Next Article in Journal
Biophysical Evaluation of Water-Soluble Curcumin Encapsulated in β-Cyclodextrins on Colorectal Cancer Cells
Previous Article in Journal
Cell Type-Specific Patterns in the Accumulation of DNA Damage Following Multifractional Radiation Exposure
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Dissecting the Many Faces of Frontotemporal Dementia: An Imaging Perspective

1
Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
2
Stroke Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, 25123 Brescia, Italy
3
Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, 25123 Brescia, Italy
4
Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2022, 23(21), 12867; https://doi.org/10.3390/ijms232112867
Submission received: 6 September 2022 / Revised: 4 October 2022 / Accepted: 6 October 2022 / Published: 25 October 2022
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)

Abstract

:
Frontotemporal dementia (FTD) is a heterogeneous clinical and neuropathological disorder characterized by behavioral abnormalities, executive dysfunctions and language deficits. FTD encompasses a wide range of different pathological entities, associated with the accumulation of proteins, such as tau and TPD-43. A family history of dementia is found in one third of cases, and several genes causing autosomal dominant inherited disease have been identified. The clinical symptoms are preceded by a prodromal phase, which has been mainly studied in cases carrying pathogenetic mutations. New experimental strategies are emerging, in both prodromal and clinical settings, and outcome markers are needed to test their efficacy. In this complex context, in the last few years, advanced neuroimaging techniques have allowed a better characterization of FTD, supporting clinical diagnosis, improving the comprehension of genetic heterogeneity and the earliest stages of the disease, contributing to a more detailed classification of underlying proteinopathies, and developing new outcome markers on clinical grounds. In this review, we briefly discuss the contribution of brain imaging and the most recent techniques in deciphering the different aspects of FTD.

1. Introduction

Frontotemporal dementia (FTD) is a common cause of early-onset dementia [1,2], with devasting psychological and social implications for both patients and families.
FTD encompasses a heterogeneous group of neurodegenerative disorders with a wide range of clinical, genetic and neuropathological features [2,3,4,5]. The careful characterization of clinical features of the behavioral variant frontotemporal dementia (bvFTD) [3], the agrammatic or the semantic variant of primary progressive aphasia (avPPA and svPPA) [4], and the spectrum of frontotemporal lobar degeneration (FTLD) with extrapyramidal symptoms, such as corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP), has enabled a better understanding of the heterogeneity of FTLD phenotypes [6].
Along with the heterogeneity of clinical presentations, a complex neuropathology is associated with the disease, characterized by FLTD-Tau, FTLD-TDP and FTLD-FET with respect to the deposition of the tau protein, TAR DNA Binding Protein 43 (TDP-43) and FET family proteins, respectively [7,8].
In one third of cases, FTD is associated with an autosomal dominant inherited mutation in one of three main genes: microtubule-associated protein tau (MAPT), progranulin (GRN), and chromosome 9 open reading frame 72 (C9orf72) [9].
This heterogeneity, as well the lack of a clear-cut relationship between clinical phenotypes, genetic traits and neuropathological features, represents the main obstacle hampering the development of a unifying disease model and, as consequence, disease-modifying strategies of intervention.
In the last few years, advanced neuroimaging techniques have gone beyond the mere neuroanatomical description of frontotemporal atrophy or hypometabolism in FTD patients, and have helped in increasing the diagnostic accuracy, in disentangling the features associated with monogenic disease, in describing the earliest changes occurring in the prodromal phases, and in forecasting disease progression [10]. Moreover, new positron emission tomography tracers provide key information to define the underlying neuropathology [11,12,13,14,15]. These neuroimaging developments have contributed to the exploration of FTD pathogenesis and to the identification of novel potential biomarkers. Since at present there is a lack of disease-modifying therapies in FTD and treatment relies on symptomatic interventions [16], brain imaging biomarkers might be crucial in facilitating the recruitment of patients in clinical trials.
In the present review, we discuss the most important brain imaging candidates that help decipher the different aspects of FTD, and suggest an approach to further improve our knowledge in FTD-related imaging (Figure 1).

2. Neuroimaging and FTD Phenotypes

The different FTD syndromes are characterized by an early involvement of the insula and the anterior cingulate, which are part of the salience network [17,18,19,20]. Besides this common feature, structural brain magnetic resonance imaging (MRI) and brain positron emission tomography with [F18] fluorodeoxyglucose (FDG-PET) show characteristic and distinctive neuroimaging patterns, which can help accurately discriminate between different FTD phenotypes and are routinely used in clinical practice [3,4,21,22,23,24,25,26,27]. By means of volumetric T1-weighted MRI, it is possible to detect changes in grey matter (GM) structure, determine volumes of specific regions of interest and the rate of atrophy. In addition, postprocessing techniques can be applied to structural images, such as investigations of changes at the voxel level through voxel-based morphometry or measurement of cortical thickness. On the other hand, FDG-PET allows the identification of alterations in the brain metabolism that might precede GM atrophy [28,29].
Conversely, advanced MRI methods, such as diffusion tensor imaging (DTI), functional MRI (fMRI) and arterial spin labeling (ASL), are currently used in research and might be more sensitive in the earliest phases of the disease [30,31,32,33,34,35]. DTI explores microstructural white matter (WM) alterations that anticipate GM loss in FTD [36,37], whereas fMRI is a technique sensitive to changes in functional brain connectivity. ASL reveals alterations in brain perfusion that correlate very well with metabolism measured with FDG-PET [38,39]. These MRI techniques have the advantages of being safe, non-invasive, repeatable, and able to be combined in a single session, and not involving radiation exposure. However, they have been investigated at a group level, and currently are not applicable in clinical practice at a single-patient level. Moreover, fMRI studies are limited by a wide variation in analytical methods used, such as independent component analysis, seed-based or region-of-interest-based approaches.
Atrophy in bvFTD involves the frontal and temporal lobes, the insula and the anterior cingulate cortex, reflecting the distribution of Von Economo neurons [22,23,40,41] (Figure 2). The pattern of atrophy in bvFTD is usually asymmetric, predominantly involving the right hemisphere, and is associated with the core neuropsychiatric features, including disinhibition, apathy, loss of empathy and binge eating [42,43,44,45,46,47]. The degeneration of many subcortical structures is also observed in bvFTD, in the amygdala, hippocampus, basal ganglia and thalamus [48].
Brain FDG-PET shows areas of hypometabolism that reflect atrophic regions, but might be more sensitive than structural images in the initial stages of the disease [28,29]. Low glucose metabolism is observed in comparable brain structures, mainly in the orbitofrontal, dorsolateral and medial prefrontal cortices, anterior temporal poles and basal ganglia [39,49,50].
The distribution of atrophy and hypometabolism helps in differentiating FTD from Alzheimer’s disease (AD) [25,29,51,52,53,54,55,56,57,58].
The avPPA is mainly identified by left-sided frontal and insula involvement, both at structural MRI and brain FDG-PET [24,26,27,59,60], while the svPPA presents with asymmetrical, typically left-sided, anteroinferior temporal lobe atrophy and hypometabolism [24,27] (Figure 2). A minority of patients can exhibit right-predominant patterns of atrophy/hypometabolism affecting the temporal lobe and may present clinically with prosopagnosia, memory impairment and behavioral changes [61,62,63,64].
Distinct patterns of metabolic abnormalities in primary progressive aphasia (PPA) are important not only for the differential diagnosis of the different syndromes, but also to predict progression to specific dementia subtypes [27]. In avPPA, hypometabolism involving parietal, subcortical and brainstem structures was associated with progression to CBS or to PSP. svPPA showing extended bilateral hypometabolism progressed to bvFTD over time.

3. Neuroimaging and Neuropathology

One of the main goals of the current literature in FTD is to develop reliable imaging markers able to predict in vivo neuropathological hallmarks, namely tau or TDP-43 inclusions. Identifying biomarkers of misfolded proteins is extremely relevant for a precision medicine approach in future clinical trials. This would be key especially in non-monogenic cases for which neuropathology is still unpredictable.
To date, at the single-subject level, no brain MRI approaches hold the premise to identify neuropathology in FTD patients. Moreover, whereas the pattern of GM atrophy does not differ between FTLD-tau and FTLD-TDP [65], it has been described that FTLD-tau had significantly more WM degeneration in post mortem studies compared to FTLD-TDP [66].
Conversely, the field of PET imaging with tracers targeting different proteins has exploded in recent years. This technique holds the tremendous potential to define not only the underlying neuropathology of neurodegenerative diseases, but also the pattern of distribution of unfolded proteins. Thus, this will be important also to investigate disease pathogenesis for early and differential diagnosis and to monitor disease progression.
Tau PET first-generation tracers have led to inconclusive results because of the lack of specificity, subcortical WM uptake, and variable affinity for different tau isoforms [11,12,13,14,15]. These limitations have prompted the development of the second generation of tau PET tracers. It has been demonstrated that these new radiotracer have a high affinity for tau neurofibrillary tangles, the hallmark of AD pathology [67,68]. In the same view, tau PET shows a good sensitivity in carriers of MAPT mutations that are more likely to cause an AD-like tau pathology [11,14,69,70]. However, these tracers bind only weakly, if at all, to 3-repeat tau in the Pick bodies of FTD and the 4-repeat linear tangles in dementias associated with PSP and CBS [68,71,72,73,74,75]. Moreover, although different studies demonstrated in vivo increased tau accumulation in the midbrain in PSP, discrepancies with autopsy studies and considerable overlap with healthy controls (HC) underline the ongoing need for further investigations in this field [15,74,76].
No specific TDP-43 tracers are available yet. However, in different series of patients with svPPA, a disease typically characterized by TDP-43 pathology, tau PET signal was unexpectedly elevated with spatial distribution mirroring areas of atrophy. These results raise concerns about the lack of specificity of tau tracers, suggesting a possible off-target biding to non-tau molecules [77,78,79,80]. PET ligands developed to bind tau neurofibrillary tangles in AD showed increase uptake also in bvFTD due to hexanucleotide repeat expansion in C9orf72, associated with TDP-43 deposition [12].
To conclude, it is clear that the field of PET imaging is extremely promising and progressing very rapidly. Nevertheless, further research is warranted in the spectrum of FTLD to clarify the aforementioned ambiguities. Furthermore, confirmation of in vivo findings with autopsy studies will be necessary for the validation of tau tracers in this field.

4. Neuroimaging and Genetics

In recent years, the identification of new causative genes associated with FTD has represented a giant step forward to characterize the heterogeneity of the disorder, at the clinical, molecular and imaging levels. Moreover, exploring genetic FTD is crucial since it represents the ideal target population for the development of disease-modifying therapies and allows to unravel the prodromal disease stages in at-risk subjects [81,82,83,84,85,86]. Thus, defining biomarkers in the preclinical as well as clinical stages represents a priority in order to stratify patients for clinical trials and to assess the efficacy of therapeutic interventions in this population.
Each of the most common genetic groups, namely GRN, MAPT and C9orf72 mutations, display a differential and characteristic pattern of cortical atrophy [87] with early changes appearing during the prodromal disease stages, up to 20 years before phenoconversion [82,88]. These results were obtained by well-established international networks, such as the European- and Canadian-based Genetic Frontotemporal dementia Initiative (GENFI, www.genfi.org), the US-based ARTFL/LEFFTDS, and the Australian DINAD, which have collected cross-sectional and longitudinal data of FTD patients with monogenic disease [9,82]. In addition, the recently established consortia in Latin America (ReDLat) and New Zealand (FTDGeNZ) will be able to further elucidate the natural history of the disease [89,90].
Symptomatic stages of the disease can be investigated accurately with structural MRI. Comparable atrophy for all three mutation groups was observed in a network involving the insula, orbitofrontal lobe and anterior cingulate. Besides these areas, each mutation group develops a characteristic pattern of cortical atrophy [88]. C9orf72 mutation carriers present atrophy symmetrically, involving dorsolateral, medial and orbitofrontal lobes. Anterior temporal lobes, thalamus, parietal and occipital lobes and cerebellum are also affected [23,82,88,91,92,93,94,95,96]. Cases of patients with mild, slowly progressive or even severe dementia with minimal or no atrophy have been reported [91,97,98]. Interestingly, a comparable pattern of functional network alterations despite various atrophy patterns have been described in C9orf72 expansion carriers. In particular, they are characterized by reduced connectivity in the salience network and sensorimotor networks, whereas default mode network connectivity is similar to HC, unlike sporadic FTD [99].
GRN mutations carriers display a characteristic striking asymmetrical atrophy involving frontotemporal but also parietal cortices [23,82,88,95,100,101,102]. Both left- and right-sided predominant atrophy can be observed, even in the same family. GRN mutation carriers can present WM hyperintensities, even in the pre-symptomatic stages, which might be due to microglial activation and microglial dystrophy [103,104,105,106,107].
The distribution of atrophy in patients with MAPT mutation symmetrically involves the anterior and mesial temporal lobes, whereas orbitofrontal, lateral prefrontal and parietal regions are less altered [23,82,88,95,100]. A differential involvement of the temporal lobe has been described according to the diverse mutations in the MAPT gene [100].
The rate of atrophy varies in the different forms of genetic FTD. It is faster in those with GRN mutations and slower in MAPT mutation carriers. C9orf72 mutation carriers show the greatest heterogeneity in the progression of brain atrophy [108,109]. In GRN mutation carriers, after clinical onset, the rate of atrophy is greater in the temporal cortex and becomes more asymmetrical in the following stages of the disease [82].
Besides the most frequent mutations, more rare pathogenic mutations are associated with genetic FTD. At present, the neuroimaging findings in these patients are described in case reports or in a limited number of cases, and future international studies with larger cohorts are warranted in this field.

5. Neuroimaging and Prodromal Stages

Prodromal FTD may be defined as the presence of mild cognitive and/or behavioral changes without a significant impact on functional independence. The label of mild cognitive and/or behavioral and/or motor impairment (MCBMI) was recently proposed in a consensus paper with the aim of capturing the complexity of the clinical presentation in this disease stage [110].
In this context, the genetic forms have provided a privileged point of view for investigating the prodromal phases, assessing brain changes in at-risk mutation carriers.
Individuals with FTD-associated mutations develop GM atrophy and hypometabolism at least 10 years before symptom onset, whereas WM abnormalities and functional connectivity alterations are seen even earlier, supporting the hypothesis of FTD as a network-based disease. Therefore, DTI and fMRI seem to be the most promising techniques to explore pre-symptomatic stages, with a greater sensitivity than structural MRI [31,32,33,111,112,113].
Traditionally, brain networks have been regarded as static over time. However, a recently introduced evolution of the brain connectome, the so-called chronnectome, allows to capture the dynamic functioning of the brain across time [114,115,116]. This approach has been demonstrated to be even more sensitive than traditional resting state fMRI approaches in pre-symptomatic phases [117,118]. ASL MRI is also a promising non-invasive imaging biomarker in pre-symptomatic carriers. Indeed, cerebral blood flow differences appeared earlier than 10 years before the expected onset in key FTD regions in the GENFI cohort [35].
The different genetic groups, such as GRN, C9orf72 and MAPT mutations, are characterized by variability in both timing and location of early GM and WM changes.
In C9orf72 mutation carriers GM and WM alterations appear very early, up to 30 years before symptoms onset; GRN mutation carriers show no or only minimal atrophy in pre-symptomatic stages, thus representing the most challenging group to investigate in these disease stages [30,32,33,34,82,88,99,112,119,120,121,122]. Conversely, studies in pre-symptomatic MAPT mutation carriers showed contrasting results, probably because of the differences in cohort size and subject heterogeneity [113,119,120,123]; the largest study at present found early volume loss in hippocampus and amygdala at 15 years before expected onset [82].

6. Neuroimaging & Disease Progression

Conventional neuroimaging is routinely used for clinical diagnosis [124] and might also provide prognostic information [125,126]. Since FTD is characterized by great heterogeneity in clinical course, identifying imaging biomarkers of disease progression would be crucial also for inclusion in clinical trials.
The pattern of brain atrophy in FTD carries also prognostic information, as the degree of atrophy in the anterior cingulate and motor cortex predicted a faster disease progression [127], while diffuse brain atrophy was related to a worse prognosis than focal atrophy [128]. Functional brain imaging might also aid in defining prognosis. Hypoperfusion in the orbitomesial frontal cortex associated with the “pseudomanic behavior”, characterized by disinhibition and abnormal social conduct, predicted a worse prognosis [129]. Moreover, hypoperfusion in the right orbitomesial frontal cortex and in the brainstem was associated with decreased survival [130,131]. Accordingly, different patterns of metabolic abnormalities in PPA are important to predict progression to specific dementia subtypes [27].
Along the disease course, the most suitable neuroimaging biomarker and the regions to evaluate could change. In this context, multivariate statistical approaches, like the multi-voxel pattern analysis (MVPA), might be useful for establishing the most accurate biomarker for clinical trials. By means of MVPA, it was demonstrated that in patients carrying GRN mutation, the most predictive measures were structural alterations, whereas in pre-symptomatic carriers, the best predictors markers were functional abnormalities, in particular the local connectivity measure (fALFF) [112].
Biological modulators and environmental factors, like education, have been proposed to contribute to heterogeneity in disease progression both in sporadic and genetic forms [132,133,134,135,136]. Neuroimaging might be of crucial relevance in evaluating the influence of these factors. Actually, disease modifiers can modulate brain atrophy [137] and brain connectivity [138] even in pre-symptomatic phases [139,140]. As a consequence, taking into account their effect of early brain damage is mandatory to stratify patients at risk of dementia, develop new therapies, and eventually monitor the efficacy of treatments.
Despite the relevance of neuroimaging as biomarker in FTD, at present, its potential has been investigated mainly at the group level to discriminate patients’ groups from each other or from HC. However, this poses difficulties in clinical practice, since diagnostic and prognostic information at a single-subject level is essential. Recently developed tools might help to overcome this limitation. The preGRN-MRI tool was able to predict the expected MRI atrophy at follow-up using baseline MRI measures in pre-symptomatic GRN mutation carriers with good accuracy [141]. Therefore, this tool can be helpful in clinical trials since deviation of the cortical thickness from the expected model might be a marker of treatment efficacy.
Moreover, machine-learning techniques are able to stratify in vivo disease subtypes and stages, and recent studies demonstrated their reliability for dealing with the extreme heterogeneity of different neurodegenerative diseases. They therefore appear to be promising approaches in precision medicine in order to stratify patients at very early disease stages. Subtype and stage inference (SuStaIn) is a computational approach that unravels phenotypic heterogeneity to distinguish patients’ subgroups with a similar pattern of disease progression [142]. In genetic FTD, using structural T1-weighted imaging, it was able to identify genotypes from imaging alone. Moreover, it could even reveal within-genotype heterogeneity, namely, different subgroups in C9orf72 and MAPT mutation carriers, characterized by diverse disease trajectories [142,143]. The contrastive trajectory inference (cTI) is another recently developed machine learning algorithm for staging and subtyping disease. It has been already applied for different neurodegenerative diseases, such as AD and Huntington’s disease [144]. A recent work explored its reliability also in genetic FTD [145]. Indeed, cTI could stage the disease in a heterogeneous cohort of genetic FTD, both pre-symptomatic and symptomatic, using only a combination of different neuroimaging modalities without clinical information. Therefore, machine learning appears to be a promising approach to follow disease progression and monitor treatment efficacy in future clinical trials. A further development might be the combination with non-imaging biomarkers, e.g., neurofilament light chain, for optimal disease staging.

7. Conclusions and Future Perspectives

Neuroimaging appears to be a key biomarker in FTD. Whereas some techniques, such as structural MRI and FDG-PET, are routinely used in clinical practice mainly for diagnostic purposes, novel emerging techniques are under development with different aims. PET with specific tracers and advanced neuroimaging approaches, such as fMRI and DTI, will be essential to define the underlying neuropathology and investigate pre-symptomatic disease stages, respectively. Machine learning approaches will be crucial for early diagnosis, to evaluate disease progression and stratify patients for future clinical trials, and eventually also to combine neuroimaging with non-imaging biomarkers. All these advancements in neuroimaging research will be essential to develop and monitor new therapies in a pathology which is still an orphan of disease-modifying treatments.

Author Contributions

Conceptualization, methodology, writing, review and editing M.P., E.P. and B.B.; supervision, E.P. and B.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

All study data are available from the corresponding author, upon reasonable request.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Vieira, R.T.; Caixeta, L.; Machado, S.; Silva, A.C.; Nardi, A.E.; Arias-Carrión, O.; Carta, M.G. Epidemiology of Early-Onset Dementia: A Review of the Literature. Clin. Pract. Epidemiol. Ment. Health 2013, 9, 88–95. [Google Scholar] [CrossRef] [PubMed]
  2. Bang, J.; Spina, S.; Miller, B.L. Frontotemporal Dementia. Lancet 2015, 386, 1672–1682. [Google Scholar] [CrossRef] [Green Version]
  3. Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; Van Swieten, J.C.; Seelaar, H.; Dopper, E.G.P.; Onyike, C.U.; et al. Sensitivity of Revised Diagnostic Criteria for the Behavioural Variant of Frontotemporal Dementia. Brain 2011, 134, 2456–2477. [Google Scholar] [CrossRef] [PubMed]
  4. Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of Primary Progressive Aphasia and Its Variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. Borroni, B.; Padovani, A. Dementia: A New Algorithm for Molecular Diagnostics in FTLD. Nat. Rev. Neurol. 2013, 9, 241–242. [Google Scholar] [CrossRef] [PubMed]
  6. Giunta, M.; Solje, E.; Gardoni, F.; Borroni, B.; Benussi, A. Experimental Disease-Modifying Agents for Frontotemporal Lobar Degeneration. J. Exp. Pharmacol. 2021, 13, 359–376. [Google Scholar] [CrossRef]
  7. MacKenzie, I.R.A.; Neumann, M.; Bigio, E.H.; Cairns, N.J.; Alafuzoff, I.; Kril, J.; Kovacs, G.G.; Ghetti, B.; Halliday, G.; Holm, I.E.; et al. Nomenclature and Nosology for Neuropathologic Subtypes of Frontotemporal Lobar Degeneration: An Update. Acta Neuropathol. 2010, 119, 1. [Google Scholar] [CrossRef] [Green Version]
  8. Neumann, M.; Mackenzie, I.R.A. Review: Neuropathology of Non-Tau Frontotemporal Lobar Degeneration. Neuropathol. Appl. Neurobiol. 2019, 45, 19–40. [Google Scholar] [CrossRef] [Green Version]
  9. Moore, K.M.; Nicholas, J.; Grossman, M.; McMillan, C.T.; Irwin, D.J.; Massimo, L.; Van Deerlin, V.M.; Warren, J.D.; Fox, N.C.; Rossor, M.N.; et al. Age at Symptom Onset and Death and Disease Duration in Genetic Frontotemporal Dementia: An International Retrospective Cohort Study. Lancet Neurol. 2020, 19, 145–156. [Google Scholar] [CrossRef] [Green Version]
  10. Borroni, B.; Benussi, A.; Premi, E.; Alberici, A.; Marcello, E.; Gardoni, F.; Di Luca, M.; Padovani, A. Biological, Neuroimaging, and Neurophysiological Markers in Frontotemporal Dementia: Three Faces of the Same Coin. J. Alzheimers Dis. 2018, 62, 1113–1123. [Google Scholar] [CrossRef]
  11. Jones, D.T.; Knopman, D.S.; Graff-Radford, J.; Syrjanen, J.A.; Senjem, M.L.; Schwarz, C.G.; Dheel, C.; Wszolek, Z.; Rademakers, R.; Kantarci, K.; et al. In Vivo 18 F-AV-1451 Tau PET Signal in MAPT Mutation Carriers Varies by Expected Tau Isoforms. Neurology 2018, 90, e947–e954. [Google Scholar] [CrossRef] [PubMed]
  12. Bevan-Jones, R.W.; Cope, T.E.; Jones, S.P.; Passamonti, L.; Hong, Y.T.; Fryer, T.; Arnold, R.; Coles, J.P.; Aigbirhio, F.A.; Patterson, K.; et al. [ 18 F]AV-1451 Binding Is Increased in Frontotemporal Dementia Due to C9orf72 Expansion. Ann. Clin. Transl. Neurol. 2018, 5, 1292–1296. [Google Scholar] [CrossRef] [PubMed]
  13. Ricci, M.; Cimini, A.; Camedda, R.; Chiaravalloti, A.; Schillaci, O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int. J. Mol. Sci. 2021, 22, 13002. [Google Scholar] [CrossRef] [PubMed]
  14. Tsai, R.M.; Bejanin, A.; Lesman-Segev, O.; Lajoie, R.; Visani, A.; Bourakova, V.; O’Neil, J.P.; Janabi, M.; Baker, S.; Lee, S.E.; et al. 18 F-Flortaucipir (AV-1451) Tau PET in Frontotemporal Dementia Syndromes. Alzheimers Res. Ther. 2019, 11, 13. [Google Scholar] [CrossRef] [PubMed]
  15. Marquié, M.; Normandin, M.D.; Vanderburg, C.R.; Costantino, I.M.; Bien, E.A.; Rycyna, L.G.; Klunk, W.E.; Mathis, C.A.; Ikonomovic, M.D.; Debnath, M.L.; et al. Validating Novel Tau Positron Emission Tomography Tracer [F-18]-AV-1451 (T807) on Postmortem Brain Tissue. Ann. Neurol. 2015, 78, 787–800. [Google Scholar] [CrossRef] [Green Version]
  16. Panza, F.; Lozupone, M.; Seripa, D.; Daniele, A.; Watling, M.; Giannelli, G.; Imbimbo, B.P. Development of Disease-Modifying Drugs for Frontotemporal Dementia Spectrum Disorders. Nat. Rev. Neurol. 2020, 16, 213–228. [Google Scholar] [CrossRef]
  17. Ng, A.S.L.; Wang, J.; Ng, K.K.; Chong, J.S.X.; Qian, X.; Lim, J.K.W.; Tan, Y.J.; Yong, A.C.W.; Chander, R.J.; Hameed, S.; et al. Distinct Network Topology in Alzheimer’s Disease and Behavioral Variant Frontotemporal Dementia. Alzheimers Res. Ther. 2021, 13, 13. [Google Scholar] [CrossRef]
  18. Day, G.S.; Farb, N.A.S.; Tang-Wai, D.F.; Masellis, M.; Black, S.E.; Freedman, M.; Pollock, B.G.; Chow, T.W. Salience Network Resting-State Activity: Prediction of Frontotemporal Dementia Progression. JAMA Neurol. 2013, 70, 1249–1253. [Google Scholar] [CrossRef] [Green Version]
  19. Filippi, M.; Agosta, F.; Scola, E.; Canu, E.; Magnani, G.; Marcone, A.; Valsasina, P.; Caso, F.; Copetti, M.; Comi, G.; et al. Functional Network Connectivity in the Behavioral Variant of Frontotemporal Dementia. Cortex 2013, 49, 2389–2401. [Google Scholar] [CrossRef]
  20. Zhou, J.; Greicius, M.D.; Gennatas, E.D.; Growdon, M.E.; Jang, J.Y.; Rabinovici, G.D.; Kramer, J.H.; Weiner, M.; Miller, B.L.; Seeley, W.W. Divergent Network Connectivity Changes in Behavioural Variant Frontotemporal Dementia and Alzheimer’s Disease. Brain 2010, 133, 1352–1367. [Google Scholar] [CrossRef]
  21. Dukart, J.; Mueller, K.; Horstmann, A.; Barthel, H.; Möller, H.E.; Villringer, A.; Sabri, O.; Schroeter, M.L. Combined Evaluation of FDG-PET and MRI Improves Detection and Differentiation of Dementia. PLoS ONE 2011, 6, e18111. [Google Scholar] [CrossRef] [Green Version]
  22. Pan, P.L.; Song, W.; Yang, J.; Huang, R.; Chen, K.; Gong, Q.Y.; Zhong, J.G.; Shi, H.C.; Shang, H.F. Gray Matter Atrophy in Behavioral Variant Frontotemporal Dementia: A Meta-Analysis of Voxel-Based Morphometry Studies. Dement. Geriatr. Cogn. Disord. 2012, 33, 141–148. [Google Scholar] [CrossRef]
  23. Whitwell, J.L.; Weigand, S.D.; Boeve, B.F.; Senjem, M.L.; Gunter, J.L.; Dejesus-Hernandez, M.; Rutherford, N.J.; Baker, M.; Knopman, D.S.; Wszolek, Z.K.; et al. Neuroimaging Signatures of Frontotemporal Dementia Genetics: C9ORF72, Tau, Progranulin and Sporadics. Brain 2012, 135, 794–806. [Google Scholar] [CrossRef]
  24. Gorno-Tempini, M.L.; Dronkers, N.F.; Rankin, K.P.; Ogar, J.M.; Phengrasamy, L.; Rosen, H.J.; Johnson, J.K.; Weiner, M.W.; Miller, B.L. Cognition and Anatomy in Three Variants of Primary Progressive Aphasia. Ann. Neurol. 2004, 55, 335–346. [Google Scholar] [CrossRef] [Green Version]
  25. Poljansky, S.; Ibach, B.; Hirschberger, B.; Männer, P.; Klünemann, H.; Hajak, G.; Marienhagen, J. A Visual [18F]FDG-PET Rating Scale for the Differential Diagnosis of Frontotemporal Lobar Degeneration. Eur. Arch. Psychiatr. Clin. Neurosci. 2011, 261, 433–446. [Google Scholar] [CrossRef]
  26. Nestor, P.J.; Graham, N.L.; Fryer, T.D.; Williams, G.B.; Patterson, K.; Hodges, J.R. Progressive Non-Fluent Aphasia Is Associated with Hypometabolism Centred on the Left Anterior Insula. Brain 2003, 126, 2406–2418. [Google Scholar] [CrossRef] [Green Version]
  27. Cerami, C.; Dodich, A.; Greco, L.; Iannaccone, S.; Magnani, G.; Marcone, A.; Pelagallo, E.; Santangelo, R.; Cappa, S.F.; Perani, D. The Role of Single-Subject Brain Metabolic Patterns in the Early Differential Diagnosis of Primary Progressive Aphasias and in Prediction of Progression to Dementia. J. Alzheimers Dis. 2017, 55, 183–197. [Google Scholar] [CrossRef] [Green Version]
  28. Mendez, M.F.; Shapira, J.S.; McMurtray, A.; Licht, E.; Miller, B.L. Accuracy of the Clinical Evaluation for Frontotemporal Dementia. Arch. Neurol. 2007, 64, 830–835. [Google Scholar] [CrossRef] [Green Version]
  29. Womack, K.B.; Diaz-Arrastia, R.; Aizenstein, H.J.; Arnold, S.E.; Barbas, N.R.; Boeve, B.F.; Clark, C.M.; DeCarli, C.S.; Jagust, W.J.; Leverenz, J.B.; et al. Temporoparietal Hypometabolism in Frontotemporal Lobar Degeneration and Associated Imaging Diagnostic Errors. Arch. Neurol. 2011, 68, 329–337. [Google Scholar] [CrossRef] [Green Version]
  30. Borroni, B.; Alberici, A.; Premi, E.; Archetti, S.; Garibotto, V.; Agosti, C.; Gasparotti, R.; Di Luca, M.; Perani, D.; Padovani, A. Brain Magnetic Resonance Imaging Structural Changes in a Pedigree of Asymptomatic Progranulin Mutation Carriers. Rejuvenation Res. 2008, 11, 585–595. [Google Scholar] [CrossRef]
  31. Dopper, E.G.P.; Rombouts, S.A.R.B.; Jiskoot, L.C.; Heijer, T.D.; De Graaf, J.R.A.; De Koning, I.; Hammerschlag, A.R.; Seelaar, H.; Seeley, W.W.; Veer, I.M.; et al. Structural and Functional Brain Connectivity in Presymptomatic Familial Frontotemporal Dementia. Neurology 2014, 83, e19–e26. [Google Scholar] [CrossRef] [Green Version]
  32. Borroni, B.; Alberici, A.; Cercignani, M.; Premi, E.; Serra, L.; Cerini, C.; Cosseddu, M.; Pettenati, C.; Turla, M.; Archetti, S.; et al. Granulin Mutation Drives Brain Damage and Reorganization from Preclinical to Symptomatic FTLD. Neurobiol. Aging 2012, 33, 2506–2520. [Google Scholar] [CrossRef] [Green Version]
  33. Lee, S.E.; Sias, A.C.; Kosik, E.L.; Flagan, T.M.; Deng, J.; Chu, S.A.; Brown, J.A.; Vidovszky, A.A.; Ramos, E.M.; Gorno-Tempini, M.L.; et al. Thalamo-Cortical Network Hyperconnectivity in Preclinical Progranulin Mutation Carriers. NeuroImage Clin. 2019, 22. [Google Scholar] [CrossRef]
  34. Alexander, C.; Zeithamova, D.; Hsiung, G.Y.R.; Mackenzie, I.R.; Jacova, C. Decreased Prefrontal Activation during Matrix Reasoning in Predementia Progranulin Mutation Carriers. J. Alzheimers Dis. 2018, 62, 583–589. [Google Scholar] [CrossRef] [Green Version]
  35. Mutsaerts, H.J.M.M.; Mirza, S.S.; Petr, J.; Thomas, D.L.; Cash, D.M.; Bocchetta, M.; De Vita, E.; Metcalfe, A.W.S.; Shirzadi, Z.; Robertson, A.D.; et al. Cerebral Perfusion Changes in Presymptomatic Genetic Frontotemporal Dementia: A GENFI Study. Brain 2019, 142, 1108–1120. [Google Scholar] [CrossRef] [Green Version]
  36. Mahoney, C.J.; Ridgway, G.R.; Malone, I.B.; Downey, L.E.; Beck, J.; Kinnunen, K.M.; Schmitz, N.; Golden, H.L.; Rohrer, J.D.; Schott, J.M.; et al. Profiles of White Matter Tract Pathology in Frontotemporal Dementia. Hum. Brain Mapp. 2014, 35, 4163–4179. [Google Scholar] [CrossRef]
  37. Lam, B.Y.K.; Halliday, G.M.; Irish, M.; Hodges, J.R.; Piguet, O. Longitudinal White Matter Changes in Frontotemporal Dementia Subtypes. Hum. Brain Mapp. 2014, 35, 3547–3557. [Google Scholar] [CrossRef] [Green Version]
  38. Verfaillie, S.C.J.; Adriaanse, S.M.; Binnewijzend, M.A.A.; Benedictus, M.R.; Ossenkoppele, R.; Wattjes, M.P.; Pijnenburg, Y.A.L.; van der Flier, W.M.; Lammertsma, A.A.; Kuijer, J.P.A.; et al. Cerebral Perfusion and Glucose Metabolism in Alzheimer’s Disease and Frontotemporal Dementia: Two Sides of the Same Coin? Eur. Radiol. 2015, 25, 3050–3059. [Google Scholar] [CrossRef] [Green Version]
  39. Tosun, D.; Schuff, N.; Rabinovici, G.D.; Ayakta, N.; Miller, B.L.; Jagust, W.; Kramer, J.; Weiner, M.M.; Rosen, H.J. Diagnostic Utility of ASL-MRI and FDG-PET in the Behavioral Variant of FTD and AD. Ann. Clin. Transl. Neurol. 2016, 3, 740–751. [Google Scholar] [CrossRef]
  40. Seeley, W.W.; Crawford, R.; Rascovsky, K.; Kramer, J.H.; Weiner, M.; Miller, B.L.; Gorno-Tempini, M.L. Frontal Paralimbic Network Atrophy in Very Mild Behavioral Variant Frontotemporal Dementia. Arch. Neurol. 2008, 65, 249–255. [Google Scholar] [CrossRef]
  41. Schroeter, M.L.; Laird, A.R.; Chwiesko, C.; Deuschl, C.; Schneider, E.; Bzdok, D.; Eickhoff, S.B.; Neumann, J. Conceptualizing Neuropsychiatric Diseases with Multimodal Data-Driven Meta-Analyses—The Case of Behavioral Variant Frontotemporal Dementia. Cortex 2014, 57, 22–37. [Google Scholar] [CrossRef] [Green Version]
  42. Rosen, H.J.; Allison, S.C.; Schauer, G.F.; Gorno-Tempini, M.L.; Weiner, M.W.; Miller, B.L. Neuroanatomical Correlates of Behavioural Disorders in Dementia. Brain 2005, 128, 2612–2625. [Google Scholar] [CrossRef]
  43. Peters, F.; Perani, D.; Herholz, K.; Holthoff, V.; Beuthien-Baumann, B.; Sorbi, S.; Pupi, A.; Degueldre, C.; Lemaire, C.; Collette, F.; et al. Orbitofrontal Dysfunction Related to Both Apathy and Disinhibition in Frontotemporal Dementia. Dement. Geriatr. Cogn. Disord. 2006, 21, 373–379. [Google Scholar] [CrossRef] [Green Version]
  44. Hornberger, M.; Geng, J.; Hodges, J.R. Convergent Grey and White Matter Evidence of Orbitofrontal Cortex Changes Related to Disinhibition in Behavioural Variant Frontotemporal Dementia. Brain 2011, 134, 2502–2512. [Google Scholar] [CrossRef] [Green Version]
  45. Massimo, L.; Powers, C.; Moore, P.; Vesely, L.; Avants, B.; Gee, J.; Libon, D.J.; Grossman, M. Neuroanatomy of Apathy and Disinhibition in Frontotemporal Lobar Degeneration. Dement. Geriatr. Cogn. Disord. 2009, 27, 96–104. [Google Scholar] [CrossRef] [Green Version]
  46. Zamboni, G.; Huey, E.D.; Krueger, F.; Nichelli, P.F.; Grafman, J. Apathy and Disinhibition in Frontotemporal Dementia: Insights into Their Neural Correlates. Neurology 2008, 71, 736–742. [Google Scholar] [CrossRef] [Green Version]
  47. Woolley, J.D.; Gorno-Tempini, M.L.; Seeley, W.W.; Rankin, K.; Lee, S.S.; Matthews, B.R.; Miller, B.L. Binge Eating Is Associated with Right Orbitofrontal-Insular-Striatal Atrophy in Frontotemporal Dementia. Neurology 2007, 69, 1424–1433. [Google Scholar] [CrossRef]
  48. Halabi, C.; Halabi, A.; Dean, D.L.; Wang, P.N.; Boxer, A.L.; Trojanowski, J.Q.; Dearmond, S.J.; Miller, B.L.; Kramer, J.H.; Seeley, W.W. Patterns of Striatal Degeneration in Frontotemporal Dementia. Alzheimer Dis. Assoc. Disord. 2013, 27, 74–83. [Google Scholar] [CrossRef] [Green Version]
  49. Vijverberg, E.G.B.; Wattjes, M.P.; Dols, A.; Krudop, W.A.; Möller, C.; Peters, A.; Kerssens, C.J.; Gossink, F.; Prins, N.D.; Stek, M.L.; et al. Diagnostic Accuracy of MRI and Additional [18F]FDG-PET for Behavioral Variant Frontotemporal Dementia in Patients with Late Onset Behavioral Changes. J. Alzheimers. Dis. 2016, 53, 1287–1297. [Google Scholar] [CrossRef]
  50. Buhour, M.S.; Doidy, F.; Laisney, M.; Pitel, A.L.; de La Sayette, V.; Viader, F.; Eustache, F.; Desgranges, B. Pathophysiology of the Behavioral Variant of Frontotemporal Lobar Degeneration: A Study Combining MRI and FDG-PET. Brain Imaging Behav. 2017, 11, 240–252. [Google Scholar] [CrossRef]
  51. Ossenkoppele, R.; Pijnenburg, Y.A.L.; Perry, D.C.; Cohn-Sheehy, B.I.; Scheltens, N.M.E.; Vogel, J.W.; Kramer, J.H.; Van Der Vlies, A.E.; La Joie, R.; Rosen, H.J.; et al. The Behavioural/Dysexecutive Variant of Alzheimer’s Disease: Clinical, Neuroimaging and Pathological Features. Brain 2015, 138, 2732–2749. [Google Scholar] [CrossRef] [Green Version]
  52. Ossenkoppele, R.; Singleton, E.H.; Groot, C.; Dijkstra, A.A.; Eikelboom, W.S.; Seeley, W.W.; Miller, B.; Laforce, R.J.; Scheltens, P.; Papma, J.M.; et al. Research Criteria for the Behavioral Variant of Alzheimer Disease: A Systematic Review and Meta-Analysis. JAMA Neurol. 2022, 79, 48–60. [Google Scholar] [CrossRef]
  53. Whitwell, J.L.; Jack, C.R.; Przybelski, S.A.; Parisi, J.E.; Senjem, M.L.; Boeve, B.F.; Knopman, D.S.; Petersen, R.C.; Dickson, D.W.; Josephs, K.A. Temporoparietal Atrophy: A Marker of AD Pathology Independent of Clinical Diagnosis. Neurobiol. Aging 2011, 32, 1531–1541. [Google Scholar] [CrossRef] [Green Version]
  54. Lehmann, M.; Koedam, E.L.G.E.; Barnes, J.; Bartlett, J.W.; Ryan, N.S.; Pijnenburg, Y.A.L.; Barkhof, F.; Wattjes, M.P.; Scheltens, P.; Fox, N.C. Posterior Cerebral Atrophy in the Absence of Medial Temporal Lobe Atrophy in Pathologically-Confirmed Alzheimer’s Disease. Neurobiol. Aging 2012, 33, 627.e1–627.e12. [Google Scholar] [CrossRef] [Green Version]
  55. Hartikainen, P.; Räsänen, J.; Julkunen, V.; Niskanen, E.; Hallikainen, M.; Kivipelto, M.; Vanninen, R.; Remes, A.M.; Soininen, H. Cortical Thickness in Frontotemporal Dementia, Mild Cognitive Impairment, and Alzheimer’s Disease. J. Alzheimers Dis. 2012, 30, 857–874. [Google Scholar] [CrossRef]
  56. Du, A.T.; Schuff, N.; Kramer, J.H.; Rosen, H.J.; Gorno-Tempini, M.L.; Rankin, K.; Miller, B.L.; Weiner, M.W. Different Regional Patterns of Cortical Thinning in Alzheimer’s Disease and Frontotemporal Dementia. Brain 2007, 130, 1159–1166. [Google Scholar] [CrossRef]
  57. Isella, V.; Crivellaro, C.; Formenti, A.; Musarra, M.; Pacella, S.; Morzenti, S.; Ferri, F.; Mapelli, C.; Gallivanone, F.; Guerra, L.; et al. Validity of Cingulate-Precuneus-Temporo-Parietal Hypometabolism for Single-Subject Diagnosis of Biomarker-Proven Atypical Variants of Alzheimer’s Disease. J. Neurol. 2022, 269, 4440–4451. [Google Scholar] [CrossRef]
  58. Grimmer, T.; Diehl, J.; Drzezga, A.; Förstl, H.; Kurz, A. Region-Specific Decline of Cerebral Glucose Metabolism in Patients with Frontotemporal Dementia: A Prospective 18F-FDG-PET Study. Dement. Geriatr. Cogn. Disord. 2004, 18, 32–36. [Google Scholar] [CrossRef]
  59. Grossman, M.; Mickanin, J.; Onishi, K.; Hughes, E.; D’Esposito, M.; Ding, X.S.; Alavi, A.; Reivich, M. Progressive Nonfluent Aphasia: Language, Cognitive, and PET Measures Contrasted with Probable Alzheimer’s Disease. J. Cogn. Neurosci. 1996, 8, 135–154. [Google Scholar] [CrossRef]
  60. Grossman, M. The Non-Fluent/Agrammatic Variant of Primary Progressive Aphasia. Lancet Neurol. 2012, 11, 545–555. [Google Scholar] [CrossRef]
  61. Chan, D.; Anderson, V.; Pijnenburg, Y.; Whitwell, J.; Barnes, J.; Scahill, R.; Stevens, J.M.; Barkhof, F.; Scheltens, P.; Rossor, M.N.; et al. The Clinical Profile of Right Temporal Lobe Atrophy. Brain 2009, 132, 1287–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  62. Josephs, K.A.; Duffy, J.R.; Strand, E.A.; Whitwell, J.L.; Layton, K.F.; Parisi, J.E.; Hauser, M.F.; Witte, R.J.; Boeve, B.F.; Knopman, D.S.; et al. Clinicopathological and Imaging Correlates of Progressive Aphasia and Apraxia of Speech. Brain 2006, 129, 1385–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Kumfor, F.; Landin-Romero, R.; Devenney, E.; Hutchings, R.; Grasso, R.; Hodges, J.R.; Piguet, O. On the Right Side? A Longitudinal Study of Left- versus Right-Lateralized Semantic Dementia. Brain 2016, 139, 986–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Erkoyun, H.U.; Groot, C.; Heilbron, R.; Nelissen, A.; van Rossum, J.; Jutten, R.; Koene, T.; van der Flier, W.M.; Wattjes, M.P.; Scheltens, P.; et al. A Clinical-Radiological Framework of the Right Temporal Variant of Frontotemporal Dementia. Brain 2020, 143, 2831–2843. [Google Scholar] [CrossRef]
  65. Whitwell, J.L.; Jack, C.R.; Senjem, M.L.; Parisi, J.E.; Boeve, B.F.; Knopman, D.S.; Dickson, D.W.; Petersen, R.C.; Josephs, K.A. MRI Correlates of Protein Deposition and Disease Severity in Postmortem Frontotemporal Lobar Degeneration. Neurodegener. Dis. 2009, 6, 106–117. [Google Scholar] [CrossRef]
  66. McMillan, C.T.; Irwin, D.J.; Avants, B.B.; Powers, J.; Cook, P.A.; Toledo, J.B.; Wood, E.M.C.; Van Deerlin, V.M.; Lee, V.M.Y.; Trojanowski, J.Q.; et al. White Matter Imaging Helps Dissociate Tau from TDP-43 in Frontotemporal Lobar Degeneration. J. Neurol. Neurosurg. Psychiatr. 2013, 84, 949–955. [Google Scholar] [CrossRef] [Green Version]
  67. Ossenkoppele, R.; Rabinovici, G.D.; Smith, R.; Cho, H.; Scholl, M.; Strandberg, O.; Palmqvist, S.; Mattsson, N.; Janelidze, S.; Santillo, A.; et al. Discriminative Accuracy of [18F]Flortaucipir Positron Emission Tomography for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2018, 320, 1151–1162. [Google Scholar] [CrossRef] [Green Version]
  68. Yap, S.Y.; Frias, B.; Wren, M.C.; Schöll, M.; Fox, N.C.; Årstad, E.; Lashley, T.; Sander, K. Discriminatory Ability of Next-Generation Tau PET Tracers for Alzheimer’s Disease. Brain 2021, 144, 2284–2290. [Google Scholar] [CrossRef]
  69. Smith, R.; Puschmann, A.; Schöll, M.; Ohlsson, T.; Van Swieten, J.; Honer, M.; Englund, E.; Hansson, O. 18F-AV-1451 Tau PET Imaging Correlates Strongly with Tau Neuropathology in MAPT Mutation Carriers. Brain 2016, 139, 2372–2379. [Google Scholar] [CrossRef] [Green Version]
  70. Jones, W.R.B.; Cope, T.E.; Passamonti, L.; Fryer, T.D.; Hong, Y.T.; Aigbirhio, F.; Kril, J.J.; Forrest, S.L.; Allinson, K.; Coles, J.P.; et al. [18 F]AV-1451 PET in Behavioral Variant Frontotemporal Dementia Due to MAPT Mutation. Ann. Clin. Transl. Neurol. 2016, 3, 940–947. [Google Scholar] [CrossRef]
  71. Cho, H.; Choi, J.Y.; Hwang, M.S.; Lee, S.H.; Ryu, Y.H.; Lee, M.S.; Lyoo, C.H. Subcortical 18 F-AV-1451 Binding Patterns in Progressive Supranuclear Palsy. Mov. Disord. 2017, 32, 134–140. [Google Scholar] [CrossRef] [PubMed]
  72. Smith, R.; Schain, M.; Nilsson, C.; Strandberg, O.; Olsson, T.; Hägerström, D.; Jögi, J.; Borroni, E.; Schöll, M.; Honer, M.; et al. Increased Basal Ganglia Binding of 18 F-AV-1451 in Patients with Progressive Supranuclear Palsy. Mov. Disord. 2017, 32, 108–114. [Google Scholar] [CrossRef] [PubMed]
  73. Whitwell, J.L.; Lowe, V.J.; Tosakulwong, N.; Weigand, S.D.; Senjem, M.L.; Schwarz, C.G.; Spychalla, A.J.; Petersen, R.C.; Jack, C.R.; Josephs, K.A. [18F]AV-1451 Tau-PET in Progressive Supranuclear Palsy. Mov. Disord. 2017, 32, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Passamonti, L.; Rodríguez, P.V.; Hong, Y.T.; Allinson, K.S.J.; Williamson, D.; Borchert, R.J.; Sami, S.; Cope, T.E.; Bevan-Jones, W.R.; Jones, P.S.; et al. 18F-AV-1451 Positron Emission Tomography in Alzheimer’s Disease and Progressive Supranuclear Palsy. Brain 2017, 140, 781–791. [Google Scholar] [CrossRef] [Green Version]
  75. Brendel, M.; Barthel, H.; Van Eimeren, T.; Marek, K.; Beyer, L.; Song, M.; Palleis, C.; Gehmeyr, M.; Fietzek, U.; Respondek, G.; et al. Assessment of 18F-PI-2620 as a Biomarker in Progressive Supranuclear Palsy. JAMA Neurol. 2020, 77, 1408–1419. [Google Scholar] [CrossRef]
  76. Sander, K.; Lashley, T.; Gami, P.; Gendron, T.; Lythgoe, M.F.; Rohrer, J.D.; Schott, J.M.; Revesz, T.; Fox, N.C.; Årstad, E. Characterization of Tau Positron Emission Tomography Tracer [ 18 F]AV-1451 Binding to Postmortem Tissue in Alzheimer’s Disease, Primary Tauopathies, and Other Dementias. Alzheimers Dement. 2016, 12, 1116–1124. [Google Scholar] [CrossRef]
  77. Josephs, K.A.; Whitwell, J.L.; Tosakulwong, N.; Weigand, S.D.; Murray, M.E.; Liesinger, A.M.; Petrucelli, L.; Senjem, M.L.; Ivnik, R.J.; Parisi, J.E.; et al. TDP-43 and Pathological Subtype of Alzheimer’s Disease Impact Clinical Features. Ann. Neurol. 2015, 78, 697. [Google Scholar] [CrossRef] [Green Version]
  78. Lee, H.; Seo, S.; Lee, S.Y.; Jeong, H.J.; Woo, S.H.; Lee, K.M.; Lee, Y.B.; Park, K.H.; Heo, J.H.; Yoon, C.W.; et al. [18F]-THK5351 PET Imaging in Patients With Semantic Variant Primary Progressive Aphasia. Alzheimer Dis. Assoc. Disord. 2018, 32, 62–69. [Google Scholar] [CrossRef]
  79. Bevan-Jones, W.R.; Cope, T.E.; Jones, P.S.; Passamonti, L.; Hong, Y.T.; Fryer, T.D.; Arnold, R.; Allinson, K.S.J.; Coles, J.P.; Aigbirhio, F.I.; et al. [18 F]AV-1451 Binding in Vivo Mirrors the Expected Distribution of TDP-43 Pathology in the Semantic Variant of Primary Progressive Aphasia. J. Neurol. Neurosurg. Psychiatr. 2018, 89, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
  80. Makaretz, S.J.; Quimby, M.; Collins, J.; Makris, N.; McGinnis, S.; Schultz, A.; Vasdev, N.; Johnson, K.A.; Dickerson, B.C. Flortaucipir Tau PET Imaging in Semantic Variant Primary Progressive Aphasia. J. Neurol. Neurosurg. Psychiatr. 2018, 89, 1024–1031. [Google Scholar] [CrossRef]
  81. Rohrer, J.D.; Boxer, A.L. The Frontotemporal Dementia Prevention Initiative: Linking Together Genetic Frontotemporal Dementia Cohort Studies. Adv. Exp. Med. Biol. 2021, 1281, 113–121. [Google Scholar] [CrossRef]
  82. Rohrer, J.D.; Nicholas, J.M.; Cash, D.M.; van Swieten, J.; Dopper, E.; Jiskoot, L.; van Minkelen, R.; Rombouts, S.A.; Cardoso, M.J.; Clegg, S.; et al. Presymptomatic Cognitive and Neuroanatomical Changes in Genetic Frontotemporal Dementia in the Genetic Frontotemporal Dementia Initiative (GENFI) Study: A Cross-Sectional Analysis. Lancet Neurol. 2015, 14, 253–262. [Google Scholar] [CrossRef]
  83. Jiang, J.; Zhu, Q.; Gendron, T.F.; Saberi, S.; McAlonis-Downes, M.; Seelman, A.; Stauffer, J.E.; Jafar-nejad, P.; Drenner, K.; Schulte, D.; et al. Gain of Toxicity from ALS/FTD-Linked Repeat Expansions in C9ORF72 Is Alleviated by Antisense Oligonucleotides Targeting GGGGCC-Containing RNAs. Neuron 2016, 90, 535–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Arrant, A.E.; Onyilo, V.C.; Unger, D.E.; Roberson, E.D. Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis. J. Neurosci. 2018, 38, 2341–2358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  85. DeVos, S.L.; Miller, R.L.; Schoch, K.M.; Holmes, B.B.; Kebodeaux, C.S.; Wegener, A.J.; Chen, G.; Shen, T.; Tran, H.; Nichols, B.; et al. Tau Reduction Prevents Neuronal Loss and Reverses Pathological Tau Deposition and Seeding in Mice with Tauopathy. Sci. Transl. Med. 2017, 9, eaag0481. [Google Scholar] [CrossRef] [Green Version]
  86. Jadhav, S.; Avila, J.; Schöll, M.; Kovacs, G.G.; Kövari, E.; Skrabana, R.; Evans, L.D.; Kontsekova, E.; Malawska, B.; de Silva, R.; et al. A Walk through Tau Therapeutic Strategies. Acta Neuropathol. Commun. 2019, 7, 22. [Google Scholar] [CrossRef]
  87. Chen, Q.; Kantarci, K. Imaging Biomarkers for Neurodegeneration in Presymptomatic Familial Frontotemporal Lobar Degeneration. Front. Neurol. 2020, 11, 80. [Google Scholar] [CrossRef] [Green Version]
  88. Cash, D.M.; Bocchetta, M.; Thomas, D.L.; Dick, K.M.; van Swieten, J.C.; Borroni, B.; Galimberti, D.; Masellis, M.; Tartaglia, M.C.; Rowe, J.B.; et al. Patterns of Gray Matter Atrophy in Genetic Frontotemporal Dementia: Results from the GENFI Study. Neurobiol. Aging 2018, 62, 191–196. [Google Scholar] [CrossRef]
  89. Ibanez, A.; Yokoyama, J.S.; Possin, K.L.; Matallana, D.; Lopera, F.; Nitrini, R.; Takada, L.T.; Custodio, N.; Ortiz, A.L.S.; Avila-Funes, J.A.; et al. The Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat): Driving Multicentric Research and Implementation Science. Front. Neurol. 2021, 12, 631722. [Google Scholar] [CrossRef]
  90. Ryan, B.; Baker, A.; Ilse, C.; Brickell, K.L.; Kersten, H.M.; Danesh-Meyer, H.V.; Williams, J.M.; Addis, D.R.; Tippett, L.; Curtis, M.A. Diagnosing Pre-Clinical Dementia: The NZ Genetic Frontotemporal Dementia Study (FTDGeNZ). N. Zeal. Med. J. 2018, 131, 88–91. [Google Scholar]
  91. Boeve, B.F.; Boylan, K.B.; Graff-Radford, N.R.; Dejesus-Hernandez, M.; Knopman, D.S.; Pedraza, O.; Vemuri, P.; Jones, D.; Lowe, V.; Murray, M.E.; et al. Characterization of Frontotemporal Dementia and/or Amyotrophic Lateral Sclerosis Associated with the GGGGCC Repeat Expansion in C9ORF72. Brain 2012, 135, 765–783. [Google Scholar] [CrossRef] [PubMed]
  92. Irwin, D.J.; McMillan, C.T.; Brettschneider, J.; Libon, D.J.; Powers, J.; Rascovsky, K.; Toledo, J.B.; Boller, A.; Bekisz, J.; Chandrasekaran, K.; et al. Cognitive Decline and Reduced Survival in C9orf72 Expansion Frontotemporal Degeneration and Amyotrophic Lateral Sclerosis. J. Neurol. Neurosurg. Psychiatr. 2013, 84, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Mahoney, C.J.; Beck, J.; Rohrer, J.D.; Lashley, T.; Mok, K.; Shakespeare, T.; Yeatman, T.; Warrington, E.K.; Schott, J.M.; Fox, N.C.; et al. Frontotemporal Dementia with the C9ORF72 Hexanucleotide Repeat Expansion: Clinical, Neuroanatomical and Neuropathological Features. Brain 2012, 135, 736–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Sha, S.J.; Takada, L.T.; Rankin, K.P.; Yokoyama, J.S.; Rutherford, N.J.; Fong, J.C.; Khan, B.; Karydas, A.; Baker, M.C.; De Jesus-Hernandez, M.; et al. Frontotemporal Dementia Due to C9ORF72 Mutations: Clinical and Imaging Features. Neurology 2012, 79, 1002–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  95. Rohrer, J.D.; Lashley, T.; Schott, J.M.; Warren, J.E.; Mead, S.; Isaacs, A.M.; Beck, J.; Hardy, J.; De Silva, R.; Warrington, E.; et al. Clinical and Neuroanatomical Signatures of Tissue Pathology in Frontotemporal Lobar Degeneration. Brain 2011, 134, 2565–2581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Bocchetta, M.; Todd, E.G.; Peakman, G.; Cash, D.M.; Convery, R.S.; Russell, L.L.; Thomas, D.L.; Iglesias, J.E.; van Swieten, J.C.; Jiskoot, L.C.; et al. Differential Early Subcortical Involvement in Genetic FTD within the GENFI Cohort. NeuroImage Clin. 2021, 30, 102646. [Google Scholar] [CrossRef]
  97. Devenney, E.; Hornberger, M.; Irish, M.; Mioshi, E.; Burrell, J.; Tan, R.; Kiernan, M.C.; Hodges, J.R. Frontotemporal Dementia Associated with the C9ORF72 Mutation: A Unique Clinical Profile. JAMA Neurol. 2014, 71, 331–339. [Google Scholar] [CrossRef] [Green Version]
  98. Khan, B.K.; Yokoyama, J.S.; Takada, L.T.; Sha, S.J.; Rutherford, N.J.; Fong, J.C.; Karydas, A.M.; Wu, T.; Ketelle, R.S.; Baker, M.C.; et al. Atypical, Slowly Progressive Behavioural Variant Frontotemporal Dementia Associated with C9ORF72 Hexanucleotide Expansion. J. Neurol. Neurosurg. Psychiatr. 2012, 83, 358–364. [Google Scholar] [CrossRef] [Green Version]
  99. Lee, S.E.; Khazenzon, A.M.; Trujillo, A.J.; Guo, C.C.; Yokoyama, J.S.; Sha, S.J.; Takada, L.T.; Karydas, A.M.; Block, N.R.; Coppola, G.; et al. Altered Network Connectivity in Frontotemporal Dementia with C9orf72 Hexanucleotide Repeat Expansion. Brain 2014, 137, 3047–3060. [Google Scholar] [CrossRef] [Green Version]
  100. Josephs, K.A.; Whitwell, J.L.; Jack, C.R.; Boeve, B.F.; Senjem, M.L.; Baker, M.; Rademakers, R.; Ivnik, R.J.; Knopman, D.S.; Wszolek, Z.K.; et al. Voxel-Based Morphometry Patterns of Atrophy in FTLD with Mutations in MAPT or PGRN. Neurology 2009, 72, 813–820. [Google Scholar] [CrossRef]
  101. Le Ber, I.; Camuzat, A.; Hannequin, D.; Pasquier, F.; Guedj, E.; Rovelet-Lecrux, A.; Hahn-Barma, V.; Van Der Zee, J.; Clot, F.; Bakchine, S.; et al. Phenotype Variability in Progranulin Mutation Carriers: A Clinical, Neuropsychological, Imaging and Genetic Study. Brain 2008, 131, 732–746. [Google Scholar] [CrossRef] [PubMed]
  102. Beck, J.; Rohrer, J.D.; Campbell, T.; Isaacs, A.; Morrison, K.E.; Goodall, E.F.; Warrington, E.K.; Stevens, J.; Revesz, T.; Holton, J.; et al. A Distinct Clinical, Neuropsychological and Radiological Phenotype Is Associated with Progranulin Gene Mutations in a Large UK Series. Brain 2008, 131, 706–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Ameur, F.; Colliot, O.; Caroppo, P.; Ströer, S.; Dormont, D.; Brice, A.; Azuar, C.; Dubois, B.; Le Ber, I.; Bertrand, A. White Matter Lesions in FTLD: Distinct Phenotypes Characterize GRN and C9ORF72 Mutations. Neurol. Genet. 2016, 2, e47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Paternicò, D.; Premi, E.; Gazzina, S.; Cosseddu, M.; Alberici, A.; Archetti, S.; Cotelli, M.S.; Micheli, A.; Turla, M.; Gasparotti, R.; et al. White Matter Hyperintensities Characterize Monogenic Frontotemporal Dementia with Granulin Mutations. Neurobiol. Aging 2016, 38, 176–180. [Google Scholar] [CrossRef] [PubMed]
  105. Sudre, C.H.; Bocchetta, M.; Cash, D.; Thomas, D.L.; Woollacott, I.; Dick, K.M.; van Swieten, J.; Borroni, B.; Galimberti, D.; Masellis, M.; et al. White Matter Hyperintensities Are Seen Only in GRN Mutation Carriers in the GENFI Cohort. NeuroImage Clin. 2017, 15, 171–180. [Google Scholar] [CrossRef]
  106. Sudre, C.H.; Bocchetta, M.; Heller, C.; Convery, R.; Neason, M.; Moore, K.M.; Cash, D.M.; Thomas, D.L.; Woollacott, I.O.C.; Foiani, M.; et al. White Matter Hyperintensities in Progranulin-Associated Frontotemporal Dementia: A Longitudinal GENFI Study. NeuroImage Clin. 2019, 24, 102077. [Google Scholar] [CrossRef]
  107. Woollacott, I.O.C.; Bocchetta, M.; Sudre, C.H.; Ridha, B.H.; Strand, C.; Courtney, R.; Ourselin, S.; Cardoso, M.J.; Warren, J.D.; Rossor, M.N.; et al. Pathological Correlates of White Matter Hyperintensities in a Case of Progranulin Mutation Associated Frontotemporal Dementia. Neurocase 2018, 24, 166–174. [Google Scholar] [CrossRef] [Green Version]
  108. Whitwell, J.L.; Weigand, S.D.; Gunter, J.L.; Boeve, B.F.; Rademakers, R.; Baker, M.; Knopman, D.S.; Wszolek, Z.K.; Petersen, R.C.; Jack, C.R.; et al. Trajectories of Brain and Hippocampal Atrophy in FTD with Mutations in MAPT or GRN. Neurology 2011, 77, 393–398. [Google Scholar] [CrossRef] [Green Version]
  109. Whitwell, J.L.; Boeve, B.F.; Weigand, S.D.; Senjem, M.L.; Gunter, J.L.; Baker, M.C.; Dejesus-Hernandez, M.; Knopman, D.S.; Wszolek, Z.K.; Petersen, R.C.; et al. Brain Atrophy over Time in Genetic and Sporadic Frontotemporal Dementia: A Study of 198 Serial Magnetic Resonance Images. Eur. J. Neurol. 2015, 22, 745–752. [Google Scholar] [CrossRef] [Green Version]
  110. Benussi, A.; Alberici, A.; Samra, K.; Russell, L.L.; Greaves, C.V.; Bocchetta, M.; Ducharme, S.; Finger, E.; Fumagalli, G.; Galimberti, D.; et al. Conceptual Framework for the Definition of Preclinical and Prodromal Frontotemporal Dementia. Alzheimers Dement. 2022, 18, 1408–1423. [Google Scholar] [CrossRef]
  111. Pievani, M.; Paternicò, D.; Benussi, L.; Binetti, G.; Orlandini, A.; Cobelli, M.; Magnaldi, S.; Ghidoni, R.; Frisoni, G.B. Pattern of Structural and Functional Brain Abnormalities in Asymptomatic Granulin Mutation Carriers. Alzheimers Dement. 2014, 10, S354–S363. [Google Scholar] [CrossRef]
  112. Premi, E.; Cauda, F.; Costa, T.; Diano, M.; Gazzina, S.; Gualeni, V.; Alberici, A.; Archetti, S.; Magoni, M.; Gasparotti, R.; et al. Looking for Neuroimaging Markers in Frontotemporal Lobar Degeneration Clinical Trials: A Multi-Voxel Pattern Analysis Study in Granulin Disease. J. Alzheimers Dis. 2016, 51, 249–262. [Google Scholar] [CrossRef] [PubMed]
  113. Whitwell, J.L.; Josephs, K.A.; Avula, R.; Tosakulwong, N.; Weigand, S.D.; Senjem, M.L.; Vemuri, P.; Jones, D.T.; Gunter, J.L.; Baker, M.; et al. Altered Functional Connectivity in Asymptomatic MAPT Subjects: A Comparison to BvFTD. Neurology 2011, 77, 866–874. [Google Scholar] [CrossRef] [PubMed]
  114. Allen, E.A.; Damaraju, E.; Plis, S.M.; Erhardt, E.B.; Eichele, T.; Calhoun, V.D. Tracking Whole-Brain Connectivity Dynamics in the Resting State. Cereb. Cortex 2014, 24, 663–676. [Google Scholar] [CrossRef] [PubMed]
  115. Calhoun, V.D.; Miller, R.; Pearlson, G.; Adali, T. The Chronnectome: Time-Varying Connectivity Networks as the next Frontier in FMRI Data Discovery. Neuron 2014, 84, 262–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  116. Chang, C.; Glover, G.H. Time-Frequency Dynamics of Resting-State Brain Connectivity Measured with FMRI. Neuroimage 2010, 50, 81–98. [Google Scholar] [CrossRef] [Green Version]
  117. Premi, E.; Calhoun, V.D.; Diano, M.; Gazzina, S.; Cosseddu, M.; Alberici, A.; Archetti, S.; Paternicò, D.; Gasparotti, R.; van Swieten, J.; et al. The Inner Fluctuations of the Brain in Presymptomatic Frontotemporal Dementia: The Chronnectome Fingerprint. Neuroimage 2019, 189, 645–654. [Google Scholar] [CrossRef] [Green Version]
  118. Premi, E.; Giunta, M.; Iraji, A.; Rachakonda, S.; Calhoun, V.D.; Gazzina, S.; Benussi, A.; Gasparotti, R.; Archetti, S.; Bocchetta, M.; et al. Dissemination in Time and Space in Presymptomatic Granulin Mutation Carriers: A GENFI Spatial Chronnectome Study. Neurobiol. Aging 2021, 108, 155–167. [Google Scholar] [CrossRef]
  119. Olney, N.T.; Ong, E.; Goh, S.Y.M.; Bajorek, L.; Dever, R.; Staffaroni, A.M.; Cobigo, Y.; Bock, M.; Chiang, K.; Ljubenkov, P.; et al. Clinical and Volumetric Changes with Increasing Functional Impairment in Familial Frontotemporal Lobar Degeneration. Alzheimers Dement. 2020, 16, 49–59. [Google Scholar] [CrossRef]
  120. Panman, J.L.; Jiskoot, L.C.; Bouts, M.J.R.J.; Meeter, L.H.H.; van der Ende, E.L.; Poos, J.M.; Feis, R.A.; Kievit, A.J.A.; van Minkelen, R.; Dopper, E.G.P.; et al. Gray and White Matter Changes in Presymptomatic Genetic Frontotemporal Dementia: A Longitudinal MRI Study. Neurobiol. Aging 2019, 76, 115–124. [Google Scholar] [CrossRef]
  121. Caroppo, P.; Habert, M.O.; Durrleman, S.; Funkiewiez, A.; Perlbarg, V.; Hahn, V.; Bertin, H.; Gaubert, M.; Routier, A.; Hannequin, D.; et al. Lateral Temporal Lobe: An Early Imaging Marker of the Presymptomatic GRN Disease? J. Alzheimers Dis. 2015, 47, 751–759. [Google Scholar] [CrossRef]
  122. Bertrand, A.; Wen, J.; Rinaldi, D.; Houot, M.; Sayah, S.; Camuzat, A.; Fournier, C.; Fontanella, S.; Routier, A.; Couratier, P.; et al. Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years. JAMA Neurol. 2018, 75, 236–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Domínguez-Vivero, C.; Wu, L.; Lee, S.; Manoochehri, M.; Cines, S.; Brickman, A.M.; Rizvi, B.; Chesebro, A.; Gazes, Y.; Fallon, E.; et al. Structural Brain Changes in Pre-Clinical FTD MAPT Mutation Carriers. J. Alzheimers Dis. 2020, 75, 595–606. [Google Scholar] [CrossRef] [PubMed]
  124. Fumagalli, G.G.; Basilico, P.; Arighi, A.; Bocchetta, M.; Dick, K.M.; Cash, D.M.; Harding, S.; Mercurio, M.; Fenoglio, C.; Pietroboni, A.M.; et al. Distinct Patterns of Brain Atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) Cohort Revealed by Visual Rating Scales. Alzheimers Res. Ther. 2018, 10, 46. [Google Scholar] [CrossRef] [PubMed]
  125. Anderl-Straub, S.; Lausser, L.; Lombardi, J.; Uttner, I.; Fassbender, K.; Fliessbach, K.; Huppertz, H.J.; Jahn, H.; Kornhuber, J.; Obrig, H.; et al. Predicting Disease Progression in Behavioral Variant Frontotemporal Dementia. Alzheimers Dement. 2021, 13, e12262. [Google Scholar] [CrossRef] [PubMed]
  126. Illán-Gala, I.; Falgàs, N.; Friedberg, A.; Castro-Suárez, S.; Keret, O.; Rogers, N.; Oz, D.; Nigro, S.; Quattrone, A.; Quattrone, A.; et al. Diagnostic Utility of Measuring Cerebral Atrophy in the Behavioral Variant of Frontotemporal Dementia and Association With Clinical Deterioration. JAMA Netw. Open 2021, 4, e211290. [Google Scholar] [CrossRef] [PubMed]
  127. Agarwal, S.; Ahmed, R.M.; D’Mello, M.; Foxe, D.; Kaizik, C.; Kiernan, M.C.; Halliday, G.M.; Piguet, O.; Hodges, J.R. Predictors of Survival and Progression in Behavioural Variant Frontotemporal Dementia. Eur. J. Neurol. 2019, 26, 774–779. [Google Scholar] [CrossRef]
  128. Lee, J.S.; Jung, N.Y.; Jang, Y.K.; Kim, H.J.; Seo, S.W.; Lee, J.; Kim, Y.J.; Lee, J.H.; Kim, B.C.; Park, K.W.; et al. Prognosis of Patients with Behavioral Variant Frontotemporal Dementia Who Have Focal Versus Diffuse Frontal Atrophy. J. Clin. Neurol. 2017, 13, 234–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  129. Borroni, B.; Grassi, M.; Agosti, C.; Premi, E.; Alberici, A.; Paghera, B.; Lucchini, S.; Di Luca, M.; Perani, D.; Padovani, A. Survival in Frontotemporal Lobar Degeneration and Related Disorders: Latent Class Predictors and Brain Functional Correlates. Rejuvenation Res. 2009, 12, 33–43. [Google Scholar] [CrossRef]
  130. Borroni, B.; Grassi, M.; Premi, E.; Alberici, A.; Cosseddu, M.; Cancelli, V.; Caobelli, F.; Paghera, B.; Padovani, A. Is Long-Term Prognosis of Frontotemporal Lobar Degeneration Predictable by Neuroimaging? Evidence from a Single-Subject Functional Brain Study. J. Alzheimers Dis. 2012, 29, 883–890. [Google Scholar] [CrossRef] [Green Version]
  131. Le Ber, I.; Guedj, E.; Gabelle, A.; Verpillat, P.; Volteau, M.; Thomas-Anterion, C.; Decousus, M.; Hannequin, D.; Véra, P.; Lacomblez, L.; et al. Demographic, Neurological and Behavioural Characteristics and Brain Perfusion SPECT in Frontal Variant of Frontotemporal Dementia. Brain 2006, 129, 3051–3065. [Google Scholar] [CrossRef] [PubMed]
  132. Maiovis, P.; Ioannidis, P.; Gerasimou, G.; Gotzamani-Psarrakou, A.; Karacostas, D. Cognitive Reserve Hypothesis in Frontotemporal Dementia: Evidence from a Brain SPECT Study in a Series of Greek Frontotemporal Dementia Patients. Neurodegener. Dis. 2018, 18, 69–73. [Google Scholar] [CrossRef] [PubMed]
  133. Borroni, B.; Premi, E.; Agosti, C.; Alberici, A.; Garibotto, V.; Bellelli, G.; Paghera, B.; Lucchini, S.; Giubbini, R.; Perani, D.; et al. Revisiting Brain Reserve Hypothesis in Frontotemporal Dementia: Evidence from a Brain Perfusion Study. Dement. Geriatr. Cogn. Disord. 2009, 28, 130–135. [Google Scholar] [CrossRef]
  134. Premi, E.; Garibotto, V.; Alberici, A.; Paghera, B.; Giubbini, R.; Padovani, A.; Borroni, B. Nature versus Nurture in Frontotemporal Lobar Degeneration: The Interaction of Genetic Background and Education on Brain Damage. Dement. Geriatr. Cogn. Disord. 2012, 33, 372–378. [Google Scholar] [CrossRef] [PubMed]
  135. Zhang, M.; Ferrari, R.; Tartaglia, M.C.; Keith, J.; Surace, E.I.; Wolf, U.; Sato, C.; Grinberg, M.; Liang, Y.; Xi, Z.; et al. A C6orf10/LOC101929163 Locus Is Associated with Age of Onset in C9orf72 Carriers. Brain 2018, 141, 2895–2907. [Google Scholar] [CrossRef] [PubMed]
  136. Pottier, C.; Zhou, X.; Perkerson, R.B.; Baker, M.; Jenkins, G.D.; Serie, D.J.; Ghidoni, R.; Benussi, L.; Binetti, G.; de Munain, A.L.; et al. Potential Genetic Modifiers of Disease Risk and Age at Onset in Patients with Frontotemporal Lobar Degeneration and GRN Mutations: A Genome-Wide Association Study. Lancet Neurol. 2018, 17, 548–558. [Google Scholar] [CrossRef] [Green Version]
  137. Premi, E.; Grassi, M.; Van Swieten, J.; Galimberti, D.; Graff, C.; Masellis, M.; Tartaglia, C.; Tagliavini, F.; Rowe, J.B.; Laforce, R.; et al. Cognitive Reserve and TMEM106B Genotype Modulate Brain Damage in Presymptomatic Frontotemporal Dementia: A GENFI Study. Brain 2017, 140, 1784–1791. [Google Scholar] [CrossRef] [Green Version]
  138. Premi, E.; Cristillo, V.; Gazzina, S.; Benussi, A.; Alberici, A.; Cotelli, M.S.; Calhoun, V.D.; Iraji, A.; Magoni, M.; Cotelli, M.; et al. Expanding the Role of Education in Frontotemporal Dementia: A Functional Dynamic Connectivity (the Chronnectome) Study. Neurobiol. Aging 2020, 93, 35–43. [Google Scholar] [CrossRef]
  139. Premi, E.; Formenti, A.; Gazzina, S.; Archetti, S.; Gasparotti, R.; Padovani, A.; Borroni, B. Effect of TMEM106B Polymorphism on Functional Network Connectivity in Asymptomatic GRN Mutation Carriers. JAMA Neurol. 2014, 71, 216–221. [Google Scholar] [CrossRef] [Green Version]
  140. Gazzina, S.; Grassi, M.; Premi, E.; Cosseddu, M.; Alberici, A.; Archetti, S.; Gasparotti, R.; Van Swieten, J.; Galimberti, D.; Sanchez-Valle, R.; et al. Education Modulates Brain Maintenance in Presymptomatic Frontotemporal Dementia. J. Neurol. Neurosurg. Psychiatr. 2019, 90, 1124–1130. [Google Scholar] [CrossRef]
  141. Premi, E.; Costa, T.; Gazzina, S.; Benussi, A.; Cauda, F.; Gasparotti, R.; Archetti, S.; Alberici, A.; Van Swieten, J.C.; Sanchez-Valle, R.; et al. An Automated Toolbox to Predict Single Subject Atrophy in Presymptomatic Granulin Mutation Carriers. J. Alzheimers Dis. 2022, 86, 205–218. [Google Scholar] [CrossRef] [PubMed]
  142. Young, A.L.; Marinescu, R.V.; Oxtoby, N.P.; Bocchetta, M.; Yong, K.; Firth, N.C.; Cash, D.M.; Thomas, D.L.; Dick, K.M.; Cardoso, J.; et al. Uncovering the Heterogeneity and Temporal Complexity of Neurodegenerative Diseases with Subtype and Stage Inference. Nat. Commun. 2018, 9, 4273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  143. Young, A.L.; Bocchetta, M.; Russell, L.L.; Convery, R.S.; Peakman, G.; Todd, E.; Cash, D.M.; Greaves, C.V.; van Swieten, J.; Jiskoot, L.; et al. Characterizing the Clinical Features and Atrophy Patterns of MAPT-Related Frontotemporal Dementia With Disease Progression Modeling. Neurology 2021, 97, e941–e952. [Google Scholar] [CrossRef] [PubMed]
  144. Iturria-Medina, Y.; Khan, A.F.; Adewale, Q.; Shirazi, A.H. Blood and Brain Gene Expression Trajectories Mirror Neuropathology and Clinical Deterioration in Neurodegeneration. Brain 2020, 143, 661–673. [Google Scholar] [CrossRef]
  145. McCarthy, J.; Borroni, B.; Sanchez-Valle, R.; Moreno, F.; Laforce, R.; Graff, C.; Synofzik, M.; Galimberti, D.; Rowe, J.B.; Masellis, M.; et al. Data-Driven Staging of Genetic Frontotemporal Dementia Using Multi-Modal MRI. Hum. Brain Mapp. 2022, 43, 1821–1835. [Google Scholar] [CrossRef]
Figure 1. Proposed advanced neuroimaging techniques according to different aims. Advanced neuroimaging allows to investigate different aspects of FTD, from defining neuropathology to early and differential diagnosis and disease progression. Different techniques are suitable for each of these aims.
Figure 1. Proposed advanced neuroimaging techniques according to different aims. Advanced neuroimaging allows to investigate different aspects of FTD, from defining neuropathology to early and differential diagnosis and disease progression. Different techniques are suitable for each of these aims.
Ijms 23 12867 g001
Figure 2. Representative VBM analysis in FTLD. From our historical cohort of FTLD patients we performed a structural MRI analysis (voxel-based morphometry) to demonstrate the different patterns of gray matter atrophy. To this aim, we considered the following cohort of subjects (80 healthy controls (63.1 ± 7.9 years, 75% females); 122 bvFTD (64.8 ± 7.9 years, 38% females): 68 avPPA (65.6 ± 8.4 years, 66.2% females); 30 svPPA (63.6 ± 8.4 years, 56.7% females). Age and gender are considered nuisance variables in the statistical model. The findings (patient < healthy controls for each group) are superimposed on a 3D MRI template; clusters surviving a statistical threshold of p < 0.05 FWE whole-brain correction for multiple comparisons are reported. VBM—voxel-based morphometry; MRI—magnetic resonance imaging; FWE—family-wise error; L—left.
Figure 2. Representative VBM analysis in FTLD. From our historical cohort of FTLD patients we performed a structural MRI analysis (voxel-based morphometry) to demonstrate the different patterns of gray matter atrophy. To this aim, we considered the following cohort of subjects (80 healthy controls (63.1 ± 7.9 years, 75% females); 122 bvFTD (64.8 ± 7.9 years, 38% females): 68 avPPA (65.6 ± 8.4 years, 66.2% females); 30 svPPA (63.6 ± 8.4 years, 56.7% females). Age and gender are considered nuisance variables in the statistical model. The findings (patient < healthy controls for each group) are superimposed on a 3D MRI template; clusters surviving a statistical threshold of p < 0.05 FWE whole-brain correction for multiple comparisons are reported. VBM—voxel-based morphometry; MRI—magnetic resonance imaging; FWE—family-wise error; L—left.
Ijms 23 12867 g002
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Pengo, M.; Premi, E.; Borroni, B. Dissecting the Many Faces of Frontotemporal Dementia: An Imaging Perspective. Int. J. Mol. Sci. 2022, 23, 12867. https://doi.org/10.3390/ijms232112867

AMA Style

Pengo M, Premi E, Borroni B. Dissecting the Many Faces of Frontotemporal Dementia: An Imaging Perspective. International Journal of Molecular Sciences. 2022; 23(21):12867. https://doi.org/10.3390/ijms232112867

Chicago/Turabian Style

Pengo, Marta, Enrico Premi, and Barbara Borroni. 2022. "Dissecting the Many Faces of Frontotemporal Dementia: An Imaging Perspective" International Journal of Molecular Sciences 23, no. 21: 12867. https://doi.org/10.3390/ijms232112867

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop