideration for Grid-Connected Inverter

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. LCL Filter Design Procedure

#### 2.1. Components of the LCL Filter

#### 2.2. Simulation Results

## 3. Magnetic Material in the LCL Filter Design

#### 3.1. Core Material Selection

#### 3.2. 3D Printing Technology for Bobbin Design

## 4. Inductor Winding Design

#### 4.1. Parasitic Components in the Two Types of Wound Inductors

#### 4.2. EMI Noise Model with LCL Filter Consideration

## 5. Experiment Results

#### 5.1. Copper Wire Inductor Analysis Results

#### 5.2. Copper Foil Inductor Analysis Results

## 6. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Rosero, J.; Ortega, J.; Aldabas, E.; Romeral, L. Moving towards a more electric aircraft. IEEE Aerosp. Electron. Syst. Mag.
**2007**, 22, 3–9. [Google Scholar] [CrossRef] [Green Version] - Sinnett, M. 787 No-bleed systems: Saving fuel and enhancing operational efficiencies. Aero Quart.
**2007**, 18, 6–11. [Google Scholar] - Sarlioglu, B.; Morris, C.T. More electric aircraft: Review, challenges, and opportunities for commercial transport aircraft. IEEE Trans. Transp. Electr.
**2015**, 1, 54–64. [Google Scholar] [CrossRef] - Cao, W.; Mecrow, B.C.; Atkinson, G.J.; Bennett, J.W.; Atkinson, D.J. Overview of electric motor technologies used for more electric aircraft (MEA). IEEE Trans. Ind. Electron.
**2012**, 59, 3523–3531. [Google Scholar] - Bhangu, B.S.; Rajashekara, K. Electric starter generators: Their integration into gas turbine engines. IEEE Ind. Appl. Mag.
**2014**, 20, 14–22. [Google Scholar] [CrossRef] - Donghua, P.; Xinbo, R.; Chenlei, B.; Weiwei, L.; Xuehua, W. Magnetic Integration of the LCL Filter in Grid-Connected Inverters. IEEE Trans. Power Electron.
**2014**, 29, 1573–1578. [Google Scholar] [CrossRef] - Zhang, X. Passive Component Weight Reduction for Three Phase Power Converters; Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2014. [Google Scholar]
- Wang, S.; Lee, F.C.; Van Wyk, J.D. Design of inductor winding capacitance cancellation for EMI suppression. IEEE Trans. Power Electron.
**2006**, 21, 1825–1832. [Google Scholar] [CrossRef] - Stadler, A.; Huber, R.; Stolzke, T.; Gulden, C. Analytical calculation of copper losses in litz-wire windings of gapped inductors. IEEE Trans. Magn.
**2014**, 50, 81–84. [Google Scholar] [CrossRef] - Hamalainen, H.; Pyrhonen, J.; Nerg, J.; Talvitie, J. AC resistance factor of litz-wire windings used in low-voltage high-power generators. IEEE Trans. Ind. Electron.
**2014**, 61, 693–700. [Google Scholar] [CrossRef] - Burkart, R.M.; Uemura, H.; Kolar, J.W. Optimal Inductor Design for 3-Phase Voltage-Source PWM Converters Considering Different Magnetic Materials and a Wide Switching Frequency Range. In Proceedings of the International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 891–898. [Google Scholar]
- Fan, T.; Li, Q.; Wen, X. Development of a high power density motor made of amorphous alloy cores. IEEE Trans. Ind. Electron.
**2014**, 61, 4510–4518. [Google Scholar] [CrossRef] - Ji, J.; Wu, W.; He, Y.; Lin, Z.; Blaabjerg, F.; Chung, H. A simple differential mode EMI suppressor for the LLCL-filter based single phase grid-tied transformerless inverter. IEEE Trans. Ind. Electron.
**2014**. [Google Scholar] [CrossRef] - Cheng, W.; He, X.; Xu, S.; Sun, W. Analysis of common-mode electromagnetic interference noise in a flyback converter using a self-supply power control integrated circuit. IET Power Electron.
**2015**, 8, 1749–1757. [Google Scholar] [CrossRef] - Yang, X.; Long, Z.; Wen, Y.; Huang, H.; Palmer, P.R. Investigation of the trade-off between switching losses and EMI generation in Gaussian S-shaping for high-power IGBT switching transients by active voltage control. IET Power Electron.
**2016**, 9, 1979–1984. [Google Scholar] [CrossRef] - Bishnoi, H.; Mattavelli, P.; Burgos, R.P.; Boroyevich, D. EMI filter design of DC-fed motor-drives using behavioral EMI models. In Proceedings of the 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–10. [Google Scholar]
- Weimin, W.; Yunjie, S.; Zhe, L.; Yuanbin, H.; Min, H.; Blaabjerg, F.; Chung, H.S.h. A modified LLCL filter with the reduced conducted EMI noise. IEEE Trans. Power Electron.
**2014**, 29, 3393–3402. [Google Scholar] [CrossRef] - Liserre, M.; Blaabjerg, F.; Hansen, S. Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl.
**2005**, 41, 1281–1291. [Google Scholar] [CrossRef] - Yang, S.F.; Huang, T.H. Design of single-turn spiral inductors with embedding a strong-coupling LC resonator for interference suppression. IEEE Trans. Electromagn. Compat.
**2017**, 59, 919–926. [Google Scholar] [CrossRef] - Zheng, X.; Xiao, L.; Lei, Y.; Wang, Z. Optimisation of LCL filter based on closed-loop total harmonic distortion calculation model of the grid-connected inverter. IET Power Electron.
**2015**, 8, 860–868. [Google Scholar] [CrossRef] - Muhlethaler, J.; Schweizer, M.; Blattmann, R.; Kolar, J.W.; Ecklebe, A. Optimal design of LCL harmonic filters for three-phase PFC rectifiers. IEEE Trans. Power Electron.
**2013**, 28, 3114–3125. [Google Scholar] [CrossRef] - Weimin, W.; Yunjie, S.; Zhe, L.; Tianhao, T.; Blaabjerg, F.; Chung, H.S.h. A new type LCL filter with in-series parallel resonant circuit for single-phase grid-tied inverter. IEEE Trans. Ind. Electron.
**2014**, 61, 4640–4644. [Google Scholar] [CrossRef] - Patel, Y.; Pixler, D.; Nasiri, A. Analysis and design of TRAP and LCL filters for active switching converters. In Proceedings of the 2010 IEEE International Symposium on Industrial Electronics (ISIE), Bari, Italy, 4–7 July 2010; pp. 638–643. [Google Scholar]
- Langella, R.; Testa, A.; Alii, E. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Jiao, Y.; Lee, F.C. LCL filter design and inductor current ripple analysis for a three-level NPC grid interface converter. IEEE Trans. Power Electron.
**2015**, 30, 4659–4668. [Google Scholar] [CrossRef]

**Figure 1.**System diagram of the electric starter/generator in more electric aircraft. (MSC: machine-side converter; NSC: network-side converter).

**Figure 3.**Current spectrum of the inverter and grid sides: (

**a**) total harmonics distortion (THD) = 6.47%; (

**b**) THD = 2.26%.

**Figure 4.**Transient output current: (

**a**) transient grid side current at start time; (

**b**) dynamic response of grid-connected current.

**Figure 5.**3D printing technology: (

**a**) configuration for 3D printing; and (

**b**) comparison of a commercial and a 3D printed bobbin.

**Figure 6.**Inductor design in the LCL filter: (

**a**) copper foil-wound, 4.5 kg; (

**b**) copper wire-wound, 6.5 kg.

**Figure 7.**(

**a**) Impedance of three phases in the two types of inductors; (

**b**) high frequency equivalent circuit of the inductor.

**Figure 8.**Electromagnetic interference (EMI) noise model: (

**a**) equivalent common mode (CM) noise model and (

**b**) equivalent differential mode (DM) noise model.

**Figure 11.**(

**a**) FEA analysis for flux distribution; (

**b**) inductor temperature distribution; (

**c**) currents of the inverter and grid sides.

**Figure 12.**Harmonic distortion of the measured current with the copper wire winding: (

**a**) inverter side; (

**b**) grid side; and (

**c**) reduced current spectrum at the grid side.

**Figure 13.**Harmonic distortion of the measured current with the copper foil winding: (

**a**) inverter side; (

**b**) grid side; and (

**c**) reduced current spectrum in grid side.

**Table 1.**Current distortion limits for systems rated 120 V through 69 kV. (THD: total harmonics distortion.).

Maximum Harmonic Current Distortion in Percent of I_{1} | |
---|---|

$3\le h\le 11$ | 4.0% |

$11\le h\le 17$ | 2.0% |

$17\le h\le 23$ | 1.5% |

$23\le h\le 35$ | 0.6% |

$35\le h$ | 0.3% |

THD | 5% |

Material | Ferrite | Power Iron | Nanocrystalline | Amorphous |
---|---|---|---|---|

${B}_{max}$ (T) | 0.49 | 0.6–1.3 | 1.56 | 1.2 |

${K}_{c}$ | 16.9 | 1798 | 2.3 | 0.053 |

$\mathsf{\alpha}$ | 1.25 | 1.02 | 1.32 | 1.81 |

$\mathsf{\beta}$ | 2.35 | 1.89 | 2.1 | 1.74 |

Parameters | L_{i} | L_{g} |
---|---|---|

Core type | AFEC-90a | AFEC-48a |

Foil size | $0.2\mathrm{mm}\times 80\mathrm{mm}$ | $0.4\mathrm{mm}\times 40\mathrm{mm}$ |

n | 14 | 5 |

${l}_{g}$ | 1 mm | 0.5 mm |

Parameters | Copper Foil | Copper Wire | ||
---|---|---|---|---|

Estimated | Improved | Estimated | Improved | |

${L}_{1}(\mathsf{\mu}\mathrm{H})$ | 90 | 84 | 90 | 82 |

${C}_{1}(PF)$ | 103 | 110 | 237 | 260 |

${R}_{1}(\Omega )$ | 4922 | 4922 | 3525 | 3525 |

${L}_{2}(\mathsf{\mu}\mathrm{H})$ | 10.8 | 3.8 | 10.6 | 2 |

${C}_{2}(PF)$ | 67.3 | 190 | 180 | 1000 |

${R}_{2}(\Omega )$ | 1916 | 1916 | 626 | 626 |

${L}_{3}(\mathsf{\mu}\mathrm{H})$ | 0.65 | 0.46 | 1.13 | 0.9 |

${C}_{3}(PF)$ | 11.9 | 22 | 0.25 | 30 |

${R}_{3}(\Omega )$ | 237 | 237 | 578 | 578 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, Y.; Lai, C.-M.
LCL Filter Design with EMI Noise Consideration for Grid-Connected Inverter. *Energies* **2018**, *11*, 1646.
https://doi.org/10.3390/en11071646

**AMA Style**

Liu Y, Lai C-M.
LCL Filter Design with EMI Noise Consideration for Grid-Connected Inverter. *Energies*. 2018; 11(7):1646.
https://doi.org/10.3390/en11071646

**Chicago/Turabian Style**

Liu, Yitao, and Ching-Ming Lai.
2018. "LCL Filter Design with EMI Noise Consideration for Grid-Connected Inverter" *Energies* 11, no. 7: 1646.
https://doi.org/10.3390/en11071646