Next Issue
Volume 28, September
Previous Issue
Volume 28, March
 
 

Pathophysiology, Volume 28, Issue 2 (June 2021) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 1298 KiB  
Article
The Angiotensin-Converting Enzyme Inhibitor Lisinopril Mitigates Memory and Motor Deficits in a Drosophila Model of Alzheimer’s Disease
by Jimiece Thomas, Haddon Smith, C. Aaron Smith, Lori Coward, Gregory Gorman, Maria De Luca and Patricia Jumbo-Lucioni
Pathophysiology 2021, 28(2), 307-319; https://doi.org/10.3390/pathophysiology28020020 - 18 Jun 2021
Cited by 10 | Viewed by 3993
Abstract
The use of angiotensin-converting enzyme inhibitors (ACEis) has been reported to reduce symptoms of cognitive decline in patients with Alzheimer’s disease (AD). Yet, the protective role of ACEis against AD symptoms is still controversial. Here, we aimed at determining whether oral treatment with the [...] Read more.
The use of angiotensin-converting enzyme inhibitors (ACEis) has been reported to reduce symptoms of cognitive decline in patients with Alzheimer’s disease (AD). Yet, the protective role of ACEis against AD symptoms is still controversial. Here, we aimed at determining whether oral treatment with the ACEi lisinopril has beneficial effects on cognitive and physical functions in a Drosophila melanogaster model of AD that overexpresses the human amyloid precursor protein and the human β-site APP-cleaving enzyme in neurons. We found a significant impairment in learning and memory as well as in climbing ability in young AD flies compared to control flies. After evaluation of the kynurenine pathway of tryptophan metabolism, we also found that AD flies displayed a >30-fold increase in the levels of the neurotoxic 3-hydroxykynurenine (3-HK) in their heads. Furthermore, compared to control flies, AD flies had significantly higher levels of the reactive oxygen species (ROS) hydrogen peroxide in their muscle-enriched thoraces. Lisinopril significantly improved deficits in learning and memory and climbing ability in AD flies. The positive impact of lisinopril on physical function might be, in part, explained by a significant reduction in ROS levels in the thoraces of the lisinopril-fed AD flies. However, lisinopril did not affect the levels of 3-HK. In conclusion, our findings provide novel and relevant insights into the therapeutic potential of ACEis in a preclinical AD model. Full article
Show Figures

Figure 1

16 pages, 680 KiB  
Protocol
A Clinical Trial for the Identification of Metabolic Biomarkers in Hashimoto’s Thyroiditis and in Psoriasis: Study Protocol
by Evangelia Sarandi, Sabine Kruger Krasagakis, Dimitris Tsoukalas, Gottfried Rudofsky and Aristides Tsatsakis
Pathophysiology 2021, 28(2), 291-306; https://doi.org/10.3390/pathophysiology28020019 - 14 Jun 2021
Cited by 2 | Viewed by 6686
Abstract
Hashimoto’s thyroiditis and psoriasis are inflammatory disorders that significantly impact patients’ quality of life, stressing the need for novel biomarkers of early diagnosis. This randomized clinical trial (NCT04693936) aims to identify Hashimoto’s thyroiditis’ and psoriasis’ metabolic biomarkers and to investigate the effect of [...] Read more.
Hashimoto’s thyroiditis and psoriasis are inflammatory disorders that significantly impact patients’ quality of life, stressing the need for novel biomarkers of early diagnosis. This randomized clinical trial (NCT04693936) aims to identify Hashimoto’s thyroiditis’ and psoriasis’ metabolic biomarkers and to investigate the effect of environmental factors on the disease-related metabolic imprint and quality of life. Patients with Hashimoto’s thyroiditis, patients with psoriasis, and healthy individuals aged 18–60 will be recruited, enrolled according to eligibility criteria (medical history, clinical thyroid markers and the PASI score) and randomized to two groups. The intervention group will receive a combination of nutraceuticals for 6 months as part of a Mediterranean diet, and the control group will follow their usual diet. Data will be collected at baseline and the end of the study, including metabolite levels, lifestyle and anthropometric measurements, adherence to the Mediterranean diet (through the Mediterranean Diet Score) and disease-specific quality of life (through the Thyroid Patient Report Outcome for Hashimoto’s group, and the Dermatology Life Quality Index for the psoriasis group). This study will investigate metabolic biomarkers and related changes in Hashimoto’s thyroiditis and psoriasis and evaluate the association of metabolic changes with dietary factors and quality of life. Full article
(This article belongs to the Special Issue Recent Advances in Metabolomics and Applications in Chronic Diseases)
Show Figures

Figure 1

18 pages, 5017 KiB  
Article
Implication of RAS in Postnatal Cardiac Remodeling, Fibrosis and Dysfunction Induced by Fetal Undernutrition
by Pilar Rodríguez-Rodríguez, Maria Sofía Vieira-Rocha, Begoña Quintana-Villamandos, Ignacio Monedero-Cobeta, Parichat Prachaney, Angel Luis López de Pablo, Maria del Carmen González, Manuela Morato, Carmen Diniz and Silvia M. Arribas
Pathophysiology 2021, 28(2), 273-290; https://doi.org/10.3390/pathophysiology28020018 - 5 Jun 2021
Cited by 4 | Viewed by 3103
Abstract
Fetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated cardiovascular fibrosis and remodeling, and lactation [...] Read more.
Fetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated cardiovascular fibrosis and remodeling, and lactation is a key developmental window. We aimed to assess if alterations in RAS during lactation participate in cardiac dysfunction associated with fetal undernutrition. Control dams received food ad libitum, and MUN had 50% nutrient restriction during the second half of gestation. Both dams were fed ad libitum during lactation, and male offspring were studied at weaning. We assessed: ventricular structure and function (echocardiography); blood pressure (intra-arterially, anesthetized rats); collagen content and intramyocardial artery structure (Sirius red, Masson Trichromic); myocardial and intramyocardial artery RAS receptors (immunohistochemistry); plasma angiotensin-II (ELISA) and TGF-β1 protein expression (Western Blot). Compared to Control, MUN offspring exhibited significantly higher plasma Angiotensin-II and a larger left ventricular mass, as well as larger intramyocardial artery media/lumen, interstitial collagen and perivascular collagen. In MUN hearts, TGF-β1 tended to be higher, and the end-diastolic diameter and E/A ratio were significantly lower with no differences in ejection fraction or blood pressure. In the myocardium, no differences between groups were detected in AT1, AT2 or Mas receptors, with MrgD being significantly lower in the MUN group. In intramyocardial arteries from MUN rats, AT1 and Mas receptors were significantly elevated, while AT2 and MrgD were lower compared to Control. Conclusions. In rats exposed to fetal undernutrition, RAS disbalance and associated cardiac remodeling during lactation may set the basis for later heart dysfunction. Full article
Show Figures

Figure 1

23 pages, 2255 KiB  
Review
Saponins in Cancer Treatment: Current Progress and Future Prospects
by Olusola Olalekan Elekofehinti, Opeyemi Iwaloye, Femi Olawale and Esther Opeyemi Ariyo
Pathophysiology 2021, 28(2), 250-272; https://doi.org/10.3390/pathophysiology28020017 - 5 Jun 2021
Cited by 49 | Viewed by 7718
Abstract
Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming nature. Different saponins have been characterized and purified and are gaining attention in cancer chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activities. Several studies have reported [...] Read more.
Saponins are steroidal or triterpenoid glycoside that is distinguished by the soap-forming nature. Different saponins have been characterized and purified and are gaining attention in cancer chemotherapy. Saponins possess high structural diversity, which is linked to the anticancer activities. Several studies have reported the role of saponins in cancer and the mechanism of actions, including cell-cycle arrest, antioxidant activity, cellular invasion inhibition, induction of apoptosis and autophagy. Despite the extensive research and significant anticancer effects of saponins, there are currently no known FDA-approved saponin-based anticancer drugs. This can be attributed to a number of limitations, including toxicities and drug-likeness properties. Recent studies have explored options such as combination therapy and drug delivery systems to ensure increased efficacy and decreased toxicity in saponin. This review discusses the current knowledge on different saponins, their anticancer activity and mechanisms of action, as well as promising research within the last two decades and recommendations for future studies. Full article
Show Figures

Figure 1

12 pages, 1180 KiB  
Review
Current and Future Therapeutic Strategies for Limb Girdle Muscular Dystrophy Type R1: Clinical and Experimental Approaches
by İzem Olcay Şahin, Yusuf Özkul and Munis Dündar
Pathophysiology 2021, 28(2), 238-249; https://doi.org/10.3390/pathophysiology28020016 - 18 May 2021
Cited by 5 | Viewed by 4376
Abstract
Limb girdle muscular dystrophy type R1 disease is a progressive disease that is caused by mutations in the CAPN3 gene and involves the extremity muscles of the hip and shoulder girdle. The CAPN3 protein has proteolytic and non-proteolytic properties. The functions of the [...] Read more.
Limb girdle muscular dystrophy type R1 disease is a progressive disease that is caused by mutations in the CAPN3 gene and involves the extremity muscles of the hip and shoulder girdle. The CAPN3 protein has proteolytic and non-proteolytic properties. The functions of the CAPN3 protein that have been determined so far can be listed as remodeling and combining contractile proteins in the sarcomere with the substrates with which it interacts, controlling the Ca2+ flow in and out through the sarcoplasmic reticulum, and regulation of membrane repair and muscle regeneration. Even though there are several gene therapies, cellular therapies, and drug therapies, such as glucocorticoid treatment, AAV- mediated therapy, CRISPR-Cas9, induced pluripotent stem cells, MYO-029, and AMBMP, which are either in preclinical or clinical phases, or have been completed, there is no final cure. Inhibitors and small molecules (tauroursodeoxycholic acid, salubrinal, rapamycin, CDN1163, dwarf open reading frame) targeting ER stress factors that are thought to be effective in muscle loss can be considered potential therapy strategies. At present, little can be done to treat the progressive muscle wasting, loss of function, and premature mortality of patients with LGMDR1, and there is a pressing need for more research to develop potential therapies. Full article
Show Figures

Figure 1

14 pages, 4927 KiB  
Article
Chitosan from Crabs (Scylla serrata) Represses Hyperlipidemia-Induced Hepato-Renal Dysfunctions in Rats: Modulation of CD43 and p53 Expression
by Regina Ngozi Ugbaja, Kunle Ogungbemi, Adewale Segun James, Ayodele Peter Folorunsho, Samuel Olanrewaju Abolade, Stella Onajite Ajamikoko, Eniola Olapeju Atayese and Omowunmi Victoria Adedeji
Pathophysiology 2021, 28(2), 224-237; https://doi.org/10.3390/pathophysiology28020015 - 17 May 2021
Cited by 6 | Viewed by 3121
Abstract
Hepato-renal dysfunctions associated with hyperlipidemia necessitates a continuous search for natural remedies. This study thus evaluated the effect of dietary chitosan on diet-induced hyperlipidemia in rats. A total of 30 male Wistar rats (90 ± 10) g were randomly allotted into six (6) [...] Read more.
Hepato-renal dysfunctions associated with hyperlipidemia necessitates a continuous search for natural remedies. This study thus evaluated the effect of dietary chitosan on diet-induced hyperlipidemia in rats. A total of 30 male Wistar rats (90 ± 10) g were randomly allotted into six (6) groups (n = 5): Normal diet, High-fat diet (HFD), and Normal diet + 5% chitosan. The three other groups received HFD, supplemented with 1%, 3%, and 5% of chitosan. The feeding lasted for 6 weeks, after which the rats were sacrificed. The liver and kidneys were harvested for analyses. Hepatic alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activity, and renal biomarkers (ALT, AST, urea, and creatinine) were assayed spectrophotometrically. Additionally, expression of hepatic and renal CD43 and p53 was estimated immunohistochemically. The HFD group had elevated bodyweight compared to normal which was reversed in the chitosan-supplemented groups. Hyperlipidemia caused a significant (p < 0.05) decrease in the hepatic (AST, ALT, and ALP) and renal (AST and ALT) activities, while renal urea and creatinine increased. Furthermore, the HFD group showed an elevated level of hepatic and renal CD43 while p53 expression decreased. However, groups supplemented with chitosan showed improved hepatic and renal biomarkers, as well as corrected the aberrations in the expressions of p53 and CD43. Conclusively, dietary chitosan inclusion in the diet (between 3% and 5%) could effectively improve kidney and liver functionality via abatement of inflammatory responses. Full article
Show Figures

Graphical abstract

12 pages, 1979 KiB  
Article
Critically Ill COVID-19 Patients Exhibit Anti-SARS-CoV-2 Serological Responses
by Douglas D. Fraser, Gediminas Cepinskas, Marat Slessarev, Claudio M. Martin, Mark Daley, Maitray A. Patel, Michael R. Miller, Eric K. Patterson, David B. O’Gorman, Sean E. Gill, Ian Higgins, Julius P. P. John, Christopher Melo, Lylia Nini, Xiaoqin Wang, Johannes Zeidler and Jorge A. Cruz-Aguado
Pathophysiology 2021, 28(2), 212-223; https://doi.org/10.3390/pathophysiology28020014 - 17 May 2021
Cited by 7 | Viewed by 3774
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global health care emergency. Anti-SARS-CoV-2 serological profiling of critically ill COVID-19 patients was performed to determine their humoral response. Blood was collected from critically ill ICU patients, either COVID-19 positive (+) or COVID-19 negative [...] Read more.
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a global health care emergency. Anti-SARS-CoV-2 serological profiling of critically ill COVID-19 patients was performed to determine their humoral response. Blood was collected from critically ill ICU patients, either COVID-19 positive (+) or COVID-19 negative (−), to measure anti-SARS-CoV-2 immunoglobulins: IgM; IgA; IgG; and Total Ig (combined IgM/IgA/IgG). Cohorts were similar, with the exception that COVID-19+ patients had a greater body mass indexes, developed bilateral pneumonias more frequently and suffered increased hypoxia when compared to COVID-19- patients (p < 0.05). The mortality rate for COVID-19+ patients was 50%. COVID-19 status could be determined by anti-SARS-CoV-2 serological responses with excellent classification accuracies on ICU day 1 (89%); ICU day 3 (96%); and ICU days 7 and 10 (100%). The importance of each Ig isotype for determining COVID-19 status on combined ICU days 1 and 3 was: Total Ig, 43%; IgM, 27%; IgA, 24% and IgG, 6%. Peak serological responses for each Ig isotype occurred on different ICU days (IgM day 13 > IgA day 17 > IgG persistently increased), with the Total Ig peaking at approximately ICU day 18. Those COVID-19+ patients who died had earlier or similar peaks in IgA and Total Ig in their ICU stay when compared to patients who survived (p < 0.005). Critically ill COVID-19 patients exhibit anti-SARS-CoV-2 serological responses, including those COVID-19 patients who ultimately died, suggesting that blunted serological responses did not contribute to mortality. Serological profiling of critically ill COVID-19 patients may aid disease surveillance, patient cohorting and help guide antibody therapies such as convalescent plasma. Full article
Show Figures

Figure 1

10 pages, 1184 KiB  
Article
Preeclampsia Status Controls Interleukin-6 and Soluble IL-6 Receptor Release from Neutrophils and Endothelial Cells: Relevance to Increased Inflammatory Responses
by Yuping Wang, Yang Gu, J. Steven Alexander and David F. Lewis
Pathophysiology 2021, 28(2), 202-211; https://doi.org/10.3390/pathophysiology28020013 - 8 Apr 2021
Cited by 12 | Viewed by 2452
Abstract
Increased neutrophil–endothelial binding and inflammatory responses are significant pathophysiological events in the maternal vascular system in preeclampsia, a hypertensive disorder in human pregnancy. Interleukin 6 (IL-6) and its soluble receptors (soluble IL-6R (sIL-6R) and soluble gp130 (sgp130)) are critical inflammatory mediators. During pregnancy, [...] Read more.
Increased neutrophil–endothelial binding and inflammatory responses are significant pathophysiological events in the maternal vascular system in preeclampsia, a hypertensive disorder in human pregnancy. Interleukin 6 (IL-6) and its soluble receptors (soluble IL-6R (sIL-6R) and soluble gp130 (sgp130)) are critical inflammatory mediators. During pregnancy, maternal IL-6 and sgp130 levels were increased, but sIL-6R levels were decreased, in women with preeclampsia compared to normotensive pregnant women. However, little is known about differences in IL-6, sIL-6R, and sgp130 production by neutrophils and endothelial cells between normal pregnancy and preeclampsia. To study this, we isolated neutrophils and cultured human umbilical vein endothelial cells (HUVECs) from normal and preeclamptic pregnancies. Production of IL-6, sIL-6R, and sgp130 was measured. The role of placental factor(s)-mediated neutrophil production of IL-6, sIL-6R, and sgp130 was also determined by pretreating neutrophils with placental conditioned medium generated from placental villous cultures. We found that IL-6 and sgp130 were mainly produced by endothelial cells, while sIL-6R was mainly produced by neutrophils. Endothelial cells from preeclampsia produced significantly more IL-6 and sgp130, and neutrophils from preeclampsia produced significantly less sIL-6R than normal pregnancy cells. Interestingly, production of IL-6, sIL-6R, and sgp130 were time-dependently increased when neutrophils and endothelial cells were co-cultured. We also found that neutrophils from normal pregnancies produced more IL-6, but less sIL-6R, after being primed by preeclamptic-placental conditioned medium. These results demonstrated that neutrophils and endothelial cells have different capacities in producing IL-6, sIL-6R, and sgp130 between normal pregnancy and preeclampsia. These results also provide evidence that the placenta plays a role in inducing neutrophil activation in preeclampsia. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop