# Study on the Magnetic-machine Coupling Characteristics of Giant Magnetostrictive Actuator Based on the Free Energy Hysteresis Characteristics

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Theoretical Basis of the Magnetic Machine Coupling Model for the Giant Magnetostrictive Actuator (GMA)

#### 2.1. The Fundamental Theory of the Magnetic Field Excited by the Winding for GMA

#### 2.2. The Fundamental Theory of the Mechanical Field of GMA

#### 2.3. The Conversion of the Weak Form Solution

#### 2.4. Three-Dimensional Finite Element Discrimination of Virtual Work Model for the System

#### 2.5. Magneto Mechanical Coupling Nonlinear Model

## 3. Calculation of the Coupling Model of Giant Magnetostrictive Actuator (GMA)

#### 3.1. The Structure and Working Principle of the Giant Magnetostrictive Actuator

#### 3.2. Finite Element Simulation of the Coupling Model of Giant Magnetostrictive Actuator (GMA)

#### 3.3. Simulation Result of Magneto Mechanical Coupling Model of Giant Magnetostrictive Actuator (GMA)

## 4. Testing and Experimental Research on Giant Magnetostrictive Actuator

#### 4.1. Experimental Platform

#### 4.2. Experimental Research on Giant Magnetostrictive Actuator

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Park, G.; Bement, M.T.; Hartman, D.A.; Smith, R.E.; Farrar, C.R. The use of active materials for machining processs: A review. Int. J. Mach. Tools Manuf.
**2007**, 47, 2189–2206. [Google Scholar] [CrossRef] - Schellekens, P.; Rosielle, N.; Vermeulen, H.; Vermeulen, M.; Wetzels, S.; Pril, W. Design for precision: Current status and trends. Ann. CIRP
**1997**, 47, 557–586. [Google Scholar] [CrossRef] - Liang, S.Y.; Hecker, R.L.; Landers, R.G. Machining process monitoring and control: The state of the art. ASME J. Manuf. Sci. Eng.
**2004**, 126, 297–310. [Google Scholar] [CrossRef] - Srinivasan, S.; McFarland, M. Smart Structure: Analysis and Design; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Chopram, I. Review of state of art of smart structures and integrated systems. AIAA J.
**2002**, 40, 2145–2187. [Google Scholar] [CrossRef] - Inman, D.J. Smart materials in damage detection and prognosis. In Proceedings of the Fifth International Conference on Damage Assessment of Structures, Southampton, UK, 1–3 July 2003; pp. 3–16. [Google Scholar]
- Luo, M.; Li, W.; Wang, J.; Wang, N.; Chen, X.; Song, G. Development of a Novel GuidedWave Generation System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation. Sensors
**2018**, 18, 779. [Google Scholar] [CrossRef] [PubMed] - Jia, Z.; Yang, X.; Guo, D.; Hou, L. Theories and Methods of Designing Microdisplacement Actuator Based on Giant Magnetostrictive Materials. Chin. J. Mech. Eng.
**2001**, 37, 46–49. [Google Scholar] [CrossRef] - Yang, Y.; Wang, L.; Tan, J.; Zhao, B. Induced Voltage Linear Extraction Method Using an Active Kelvin Bridge for Disturbing Force Self-Sensing. Sensors
**2016**, 16, 739. [Google Scholar] [CrossRef] [PubMed] - Luo, M.; Li, W.; Wang, B.; Fu, Q.; Song, G. Measurement of the Length of Installed Rock Bolt Based on StressWave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor. Sensors
**2017**, 17, 444. [Google Scholar] [CrossRef] [PubMed] - Jenner, A.G.; Smith, R.J.E.; Wilkinson, A.J. Actuation and transduction giant magnetostrictive alloys. Mechatronics
**2000**, 10, 457–466. [Google Scholar] [CrossRef] - Lacheisserie, E.D.T.D. Magnetostriction Theory and Applications of Magnetoelasticity; CRC Press, Inc.: Boca Raton, FL, USA, 1993. [Google Scholar]
- Yang, Z.; He, Z.; Yang, F.; Rong, C.; Cui, X. Design and analysis of a voltage driving method for electro-hydraulic servo valve based on giant magnetostrictive actuator. Int. J. Appl. Electromagnet. Mech.
**2018**, 57, 439–456. [Google Scholar] [CrossRef] - Guo, Y.; Mao, J.; Zhou, K. Rate-Dependent Modeling and H∞ Robust Control of GMA Based on Hammerstein Model With Preisach Operator. IEEE Trans. Control Syst. Technol.
**2015**, 23, 2432–2439. [Google Scholar] [CrossRef] - Zhang, Z.; Ma, Y.; Guo, Y. A Novel Nonlinear Adaptive Filter for Modeling of Rate-Dependent Hysteresis in Giant Magnetostrictive Actuators. In Proceedings of the 2015 IEEE International Conference on Mechatronics and Automation, Beijing, China, 2–5 August 2015; pp. 670–675. [Google Scholar]
- Clark, A.E. Magnetostrictive Rare Earth-Fe2 Compounds; Wohlfarh, E.P., Ed.; North-Holland Publishing Company: New York, NY, USA, 1980. [Google Scholar]
- Benbouzid, M.E.H.; Reyne, G.; Meunier, G.; Kvarnsjo, L.; Engdahl, G. Dynamic modelling of giant magnetostriction in Terfenol-D rods by the finite element method. IEEE Trans. Magnet.
**1995**, 31, 1821–1824. [Google Scholar] [CrossRef] - Pawel, I.; Krzysztof, K.; Lech, N.; Ƚukasz, K. FE transient analysis of the magnetostrictive actuator. Int. J. Appl. Electromagnet. Mech.
**2016**, 51, S81–S87. [Google Scholar] - Azoum, K.; Besbes, M.; Bouillault, F. 3D FEM of magnetostriction phenomena using coupled constitutive laws. Int. J. Appl. Electromagnet. Mech.
**2004**, 19, 367–371. [Google Scholar] - Benatar, J.G. Fem Implementations of Magnetostrictive-Based Applications. Master’s Thesis, University of Maryland, College Park, MD, USA, 2005. [Google Scholar]
- Zhao, Z.; Wu, Y.; Gu, X.; Xu, J.; Ge, R. Three-dimensional nonlinear dynamic finite element model for giant magnetostrictive actuators. J. Zhejiang Univ.
**2008**, 42, 203–208. [Google Scholar] - Zhong, W. Ferromagnetism, 2nd ed.; Science Press: Beijing, China, 1992. [Google Scholar]
- Yuan, L.; Hu, Q. A Plane Wave Discontinuous Petrov-Galerkin Method for Helmholtz Equation and Time-harmonic Maxwell Equations with Complex Wave Numbers. J. Numer. Methods Comput. Appl.
**2015**, 36, 185–196. [Google Scholar] - Hou, X.; Fan, Z.; Gu, Y.; Yang, H. A Wavelet Interpolation Galerkin Algorithm for Static Electromagnetic Field Analysis in Irregular Regions. Chin. J. Comput. Phys.
**2005**, 22, 539–548. [Google Scholar] - Kannan, K.S.; Dasgupta, A. A nonlinear Galerkin finite-element theory for modeling magnetostrictive smart structure. Smart Mater. Struct.
**1997**, 6, 341–350. [Google Scholar] [CrossRef] - Jia, Z.; Guo, D. Principle and Application of Micro-Displacement Actuator for Giant Magnetostrictive Materials; Science Press: Beijing, China, 2008. [Google Scholar]
- Claeyssen, F.; Lhermet, N.; Le Letty, R.; Bouchilloux, P. Actuators transducers and motors based on giant magnetostrictive materials. J. Alloys Compd.
**1997**, 258, 61–73. [Google Scholar] [CrossRef]

**Figure 2.**Structural diagram of giant magnetostrictive actuator with non-uniform coils. 1. shell; 2. coil; 3. inlet and outlet; 4. output shaft sleeve; 5. preloading spring; 6. front-end cover; 7. output shaft; 8. fixed plate; 9. backend cover; 10. small end cover; 11. giant magnetostrictive material (GMM) rod; 12. coil bobbin outer tube.

Electric Current (A) | Output Displacement (μm) | Error (%) | |
---|---|---|---|

Finite Element Simulation Results | Experimental Results | ||

0 | 0 | 0 | 0 |

0.5 | 27.94 | 14.61 | 47.71 |

1 | 92.65 | 67.52 | 27.12 |

1.5 | 205.88 | 182.65 | 11.28 |

2 | 282.35 | 293.99 | 3.96 |

2.5 | 348.53 | 358.52 | 2.79 |

3 | 398.53 | 397.4 | 0.28 |

3.5 | 432.35 | 430.27 | 0.48 |

4 | 466.18 | 455.42 | 2.31 |

4.5 | 493.12 | 475.99 | 3.47 |

5 | 498.09 | 491.63 | 1.30 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yu, Z.; Wang, T.; Zhou, M.
Study on the Magnetic-machine Coupling Characteristics of Giant Magnetostrictive Actuator Based on the Free Energy Hysteresis Characteristics. *Sensors* **2018**, *18*, 3070.
https://doi.org/10.3390/s18093070

**AMA Style**

Yu Z, Wang T, Zhou M.
Study on the Magnetic-machine Coupling Characteristics of Giant Magnetostrictive Actuator Based on the Free Energy Hysteresis Characteristics. *Sensors*. 2018; 18(9):3070.
https://doi.org/10.3390/s18093070

**Chicago/Turabian Style**

Yu, Zhen, Tao Wang, and Min Zhou.
2018. "Study on the Magnetic-machine Coupling Characteristics of Giant Magnetostrictive Actuator Based on the Free Energy Hysteresis Characteristics" *Sensors* 18, no. 9: 3070.
https://doi.org/10.3390/s18093070