The Establishment of a Mouse Model of Recurrent Primary Dysmenorrhea
Abstract
:1. Introduction
2. Results
2.1. Estrous Cycle Monitor
2.2. Writhing Responses and Uterine Morphological Changes
2.3. Histomorphology Assessment of Uterus
2.4. Characterization of Uterine Artery Blood Flow Features
2.5. Biochemical Analysis of PD-Related Indicators
2.6. COX-2 Expression
2.7. Serum Metabolomics Analysis
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Animals
5.2. Reagents
5.3. Animal Treatment
5.4. Hematoxylin–Eosin Staining of Uterine Tissue
5.5. Uterine Artery Blood Flow Analysis
5.6. PGF2α and PGE2 Measurement
5.7. Western Blot Analysis
5.8. Untargeted Metabolomics Analysis
5.8.1. Serum Sample Pretreatment
5.8.2. LC-MS Analysis
5.8.3. Method Assessment
5.8.4. Data Processing
5.8.5. Metabolite Identification and Pathway Analysis
5.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferries-Rowe, E.; Corey, E.; Archer, J.S. Primary Dysmenorrhea: Diagnosis and Therapy. Obstet. Gynecol. 2020, 136, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Iacovides, S.; Avidon, I.; Baker, F.C. What we know about primary dysmenorrhea today: A critical review. Hum. Reprod. Update 2015, 21, 762–778. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tu, F.; Hellman, K. Primary Dysmenorrhea: Diagnosis and Therapy. Obstet. Gynecol. 2021, 137, 752. [Google Scholar] [CrossRef]
- Kho, K.A.; Shields, J.K. Diagnosis and Management of Primary Dysmenorrhea. Jama 2020, 323, 268–269. [Google Scholar] [CrossRef] [PubMed]
- Carroquino-Garcia, P.; Jiménez-Rejano, J.J.; Medrano-Sanchez, E.; de la Casa-Almeida, M.; Diaz-Mohedo, E.; Suarez-Serrano, C. Therapeutic Exercise in the Treatment of Primary Dysmenorrhea: A Systematic Review and Meta-Analysis. Phys. Ther. 2019, 99, 1371–1380. [Google Scholar] [CrossRef] [PubMed]
- McKenna, K.A.; Fogleman, C.D. Dysmenorrhea. Am. Fam. Physician 2021, 104, 164–170. [Google Scholar] [PubMed]
- Earl, R.A.; Grivell, R.M. Nifedipine for primary dysmenorrhoea. Cochrane Database Syst. Rev. 2021, 12, Cd012912. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Guimarães, I.; Póvoa, A.M. Primary Dysmenorrhea: Assessment and Treatment. Rev. Bras. Ginecol. Obstet. 2020, 42, 501–507. [Google Scholar] [CrossRef]
- ACOG Committee Opinion No. 760: Dysmenorrhea and Endometriosis in the Adolescent. Obstet. Gynecol. 2018, 132, e249–e258. [CrossRef]
- Wang, C.; Liu, Y.; Dun, W.; Zhang, T.; Yang, J.; Wang, K.; Mu, J.; Zhang, M.; Liu, J. Effects of repeated menstrual pain on empathic neural responses in women with primary dysmenorrhea across the menstrual cycle. Hum. Brain Mapp. 2021, 42, 345–356. [Google Scholar] [CrossRef]
- Dun, W.; Fan, T.; Wang, Q.; Wang, K.; Yang, J.; Li, H.; Liu, J.; Liu, H. Association Between Trait Empathy and Resting Brain Activity in Women With Primary Dysmenorrhea During the Pain and Pain-Free Phases. Front. Psychiatry 2020, 11, 608928. [Google Scholar] [CrossRef]
- Bajalan, Z.; Moafi, F.; MoradiBaglooei, M.; Alimoradi, Z. Mental health and primary dysmenorrhea: A systematic review. J. Psychosom. Obstet. Gynaecol. 2019, 40, 185–194. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Mu, J.; Xu, Q.; Chen, T.; Dun, W.; Yang, J.; Tian, J.; Hu, L.; Zhang, M. Altered white matter microarchitecture in the cingulum bundle in women with primary dysmenorrhea: A tract-based analysis study. Hum. Brain Mapp. 2017, 38, 4430–4443. [Google Scholar] [CrossRef][Green Version]
- He, J.; Dun, W.; Han, F.; Wang, K.; Yang, J.; Ma, S.; Zhang, M.; Liu, J.; Liu, H. Abnormal white matter microstructure along the thalamus fiber pathways in women with primary dysmenorrhea. Brain Imaging Behav. 2020, 15, 2061–2068. [Google Scholar] [CrossRef]
- Wu, X.; Yu, W.; Tian, X.; Liang, Z.; Su, Y.; Wang, Z.; Li, X.; Yang, L.; Shen, J. Altered Posterior Cerebellar Lobule Connectivity With Perigenual Anterior Cingulate Cortex in Women With Primary Dysmenorrhea. Front. Neurol. 2021, 12, 645616. [Google Scholar] [CrossRef]
- Du, Y.; Li, Y.; Fu, X.; Li, C.; Yanan, L. Efficacy of Guizhi Fuling Wan for primary dysmenorrhea: Protocol for a randomized controlled trial. Trials 2021, 22, 933. [Google Scholar] [CrossRef]
- Chai, C.; Hong, F.; Yan, Y.; Yang, L.; Zong, H.; Wang, C.; Liu, Z.; Yu, B. Effect of traditional Chinese medicine formula GeGen decoction on primary dysmenorrhea: A randomized controlled trial study. J. Ethnopharmacol. 2020, 261, 113053. [Google Scholar] [CrossRef]
- Oladosu, F.A.; Tu, F.F.; Hellman, K.M. Nonsteroidal antiinflammatory drug resistance in dysmenorrhea: Epidemiology, causes, and treatment. Am. J. Obstet. Gynecol. 2018, 218, 390–400. [Google Scholar] [CrossRef]
- Allyn, K.; Evans, S.; Seidman, L.C.; Payne, L.A. “Tomorrow, I’ll Be Fine”: Impacts and coping mechanisms in adolescents and young adults with primary dysmenorrhoea. J. Adv. Nurs. 2020, 76, 2637–2647. [Google Scholar] [CrossRef]
- Tang, B.; Liu, D.; Chen, L.; Liu, Y. NLRP3 inflammasome inhibitor MCC950 attenuates primary dysmenorrhea in mice via the NF-κB/COX-2/PG pathway. J. Inflamm. 2020, 17, 22. [Google Scholar] [CrossRef]
- Osayande, A.S.; Mehulic, S. Diagnosis and initial management of dysmenorrhea. Am. Fam. Physician 2014, 89, 341–346. [Google Scholar] [PubMed]
- Tong, H.; Yu, M.; Fei, C.; Ji, D.; Dong, J.; Su, L.; Gu, W.; Mao, C.; Li, L.; Bian, Z.; et al. Bioactive constituents and the molecular mechanism of Curcumae Rhizoma in the treatment of primary dysmenorrhea based on network pharmacology and molecular docking. Phytomedicine Int. J. Phytother. Phytopharm. 2021, 86, 153558. [Google Scholar] [CrossRef] [PubMed]
- Akerlund, M. Vasopressin and oxytocin in normal reproduction and in the pathophysiology of preterm labour and primary dysmenorrhoea. Development of receptor antagonists for therapeutic use in these conditions. Rocz. Akad. Med. Bialymst. 2004, 49, 18–21. [Google Scholar] [PubMed]
- Akerlund, M. Vascularization of human endometrium. Uterine blood flow in healthy condition and in primary dysmenorrhoea. Ann. N. Y. Acad. Sci. 1994, 734, 47–56. [Google Scholar] [CrossRef]
- Hauksson, A.; Akerlund, M.; Forsling, M.L.; Kindahl, H. Plasma concentrations of vasopressin and a prostaglandin F2 alpha metabolite in women with primary dysmenorrhoea before and during treatment with a combined oral contraceptive. J. Endocrinol. 1987, 115, 355–361. [Google Scholar] [CrossRef]
- Liedman, R.; Skillern, L.; James, I.; McLeod, A.; Grant, L.; Akerlund, M. Validation of a test model of induced dysmenorrhea. Acta Obstet. Gynecol. Scand. 2006, 85, 451–457. [Google Scholar] [CrossRef][Green Version]
- Wong, C.L.; Farquhar, C.; Roberts, H.; Proctor, M. Oral contraceptive pill as treatment for primary dysmenorrhoea. Cochrane Database Syst. Rev. 2009, Cd002120. [Google Scholar] [CrossRef]
- Marjoribanks, J.; Ayeleke, R.O.; Farquhar, C.; Proctor, M. Nonsteroidal anti-inflammatory drugs for dysmenorrhoea. Cochrane Database Syst. Rev. 2015, 2015, Cd001751. [Google Scholar] [CrossRef]
- Zhu, X.; Proctor, M.; Bensoussan, A.; Wu, E.; Smith, C.A. Chinese herbal medicine for primary dysmenorrhoea. Cochrane Database Syst. Rev. 2008, Cd005288. [Google Scholar] [CrossRef]
- Akerlund, M. Targeting the oxytocin receptor to relax the myometrium. Expert Opin. Ther. Targets 2006, 10, 423–427. [Google Scholar] [CrossRef]
- Earl, D.T.; Mercola, J.M. Calcium channel blockers and dysmenorrhea. J. Adolesc. Health Off. Publ. Soc. Adolesc. Med. 1992, 13, 107–108. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Wang, X.; Shi, L.; Yan, Y. Effect of herb-partitioned moxibustion for primary dysmenorrhea: A randomized clinical trial. J. Tradit. Chin. Med. Chung I Tsa Chih Ying Wen Pan 2019, 39, 237–245. [Google Scholar]
- Witt, C.M.; Lüdtke, R.; Willich, S.N. Homeopathic treatment of patients with dysmenorrhea: A prospective observational study with 2 years follow-up. Arch. Gynecol. Obstet. 2009, 280, 603–611. [Google Scholar] [CrossRef]
- Liu, Y.J.; Xiao, W.; Wang, Z.Z.; Zhao, B.J.; Zhou, Z.M.; Jiang, H.Z.; Jin, Z.; Wei, S.B.; Wang, Z.; Wang, D.M.; et al. Effects and safety of varying doses of guizhi fuling capsule in patients with primary dysmenorrhea: A multi-center, randomized, double-blind, placebo-controlled clinical study. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Med. 2013, 38, 2019–2022. [Google Scholar]
- Yang, L.; Chai, C.Z.; Yan, Y.; Duan, Y.D.; Henz, A.; Zhang, B.L.; Backlund, A.; Yu, B.Y. Spasmolytic Mechanism of Aqueous Licorice Extract on Oxytocin-Induced Uterine Contraction through Inhibiting the Phosphorylation of Heat Shock Protein 27. Molecules 2017, 22, 1392. [Google Scholar] [CrossRef][Green Version]
- Cheng, Y.; Chu, Y.; Su, X.; Zhang, K.; Zhang, Y.; Wang, Z.; Xiao, W.; Zhao, L.; Chen, X. Pharmacokinetic-pharmacodynamic modeling to study the anti-dysmenorrhea effect of Guizhi Fuling capsule on primary dysmenorrhea rats. Phytomedicine Int. J. Phytother. Phytopharm. 2018, 48, 141–151. [Google Scholar] [CrossRef]
- Pu, B.C.; Fang, L.; Gao, L.N.; Liu, R.; Li, A.Z. Animal study on primary dysmenorrhoea treatment at different administration times. Evid. Based Complementary Altern. Med. Ecam 2015, 2015, 367379. [Google Scholar] [CrossRef]
- Robinson, N.B.; Krieger, K.; Khan, F.M.; Huffman, W.; Chang, M.; Naik, A.; Yongle, R.; Hameed, I.; Krieger, K.; Girardi, L.N.; et al. The current state of animal models in research: A review. Int. J. Surg. 2019, 72, 9–13. [Google Scholar] [CrossRef]
- Carr-Nangle, R.E.; Johnson, W.G.; Bergeron, K.C.; Nangle, D.W. Body image changes over the menstrual cycle in normal women. Int. J. Eat. Disord. 1994, 16, 267–273. [Google Scholar] [CrossRef]
- Haghighizadeh, M.H.; Karandish, M.; Ghoreishi, M.; Soroor, F.; Shirani, F. Body weight changes during the menstrual cycle among university students in Ahvaz, Iran. Pak. J. Biol. Sci. PJBS 2014, 17, 915–919. [Google Scholar] [CrossRef][Green Version]
- Yang, L.; Cao, Z.; Yu, B.; Chai, C. An in vivo mouse model of primary dysmenorrhea. Exp. Anim. 2015, 64, 295–303. [Google Scholar] [CrossRef][Green Version]
- Sen, E.; Ozdemir, O.; Ozdemir, S.; Atalay, C.R. The Relationship between Serum Ischemia-Modified Albumin Levels and Uterine Artery Doppler Parameters in Patients with Primary Dysmenorrhea. Rev. Bras. De Ginecol. E Obstet. Rev. Da Fed. Bras. Das Soc. De Ginecol. E Obstet. 2020, 42, 630–633. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, N.; Liu, W.; Wang, Q.; Sun, J.; Peng, Y. Metabolomics Study of Guizhi Fuling Capsules in Rats With Cold Coagulation Dysmenorrhea. Front. Pharmacol. 2021, 12, 764904. [Google Scholar] [CrossRef]
- Zhang, K.; Su, J.; Huang, Y.; Wang, Y.; Meng, Q.; Guan, J.; Xu, S.; Wang, Y.; Fan, G. Untargeted metabolomics reveals the synergistic mechanisms of Yuanhu Zhitong oral liquid in the treatment of primary dysmenorrhea. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1165, 122523. [Google Scholar] [CrossRef]
- Barcikowska, Z.; Rajkowska-Labon, E.; Grzybowska, M.E.; Hansdorfer-Korzon, R.; Zorena, K. Inflammatory Markers in Dysmenorrhea and Therapeutic Options. Int. J. Environ. Res. Public Health 2020, 17, 1191. [Google Scholar] [CrossRef][Green Version]
- Moslehi, N.; Mirmiran, P.; Marzbani, R.; Rezadoost, H.; Mirzaie, M.; Azizi, F.; Tehrani, F.R. Serum metabolomics study of women with different annual decline rates of anti-Müllerian hormone: An untargeted gas chromatography-mass spectrometry-based study. Hum. Reprod. 2021, 36, 721–733. [Google Scholar] [CrossRef]
- Rinschen, M.M.; Ivanisevic, J.; Giera, M.; Siuzdak, G. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, D.; Zeng, W.; Chen, Y.; Guo, M.; Lu, B.; Li, H.; Sun, C.; Yang, L.; Jiang, X.; et al. The Role of Intestinal Dysbacteriosis Induced Arachidonic Acid Metabolism Disorder in Inflammaging in Atherosclerosis. Front. Cell. Infect. Microbiol. 2021, 11, 618265. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.H.; Kim, T.H. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int. J. Mol. Sci. 2020, 21, 1851. [Google Scholar] [CrossRef][Green Version]
- Law, S.H.; Chan, M.L.; Marathe, G.K.; Parveen, F.; Chen, C.H.; Ke, L.Y. An Updated Review of Lysophosphatidylcholine Metabolism in Human Diseases. Int. J. Mol. Sci. 2019, 20, 1149. [Google Scholar] [CrossRef][Green Version]
- Murakami, M.; Sato, H.; Taketomi, Y. Updating Phospholipase A(2) Biology. Biomolecules 2020, 10, 1457. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Yang, L.; Zhang, X.; Ji, P.; Hua, Y.; Wei, Y. Mechanism of Huang-lian-Jie-du decoction and its effective fraction in alleviating acute ulcerative colitis in mice: Regulating arachidonic acid metabolism and glycerophospholipid metabolism. J. Ethnopharmacol. 2020, 259, 112872. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Yang, S.; Tan, T.; Li, J.; Zhang, X.; Ouyang, H.; He, M.; Feng, Y. An integrated study of metabolomics and transcriptomics to reveal the anti-primary dysmenorrhea mechanism of Akebiae Fructus. J. Ethnopharmacol. 2021, 270, 113763. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Su, S.; Duan, J.A.; Sha, X.; Zhu, K.Y.; Guo, J.; Yu, L.; Liu, P.; Shang, E.; Qian, D. Effects and mechanisms of Shaofu-Zhuyu decoction and its major bioactive component for Cold—Stagnation and Blood—Stasis primary dysmenorrhea rats. J. Ethnopharmacol. 2016, 186, 234–243. [Google Scholar] [CrossRef]
- Szmidt, M.K.; Granda, D.; Sicinska, E.; Kaluza, J. Primary Dysmenorrhea in Relation to Oxidative Stress and Antioxidant Status: A Systematic Review of Case-Control Studies. Antioxidants 2020, 9, 994. [Google Scholar] [CrossRef]
- Kaplan, Ã.; NazıroÄŸlu, M.; Güney, M.; Aykur, M. Non-steroidal anti-inflammatory drug modulates oxidative stress and calcium ion levels in the neutrophils of patients with primary dysmenorrhea. J. Reprod. Immunol. 2013, 100, 87–92. [Google Scholar] [CrossRef]
- Dikensoy, E.; Balat, O.; Pençe, S.; Balat, A.; Cekmen, M.; Yurekli, M. Malondialdehyde, nitric oxide and adrenomedullin levels in patients with primary dysmenorrhea. J. Obstet. Gynaecol. Res. 2008, 34, 1049–1053. [Google Scholar] [CrossRef]
- Maekawa, S.; Takada, S.; Nambu, H.; Furihata, T.; Kakutani, N.; Setoyama, D.; Ueyanagi, Y.; Kang, D.; Sabe, H.; Kinugawa, S. Linoleic acid improves assembly of the CII subunit and CIII2/CIV complex of the mitochondrial oxidative phosphorylation system in heart failure. Cell Commun. Signal CCS 2019, 17, 128. [Google Scholar] [CrossRef][Green Version]
- Hatanaka, E.; Dermargos, A.; Hirata, A.E.; Vinolo, M.A.; Carpinelli, A.R.; Newsholme, P.; Armelin, H.A.; Curi, R. Oleic, linoleic and linolenic acids increase ros production by fibroblasts via NADPH oxidase activation. PLoS ONE 2013, 8, e58626. [Google Scholar] [CrossRef][Green Version]
- Ma, C.; Kesarwala, A.H.; Eggert, T.; Medina-Echeverz, J.; Kleiner, D.E.; Jin, P.; Stroncek, D.F.; Terabe, M.; Kapoor, V.; ElGindi, M.; et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016, 531, 253–257. [Google Scholar] [CrossRef][Green Version]
- Gasanoff, E.S.; Yaguzhinsky, L.S.; Garab, G. Cardiolipin, Non-Bilayer Structures and Mitochondrial Bioenergetics: Relevance to Cardiovascular Disease. Cells 2021, 10, 1721. [Google Scholar] [CrossRef]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef][Green Version]
- Yoneshiro, T.; Wang, Q.; Tajima, K.; Matsushita, M.; Maki, H.; Igarashi, K.; Dai, Z.; White, P.J.; McGarrah, R.W.; Ilkayeva, O.R.; et al. BCAA catabolism in brown fat controls energy homeostasis through SLC25A44. Nature 2019, 572, 614–619. [Google Scholar] [CrossRef]
- Gannon, N.P.; Schnuck, J.K.; Vaughan, R.A. BCAA Metabolism and Insulin Sensitivity—Dysregulated by Metabolic Status? Mol. Nutr. Food Res. 2018, 62, e1700756. [Google Scholar] [CrossRef]
- Biswas, D.; Duffley, L.; Pulinilkunnil, T. Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 8711–8731. [Google Scholar] [CrossRef]
- Wepy, J.A.; Galligan, J.J.; Kingsley, P.J.; Xu, S.; Goodman, M.C.; Tallman, K.A.; Rouzer, C.A.; Marnett, L.J. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J. Lipid Res. 2019, 60, 360–374. [Google Scholar] [CrossRef][Green Version]
- Aguilar, H.N.; Mitchell, B.F. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum. Reprod. Update 2010, 16, 725–744. [Google Scholar] [CrossRef][Green Version]
- Huang, Y.J.; Chen, Y.C.; Chen, H.Y.; Chiang, Y.F.; Ali, M.; Chiang, W.; Chung, C.P.; Hsia, S.M. Ethanolic Extracts of Adlay Testa and Hull and Their Active Biomolecules Exert Relaxing Effect on Uterine Muscle Contraction through Blocking Extracellular Calcium Influx in Ex Vivo and In Vivo Studies. Biomolecules 2021, 11, 887. [Google Scholar] [CrossRef]
- Marchi, S.; Patergnani, S.; Missiroli, S.; Morciano, G.; Rimessi, A.; Wieckowski, M.R.; Giorgi, C.; Pinton, P. Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 2018, 69, 62–72. [Google Scholar] [CrossRef]
- Szymański, J.; Janikiewicz, J.; Michalska, B.; Patalas-Krawczyk, P.; Perrone, M.; Ziółkowski, W.; Duszyński, J.; Pinton, P.; Dobrzyń, A.; Więckowski, M.R. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure. Int. J. Mol. Sci. 2017, 18, 1576. [Google Scholar] [CrossRef]
- Yuan, M.; Li, D.; Zhang, Z.; Sun, H.; An, M.; Wang, G. Endometriosis induces gut microbiota alterations in mice. Hum. Reprod. 2018, 33, 607–616. [Google Scholar] [CrossRef][Green Version]
- Schmauss, C.; Yaksh, T.L. In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J. Pharmacol. Exp. Ther. 1984, 228, 1–12. [Google Scholar]
- Maehara, T.; Fujimori, K. Inhibition of Prostaglandin F(2)(α) Receptors Exaggerates HCl-Induced Lung Inflammation in Mice. Int. J. Mol. Sci. 2021, 22, 12843. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, F.; He, G.; Zhang, M.; Yu, B.; Chai, C. The Establishment of a Mouse Model of Recurrent Primary Dysmenorrhea. Int. J. Mol. Sci. 2022, 23, 6128. https://doi.org/10.3390/ijms23116128
Hong F, He G, Zhang M, Yu B, Chai C. The Establishment of a Mouse Model of Recurrent Primary Dysmenorrhea. International Journal of Molecular Sciences. 2022; 23(11):6128. https://doi.org/10.3390/ijms23116128
Chicago/Turabian StyleHong, Fang, Guiyan He, Manqi Zhang, Boyang Yu, and Chengzhi Chai. 2022. "The Establishment of a Mouse Model of Recurrent Primary Dysmenorrhea" International Journal of Molecular Sciences 23, no. 11: 6128. https://doi.org/10.3390/ijms23116128