Next Article in Journal
Chemical Composition, Anti-Breast Cancer Activity and Extraction Techniques of Ent-Abietane Diterpenoids from Euphorbia fischeriana Steud
Next Article in Special Issue
Effect of Paulownia Leaves Extract Levels on In Vitro Ruminal Fermentation, Microbial Population, Methane Production, and Fatty Acid Biohydrogenation
Previous Article in Journal
Forensic Analysis of Textile Synthetic Fibers Using a FT-IR Spectroscopy Approach
Previous Article in Special Issue
A Proteinaceous Alpha-Amylase Inhibitor from Moringa Oleifera Leaf Extract: Purification, Characterization, and Insecticide Effects against C. maculates Insect Larvae
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus

1
Department of Pharmacy, Independent University, Dhaka 1229, Bangladesh
2
School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK
3
Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
*
Author to whom correspondence should be addressed.
Molecules 2022, 27(13), 4278; https://doi.org/10.3390/molecules27134278
Submission received: 25 May 2022 / Revised: 29 June 2022 / Accepted: 1 July 2022 / Published: 3 July 2022
(This article belongs to the Special Issue Phytochemistry and Biological Properties of Medicinal Plants)

Abstract

:
Diabetes mellitus is a chronic complication that affects people of all ages. The increased prevalence of diabetes worldwide has led to the development of several synthetic drugs to tackle this health problem. Such drugs, although effective as antihyperglycemic agents, are accompanied by various side effects, costly, and inaccessible to the majority of people living in underdeveloped countries. Medicinal plants have been used traditionally throughout the ages to treat various ailments due to their availability and safe nature. Medicinal plants are a rich source of phytochemicals that possess several health benefits. As diabetes continues to become prevalent, health care practitioners are considering plant-based medicines as a potential source of antidiabetic drugs due to their high potency and fewer side effects. To better understand the mechanism of action of medicinal plants, their active phytoconstituents are being isolated and investigated thoroughly. In this review article, we have focused on pharmacologically active phytomolecules isolated from medicinal plants presenting antidiabetic activity and the role they play in the treatment and management of diabetes. These natural compounds may represent as good candidates for a novel therapeutic approach and/or effective and alternative therapies for diabetes.

1. Introduction

Diabetes mellitus is one of the most common endocrine metabolic disorders characterized by chronic hyperglycemia caused by varying degrees of insulin resistance, deficiency in insulin secretion, or both [1]. Nearly 10.5% of the worldwide population is affected by diabetes, with its prevalence increasing at an alarming rate. According to data collected from the International Diabetes Federation (IDF), about 783.2 million people are estimated to be diagnosed with diabetes by 2045 [2]. Diabetes mellitus can be classified into two major categories: Type 1 and Type 2 diabetes, where Type 2 diabetes accounts for about 90% of all cases. Type 1 diabetes, previously known as insulin-dependent diabetes, is an autoimmune disorder that occurs due to the destruction of the pancreatic beta cells leading to significantly reduced secretion of insulin [3]. It is a non-hereditary genetic condition that mainly affects the juvenile under thirty years of age. Type 2 diabetes, also known as non-insulin-dependent diabetes, is the most common form of diabetes, with its prevalence rapidly rising worldwide [4]. It is a hereditary condition caused as a result of insulin resistance, insufficient insulin secretion, or a combination of both, largely affecting an older population than Type 1 diabetes [5]. Both forms of diabetes alter carbohydrate, protein, and fat metabolism. The effect of insulin resistance leads to high blood sugar levels by hindering the uptake and efficient use of glucose by most cells of the body [6]. The progression of the disease is accompanied by tissue or vascular damage resulting in severe complications, including retinopathy, diabetic neuropathy, nephropathy, cardiovascular, pulmonary, cerebral, and peripheral vascular diseases, ulcers, and thyroid gland disorders, leading to serious morbidity and mortality [1,7,8,9]. Available therapies currently in use for the treatment and management of diabetes include insulin and several oral hypoglycemic agents such as metformin, sulfonylureas, α-glucosidase inhibitors, meglitinide analogues, thiazolidinediones, DPP-IV inhibitors, SGLT-2 inhibitors, and GLP-1 mimetics. However, these drugs, intended to boost insulin sensitivity and increase insulin secretion together with the reduction in circulatory plasma glucose levels by increasing glucose excretion or uptake in adipose tissue, are usually associated with many side effects. These include, among others, weight gain, hypoglycemia, gastrointestinal tract disturbances, liver injury, renal failure, hypersensitivity reactions, flatulence, diarrhea, and abdominal bloating [1,10,11]. In addition, these drugs have been known to have other major disadvantages, including drug resistance, and there is also a lack of therapies to prevent the long-term complications of the disease.
The complications associated with insulin and oral antidiabetic agents, together with limited drug tolerability, adverse effects, and cost, have accelerated the search for alternative medicines with better efficacy, potency, and fewer side effects [12]. Interestingly, there has been an increase in popularity surrounding drug discovery research into natural antidiabetic agents, especially those derived from medicinal plants, which could enhance β-cell function and treat diabetes-associated complications with fewer adverse side effects [13].
Herbal medicines contain a diversity of phytochemicals and have been traditionally used for treating a wide variety of diseases. They are considered to be naturally safe and efficacious with fewer side effects [12]. The control and management of diabetes using herbal drugs have proven to be more advantageous over synthetic medicines due to their accessibility, reduced cost, lesser complications, and lower side effects. Herbal medicines act via different mechanisms aiming at reducing insulin resistance, increasing insulin secretion, protecting pancreatic beta cells, and thereby lowering circulating blood glucose levels [14].
Throughout the years, thousands of plant species have been used for their medicinal uses as integrative medicines for various diseases, of which more than 800 plants have been reported to exhibit antidiabetic effects [15]. Such plants have been examined for their use in the treatment of the different types of diabetes and could be potential sources for new natural antidiabetic drug discovery research [16]. A number of medicinal plants used traditionally for their antidiabetic activity are currently under investigation to be formulated commercially as modern drugs. This is particularly the case in developing countries where the cost of allopathic medicine is high, and the traditional use of plants to treat diabetes is common practice [15]. Traditional natural medicines are extensively prescribed in Asian countries (e.g., China, India, Bangladesh, Pakistan, Sri Lanka, Thailand, Nepal, Bhutan, Japan, and others) [17]. Among the medicinal plants possessing hypoglycemic effects, the most common ones used as remedies for diabetes include Acacia arabica, Aegle marmelos, Allium cepa, Allium sativum, Aloe vera, Annona squamosa, Azadirachta indica, Berberis vulgaris, Camellia sinensis, Capsicum frutescens, Cassia alata, Cinnamomum zeylanicum, Eucalyptus globulus, Eugenia jambolana, Helicteres isora, Momordica charantia, Panax ginseng, Punica granatum, Swertia chirayita, Trigonella foenum-graecum, and others [15,16,18,19]. The antidiabetic activity of these plants is thought to be mediated via various mechanisms, including the stimulation of insulin secretion from pancreatic β-cells, increasing insulin binding to receptors, reduction in insulin resistance, and improving glucose tolerance. Other modes of action include enhancing glucose metabolism, improving β-cell mass and function, and increasing plasma insulin, thus decreasing circulating blood glucose levels [20,21,22,23]. In addition to being used to treat diabetes, these plants have also been traditionally employed to treat other conditions such as ulcers, wounds, inflammation, infections, diarrhea, dysentery, malaria, rheumatism, hypertension, obesity, pneumonia, and kidney diseases [12,19,24,25,26]. The main objective of this review is to explore the traditional plant-based therapies and/or their phytoconstituents available for the treatment of diabetes. These could provide the basis for the discovery of new antidiabetic drugs with fewer side effects and stronger efficacy than currently available medicines.

2. Methods

A literature search was carried out via Google Scholar, ScienceDirect, Scopus, and PubMed databases to accumulate data for this review article using the keywords “Diabetes mellitus,” “Medicinal Plants,” “Traditional medicine,” “Antidiabetic phytochemicals,” and “Plant-based antidiabetic therapy.” The data search was not restricted to a specific time period; however, around 98% of the gathered data were published between 2000 and 2022, and only 2% were published before 2000. Our data collection began in early January until late May 2022. More than 700 papers were found relevant to our study, and after performing a primary screening, around 400 papers were selected to be critically examined. An overview of the key findings has been presented in this current review.

3. Ethnomedicines and Their Scope in the Modern World

Ethnomedicine is a traditional health care practice followed by indigenous people concerned with human health. It is the origin of all other traditional medical systems, including Ayurveda, Siddha, Unani, Nature Cure, as well as modern medicine [27]. Knowledge of plants presenting therapeutic properties has been passed on by experimenting through trials and errors from one generation to the next for more than hundreds of years. Ethnomedicines are highly prevalent in the rural and native communities of several developing countries [28]. According to information collected from the World Health Organization, about 80% of the global population relies upon traditional remedies [29]. Medicinal plants have always been recognized as a major source of raw materials for both conventional and traditional medicines [30]. In India, the poor and rural residents are dependent upon natural herbal remedies since they are easily obtainable to them. Indeed, plant-based medicines are the sole source of medical management for people living in remote areas. In countries such as Russia, Africa, and a few European countries, ethnomedicines are being studied by various botanists, anthropologists, folklorists, and medical scientists [27]. The inability for people to access adequate healthcare, alongside financial restrictions, has resulted in the under-provision of modern health care for a majority of the people in underdeveloped countries. [31]. Numerous folk remedies are recorded as being effective in treating various diseases (such as digestive tract disorders, skin diseases, renal and liver diseases, malaria, ulcers, heart diseases, pneumonia, diabetes, and many others), and thus, even developed countries have also considered utilizing these medicines [32].

4. Plant-Based Medicine versus Synthetic Medicine

Many drugs that are currently available have been derived directly or indirectly from natural sources such as medicinal plants and animals [33,34]. Plant-derived natural products have played and continue to play a prominent role in drug discovery and development programs. The increase in the number of herbal drug manufacturing companies, linked to the current increase in interest and demand for herbal medicines, can be largely expanded because of the toxicity and numerous adverse effects of allopathic medicines [35]. The convenience of accessibility, availability, inexpensiveness, and relatively low risks of side effects, have caused plant-based medicines to be an important alternative source of existing therapies, especially in rural and/or developing regions [33]. Plant-based medicines also provide a rich source of biologically active compounds that possess pharmacological activity with minimal undesirable effects [33].
Over the centuries, plant-based medicines have been widely used to treat the ailments of local communities of many developing countries that have easy access to these sources. Densely populated countries, such as China and India, have especially contributed to the advancement of sophisticated traditional medical systems such as acupuncture, ayurvedic medicine, and herbal medicine [36]. Many factors should be considered when selecting the appropriate medications for the management and treatment of diabetes. This includes efficacy, adverse effects, cost, and potential to contribute to weight gain, risks associated with hypoglycemia, comorbidities, and patient compliance. Even though oral antihyperglycemic agents can lower plasma glucose levels by improving insulin secretion or reducing insulin resistance, they are associated with many other adverse effects. Metformin, the mainstay of treatment in type 2 diabetes, has a high safety profile, yet it is still associated with mild side effects such as low risks of hypoglycemia and gastrointestinal tract disturbances (nausea, diarrhea, dyspepsia). Previous studies have shown that continuous use of metformin may result in vitamin B12 and folic acid deficiency in humans [37]. DPP-IV inhibitors such as sitagliptin, saxagliptin, and linagliptin, have been found to cause headaches, nasopharyngitis, and upper respiratory tract infections [38]. The most common adverse effect of sulphonylureas such as glimepiride and gliclazide is hypoglycemia. These drugs are also associated with minor side effects such as weight gain, nausea, headaches, drowsiness, and hypersensitivity reactions. The most serious complication of insulin injections is hypoglycemia. Insulin may also cause weight gain or loss, dizziness, confusion, and sweating [38]. In contrast to synthetic drugs, plant-based medicines do not interrupt the body’s natural healing process; instead, they accelerate the recovery process by strengthening the healing process, ultimately leading to a steady recovery. Alongside their ability to help the body recover to a healthy status, herbal medicines are also known for boosting the immune system. The use of highly effective herbal medicines showing fewer side effects and a strong immune system together with a healthy lifestyle promotes better body metabolism with increased nutritional absorption from the diet [35]. Whether they have insulinotropic, insulin-mimetic, or any other antihyperglycemic effects, medicinal plants are considered safer and more effective alternatives to synthetic antidiabetic drugs [39].

5. Pharmacological Activity of Plant-Based Medicines

Although knowledge of many plant-based therapies has been transmitted through generations, only a few of these have started to come to the fore recently. However, there is still some uncertainty regarding their pharmacological activity as well as their acute/chronic side effects due to such medicines being broadly underreported [40]. Few plants have proven to be efficacious for which they were intended, whilst some were not strongly therapeutically effective and/or sufficient scientific data were lacking to support their expected effects [41]. The increase in the widespread use of plant-based therapies has led to an urgent need for a detailed scientific examination of the chemicals responsible for pharmacological activity. Indeed, such a study of the pharmacological properties and phytoconstituents of plant-based medicines may lead to the discovery of new pharmacological characteristics previously unknown or used in traditional medicine [42]. Herbal medicines have been suggested to exert their mechanism of action by concurrently targeting multiple physiological processes via interactions between different biochemicals and cellular proteins [43].
Herbal medications may be able to alter the biological systems from disease to a healthy state by causing the interactions between multi-component and multi-target. Because of the therapeutic properties of the phytomolecules, a lower dosage may be used, resulting in less toxicity and adverse effects. [43]. The antidiabetic activity of medicinal plants is dependent upon the phytochemicals that act through multiple pathways, such as cAMP: which stimulates insulin secretion without affecting the KATP channel [44]; PI3K: which facilitates glucose uptake by the translocation of the glucose transporter in skeletal muscles, adipose tissue, or liver [45]; AMPK: The activation of 5ʹ-adenosine monophosphate-activated protein kinase pathway improves insulin sensitivity by limiting lipolysis and lipogenesis, and AMPK also enhances glucose uptake in skeletal muscles by translocating GLUT4-containing intracellular vesicles across the plasma membrane [46,47]. For example, phlorizin obtained from the bark of apple and pear trees increases glucose excretion in urine by decreasing glucose reabsorption in the kidneys via the inhibition of SGLT and thus, lowers plasma glucose concentration [48]. Some of the phytomolecules have the potential to regenerate and protect pancreatic beta cells from destruction by reducing the glucose load [49], inhibiting α-amylase and α-glucosidase activity, inducing glucose uptake in 3T3L1 cells [50,51], inhibiting aldose reductase enzyme activity, glycogen metabolizing enzymes, exerting hepato-pancreatic protective activity, inhibiting glucose-6-phosphate and DPP-IV, reducing lactic dehydrogenase, γ-glutamyl transpeptidase, glycosylated hemoglobin levels, and inhibiting glycogenolysis and gluconeogenesis in the liver [20,52]. As an example, a summary of the different pathways involved in the antidiabetic activity of flavonoids is illustrated in Figure 1. A summary of antidiabetic medicinal plants and their pharmacological actions has been shown in Table 1.

6. Phytochemicals and Their Impact on Diabetes

Plants are the primary source of biologically active compounds that may ultimately lead to the discovery and development of potential new drugs [238]. Plants produce both primary and secondary metabolites. Carbohydrates, proteins, and lipids are considered primary metabolites, necessary for the growth and development of plants and involved in essential metabolic pathways, such as photosynthesis and glycolysis. Secondary metabolites are not required for the growth and development of plants; rather, they are responsible for interactions between plant species and the environment and have highly specific functions in plants [239].
Over 13,000 secondary metabolites have been purified and isolated from medicinal plants. These phytochemicals can be categorized into various chemical classes such as alkaloids, flavonoids, terpenoids, phenolics, tannins, saponins, xanthones, and glycosides [78]. Many of these phytochemicals are known to exhibit medicinal properties, including antidiabetic activity [78]. Several phytochemicals isolated from various plant species have been scientifically validated for their contribution to treating and managing diabetes by exerting antihyperglycemic activity and reducing the complications associated with diabetes [171]. For example, the flavonoid rutin, present in the leaves of numerous plants, including Annona squamosa and Azadirachta indica (neem), has been reported to possess many beneficial effects such as anti-inflammatory, anti-cancer, anti-allergic, antiviral, and antioxidative properties [240]. Rutin-containing plants have also been shown to protect against heart disease, hepatotoxicity, and diabetes mellitus [240]. Rutin exerts its antidiabetic effect by lowering plasma glucose, improving the function of pancreatic β-cells, and enhancing glucose tolerance [10]. Two other flavonoids found in the leaves of Annona squamosa, namely quercetin and isoquercetin, have also been reported to possess antihyperglycemic activity by inhibiting α-glucosidase and lowering blood glucose levels [241]. Alongside rutin and quercetin, the tetranortriterpenoid meliacinolin, isolated from the leaves of A. indica, has been found to inhibit α-glucosidase and α-amylase in Type 2 diabetic mice [98]. Nimbidin, extracted from neem seeds, is another phytochemical exhibiting hypoglycemic properties [98]. Quercetin, allicin, allyl-propyl disulfide, cysteine sulfoxide, and S-allyl cysteine sulfoxide from Allium sativum (garlic) have been reported to stimulate insulin secretion from pancreatic β-cells, increase insulin sensitivity to target cells, and prevent insulin activation triggered by the liver [71]. Alliin, from garlic, has been reported to mimic the function of glibenclamide and insulin [71]. Epigallocatechin-3-gallate, epigallocatechin, epicatechin-3-gallate, and epicatechin present in Camellia sinensis (tea) leaves can also lower plasma glucose levels by improving β-cell function, increasing insulin secretion, and enhancing glucose metabolism [117]. These phytomolecules may exert their antidiabetic activity in multiple manners, most commonly by being insulinotropic, insulin-mimetic, and by improving β-cell function, increasing insulin sensitivity, improving glucose tolerance and metabolism, as well as inhibiting various enzyme activities. A summary of antidiabetic medicinal plants and their phytochemicals with potential antidiabetic effects is provided in Table 2. The chemical structures of the antidiabetic phytoconstituents of medicinal plants are given in Table 3.

7. Plant-Based Drug Formulations Available on the Market and Their Role in Diabetes

For the past few decades, there has been an increasingly growing trend in many European countries to develop and sell plant-based medicines [370]. The latter are known as herbal formulations or phytomedicines. These preparations have been standardized and confirmed for their safety profile and effectiveness in the treatment of various diseases. Similar to any other allopathic medicine, herbal formulations can also be prepared as diverse formulations such as tablets, capsules, elixirs, suspensions, solutions, emulsions, and powders [371]. Phytomedicines can either be single herb- or polyherbal formulations [35]. Several phytomedicines have been marketed worldwide for the control and management of diabetes. These include Antibetic, Diabetics, Diabetica, Diabet, Diasol, Diabecon, Diasulin, Dia-Care, Diabecure, Diabeta, Diabeta Plus, Dianex, Diashis, GlucoCare, GlycoNase, Glyoherb, Karmin Plus, SugarMax, and Sugar Loss [35,372]. These products comprise a combination of individual constituents from several antidiabetic plants. Many of these preparations are sold with directions about diet, rest, and physical activities to enhance their effectiveness [35,372].

8. The Future of Plant-Based Antidiabetic Medicines

Nearly 75% of the globally used herbal medicines have been developed based on traditional medicine practitioners [24]. Medicinal plants will continue to be used for their natural safety and potency in many remedies, as well as cosmetics, perfumes, and in the food and beverages industry [373]. Biologically active components derived from traditional medicinal plants have yielded several clinically used drugs and still play a key role in the discovery of new medicines. Thus, it is reasonable to assume that plants used in folk medicine can be used as a potential source for the discovery of new drugs to treat diabetes. The most frequently recommended synthetic drug, metformin, has blood glucose-lowering properties in Type 2 diabetes and the search for many such drugs persists [370]. Moreover, any plant-derived antidiabetic drug with a novel mode of action compared to existing antidiabetic agents has a high potential to be used in clinics [374]. Although the use of plant-based medicines is widespread in developing countries, recently, developed countries have also shown interest in using herbal drugs and therapies. With the rise in the incidence of diabetes mellitus, the demand for plant-based antidiabetic medicines is increasing worldwide. It is expected that countries such as China, India, and Japan, which have an abundance of medicinal plant species and are the greatest exporters of medicinal plants worldwide, will be the most sought [375]. More studies are required regarding the pharmacokinetics/pharmacodynamics of different phytoconstituents in laboratory animals and in clinical use to establish the benefits and mode(s) of action of these compounds in the treatment and management of diabetes. Extensive investigations into the pharmacology, toxicology, metabolism, and tissue distribution of medicinal plants and their phytomolecules are necessary for the development of new potent antidiabetic drugs [376].

9. Conclusions

Diabetes mellitus has risen as a major public health crisis, particularly in underdeveloped countries. Thus, recent research efforts have been centered on the discovery of new natural sources of antidiabetic therapies for the treatment and management of diabetes. As traditional medicinal plants with antidiabetic activity may be considered potential candidates for diabetes management in the long run, they are being extensively researched for novel targets, mechanisms of action, and routes of administration. Plant-based antidiabetic medicines are inexpensive, readily available, and hold low risks of side effects. This makes them promising new antidiabetic agents. With the progression of medicinal plant-based research, scientists and physicians have started to develop newer classes of antidiabetic drugs based on the pharmacology of the phytochemicals isolated from these plants. However, more studies are required for in-depth investigation of these newly discovered antidiabetic drugs at the molecular, therapeutic, and physiological levels in order to control and manage diabetes mellitus worldwide.

Author Contributions

Conceptualisation, P.A. and Y.H.A.A.-W.; formal Analysis, P.A. and S.A.; funding acquisition, Y.H.A.A.-W. and J.M.A.H.; investigation, resources, writing, and editing, P.A., S.A., V.S. and N.J.N.; Visualization, P.A. and J.M.A.H.; supervision and reviewing, P.A. and Y.H.A.A.-W. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We would like to extend our appreciation to Peter R Flatt, School of Biomedical Sciences, Ulster University, UK and Independent University, Bangladesh for his aid, guidance, and support in creating the innovative ideas.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

AMPK5′ adenosine monophosphate-activated protein kinase
cAMPcyclic Adenosine monophosphate
DPP-IVDipeptidyl peptidase-4
G6PaseGlucose-6-phosphatase
GLP-1Glucagon-like peptide-1
GLUT-2Glucose transporter-2
GLUT-4Glucose transporter-4
HbA1cHemoglobin A1c
IDFInternational Diabetes Federation
KATPAdenosine triphosphate-sensitive potassium channel
PEPCKPhosphoenolpyruvate carboxykinase
PI3K/AKTPhosphoinositide 3-kinase/protein kinase B
PKAProtein kinase A
PPAR-γPeroxisome proliferator-activated receptor-γ
SGLTSodium–glucose linked transporter

References

  1. Bastaki, S. Diabetes mellitus and its treatment. Int. J. Diabetes Metab. 2005, 13, 111–134. [Google Scholar] [CrossRef]
  2. Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
  3. Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 2017, 3, 17016. [Google Scholar] [CrossRef] [PubMed]
  4. Ohlson, L.-O.; Larsson, B.; Björntorp, P.; Eriksson, H.; Svärdsudd, K.; Welin, L.; Tibblin, G.; Wilhelmsen, L. Risk factors for type 2 (non-insulin-dependent) diabetes mellitus. Thirteen and one-half years of follow-up of the participants in a study of Swedish men born in 1913. Diabetologia 1988, 31, 798–805. [Google Scholar] [CrossRef]
  5. DeFronzo, R.A.; Ferrannini, E.; Groop, L.; Henry, R.R.; Herman, W.H.; Holst, J.J.; Hu, F.B.; Kahn, C.R.; Raz, I.; Shulman, G.I. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015, 1, 15019. [Google Scholar] [CrossRef] [PubMed]
  6. Hall, J.E.; Guyton, A.C. Insulin, Glucagon, and Diabetes Mellitus. In Guyton and Hall Textbook of Medical Physiology, 13th ed.; Elsevier: Philadelphia, PA, USA, 2017; pp. 983–999. [Google Scholar]
  7. Nowakowska, M.; Zghebi, S.S.; Ashcroft, D.M.; Buchan, I.; Chew-Graham, C.; Holt, T.; Mallen, C.; Van Marwijk, H.; Peek, N.; Perera-Salazar, R. The comorbidity burden of type 2 diabetes mellitus: Patterns, clusters and predictions from a large English primary care cohort. BMC Med. 2019, 17, 145. [Google Scholar] [CrossRef] [PubMed]
  8. Nathan, D.M. Long-term complications of diabetes mellitus. N. Engl. J. Med. 1993, 328, 1676–1685. [Google Scholar] [CrossRef]
  9. Ansari, P.; Hannan, J.M.A.; Azam, S.; Jakaria, M. Challenges in Diabetic Micro-Complication Management: Focus on Diabetic Neuropathy. Int. J. Transl. Med. 2021, 1, 175–186. [Google Scholar] [CrossRef]
  10. Ansari, P.; Flatt, P.R.; Harriott, P.; Abdel-Wahab, Y.H.A. Evaluation of the antidiabetic and Insulin Releasing Effects of A. squamosa, Including Isolation and Characterization of Active Phytochemicals. Plants 2020, 9, 1348. [Google Scholar] [CrossRef]
  11. Patel, D.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef] [Green Version]
  12. Gaonkar, V.P.; Hullatti, K. Indian Traditional medicinal plants as a source of potent Anti-diabetic agents: A Review. J. Diabetes Metab. Disord. 2020, 19, 1895–1908. [Google Scholar] [CrossRef] [PubMed]
  13. Oh, Y.S. Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. Evid.-Based Complementary Altern. Med. 2015, 2015, 629863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Jeeva, S.; Anlin Sheebha, Y. A review of antidiabetic potential of ethnomedicinal plants. Med. Aromat. Plants 2014, 3, 1–8. [Google Scholar]
  15. Arumugam, G.; Manjula, P.; Paari, N. A review: Anti diabetic medicinal plants used for diabetes mellitus. J. Acute Dis. 2013, 2, 196–200. [Google Scholar] [CrossRef] [Green Version]
  16. Kasali, F.M.; Kadima, J.N.; Peter, E.L.; Mtewa, A.G.; Ajayi, C.O.; Tusiimire, J.; Tolo, C.U.; Ogwang, P.E.; Weisheit, A.; Agaba, A.G. Antidiabetic Medicinal Plants Used in Democratic Republic of Congo: A Critical Review of Ethnopharmacology and Bioactivity Data. Front. Pharmacol. 2021, 12, 757090. [Google Scholar] [CrossRef]
  17. Dar, R.A.; Shahnawaz, M.; Qazi, P.H. General overview of medicinal plants: A review. J. Phytopharm. 2017, 6, 349–351. [Google Scholar] [CrossRef]
  18. Moradi, B.; Abbaszadeh, S.; Shahsavari, S.; Alizadeh, M.; Beyranvand, F. The most useful medicinal herbs to treat diabetes. Biomed. Res. Ther. 2018, 5, 2538–2551. [Google Scholar] [CrossRef]
  19. Rizvi, S.I.; Mishra, N. Traditional Indian medicines used for the management of diabetes mellitus. J. Diabetes Res. 2013, 2013, 712092. [Google Scholar] [CrossRef]
  20. Oyagbemi, A.; Salihu, M.; Oguntibeju, O.; Esterhuyse, A.; Farombi, E. Some selected medicinal plants with antidiabetic potentials. Antioxidant, Antidiabetic agents and Human Health. In Antioxidant-Antidiabetic Agents and Human Health; Intech: London, UK, 2014; Volume 4, pp. 95–113. [Google Scholar]
  21. Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician 2016, 8, 1832–1842. [Google Scholar] [CrossRef] [Green Version]
  22. Alam, S.; Sarker, M.M.R.; Sultana, T.N.; Chowdhury, M.N.R.; Rashid, M.A.; Chaity, N.I.; Zhao, C.; Xiao, J.; Hafez, E.E.; Khan, S.A. Antidiabetic Phytochemicals from Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef]
  23. Rafe, M.R. A review of five traditionally used anti-diabetic plants of Bangladesh and their pharmacological activities. Asian Pac. J. Trop. Med. 2017, 10, 933–939. [Google Scholar] [CrossRef] [PubMed]
  24. Ansari, P.; Flatt, P.R.; Harriott, P.; Hannan, J.M.A.; Abdel-Wahab, Y.H.A. Identification of Multiple Pancreatic and Extra-Pancreatic Pathways Underlying the Glucose-Lowering Actions of Acacia arabica Bark in Type-2 Diabetes and Isolation of Active Phytoconstituents. Plants 2021, 10, 1190. [Google Scholar] [CrossRef] [PubMed]
  25. Wanjohi, B.K.; Sudoi, V.; Njenga, E.W.; Kipkore, W.K. An ethnobotanical study of traditional knowledge and uses of medicinal wild plants among the Marakwet Community in Kenya. Evid.-Based Complementary Altern. Med. 2020, 2020, 3208634. [Google Scholar] [CrossRef] [PubMed]
  26. Ansari, P.; Azam, S.; Seidel, V.; Abdel-Wahab, Y.H.A. In vitro and in vivo antihyperglycemic activity of the ethanol extract of Heritiera fomes bark and characterization of pharmacologically active phytomolecules. J. Pharm. Pharmacol. 2022, 74, 415–425. [Google Scholar] [CrossRef]
  27. Vedavathy, S. Scope and importance of traditional medicine. Indian J. Tradit. Knowl. 2003, 2, 236–239. [Google Scholar]
  28. Ghosh, A. Herbal folk remedies of Bankura and Medinipur districts, West Bengal. Indian J. Tradit. Knowl. 2003, 2, 393–396. [Google Scholar]
  29. Morshed, M.A.; Haque, A.; Rokeya, B.; Ali, L. Anti-hyperglycemic and lipid lowering effect of Terminalia arjuna Bark extract on Streptozotocin induced Type-2 Diabetic Model Rats. Int. J. Pharm. Pharm. Sci. 2011, 3, 450–454. [Google Scholar]
  30. Dey, P.; Singh, J.; Suluvoy, J.K.; Dilip, K.J.; Nayak, J. Utilization of Swertia chirayita Plant Extracts for Management of Diabetes and Associated Disorders: Present Status, Future Prospects and Limitations. Nat. Prod. Bioprospecting 2020, 10, 431–443. [Google Scholar] [CrossRef]
  31. Vaidya, A.; Vaidya, R.A. Ancient Insights and Modern Discoveries in the Process of Aging-An Overview. Indian J. Med. Sci. 1997, 51, 349–363. [Google Scholar]
  32. Soren, A.D.; Soren, P.; Jamir, W. Traditional Herbal Medicines—How safe are they? In PARISAR (The Scope); Sonowal, A., Ed.; Purbayon Publication: Assam, India, 2020; pp. 132–138. [Google Scholar]
  33. Salehi, B.; Ata, A.; V Anil Kumar, N.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Valere Tsouh Fokou, P.; Kobarfard, F.; Amiruddin Zakaria, Z. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019, 9, 551. [Google Scholar] [CrossRef] [Green Version]
  34. Coulter-Parkhill, A.; McClean, S.; Gault, V.A.; Irwin, N. Therapeutic Potential of Peptides Derived from Animal Venoms: Current Views and Emerging Drugs for Diabetes. Clin. Med. Insights: Endocrinol. Diabetes 2021, 14, 117955142110060. [Google Scholar] [CrossRef]
  35. Kaur, M.; Valecha, V. Diabetes and antidiabetic herbal formulations: An alternative to Allopathy. Eur. J. Med. 2014, 6, 226–240. [Google Scholar] [CrossRef]
  36. Vlachogianni, T.; Loridas, S.; Fiotakis, K.; Valavanidis, A. From the Traditional Medicine to the Modern Era of Synthetic Pharmaceuticals. Pharmakeftiki 2014, 26, 16–30. [Google Scholar]
  37. Fogelman, Y.; Kitai, E.; Blumberg, G.; Golan-Cohen, A.; Rapoport, M.; Carmeli, E. Vitamin B12 screening in metformin-treated diabetics in primary care: Were elderly patients less likely to be tested? Aging Clin. Exp. Res. 2017, 29, 135–139. [Google Scholar] [CrossRef] [PubMed]
  38. Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. 2017, 8, 6. [Google Scholar] [CrossRef] [Green Version]
  39. Balekari, U.; Veeresham, C. Insulinotropic agents from medicinal plants. J. Pharm. Sci. Emerg. Drugs 2013, 1, 2. [Google Scholar] [CrossRef]
  40. Walji, R.; Boon, H.; Barnes, J.; Austin, Z.; Baker, G.R.; Welsh, S. Adverse event reporting for herbal medicines: A result of market forces. Healthc. Policy 2009, 4, 77. [Google Scholar] [CrossRef] [Green Version]
  41. Bachtel, N.; Israni-Winger, K. Focus: Plant-based Medicine and Pharmacology: Introduction. Yale J. Biol. Med. 2020, 93, 227. [Google Scholar]
  42. Subramoniam, A. Present scenario, challenges and future perspectives in plant based medicine development. Ann. Phytomed. 2014, 3, 31–36. [Google Scholar]
  43. Gu, J.; Chen, L.; Yuan, G.; Xu, X. A drug-target network-based approach to evaluate the efficacy of medicinal plants for type II diabetes mellitus. Evid.-Based Complementary Altern. Med. 2013, 2013, 203614. [Google Scholar] [CrossRef] [Green Version]
  44. Seino, S. Cell signalling in insulin secretion: The molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 2012, 55, 2096–2108. [Google Scholar] [CrossRef] [PubMed]
  45. Świderska, E.; Strycharz, J.; Wróblewski, A.; Szemraj, J.; Drzewoski, J.; Śliwińska, A. Role of PI3K/AKT pathway in insulin-mediated glucose uptake. In Blood Glucose Levels; Szablewski, L., Ed.; IntechOpen: London, UK, 2018; Volume 1, pp. 1–18. [Google Scholar]
  46. Dutta, D.; Kalra, S.; Sharma, M. Adenosine monophosphate-activated protein kinase-based classification of diabetes pharmacotherapy. J. Postgrad. Med. 2017, 63, 114–121. [Google Scholar] [CrossRef] [PubMed]
  47. Habegger, K.M.; Hoffman, N.J.; Ridenour, C.M.; Brozinick, J.T.; Elmendorf, J.S. AMPK enhances insulin-stimulated GLUT4 regulation via lowering membrane cholesterol. Endocrinology 2012, 153, 2130–2141. [Google Scholar] [CrossRef] [PubMed]
  48. Cai, Q.; Li, B.; Yu, F.; Lu, W.; Zhang, Z.; Yin, M.; Gao, H. Investigation of the protective effects of phlorizin on diabetic cardiomyopathy in db/db mice by quantitative proteomics. J. Diabetes Res. 2013, 2013, 263845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Hosseini, A.; Shafiee-Nick, R.; Ghorbani, A. Pancreatic beta cell protection/regeneration with phytotherapy. Braz. J. Pharm. Sci. 2015, 51, 1–16. [Google Scholar] [CrossRef] [Green Version]
  50. Oyedemi, S.O.; Oyedemi, B.O.; Ijeh, I.I.; Ohanyerem, P.E.; Coopoosamy, R.M.; Aiyegoro, O.A. Alpha-amylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in Southeastern Nigeria. Sci. World J. 2017, 2017, 3592491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  51. Ansari, P.; Flatt, P.R.; Harriott, P.; Abdel-Wahab, Y.H.A. Insulin secretory and antidiabetic actions of Heritiera fomes bark together with isolation of active phytomolecules. PLoS ONE 2022, 17, e0264632. [Google Scholar] [CrossRef]
  52. Kaushal, S.; Dev, D.; Prasad, D.; Sharma, R.; Hira, S. Antidiabetic Potential of Herbal Plants. J. Drug Deliv. Ther. 2019, 9, 1085–1093. [Google Scholar] [CrossRef]
  53. Garaniya, N.; Bapodra, A. Ethno botanical and Phytophrmacological potential of Abrus precatorius L.: A review. Asian Pac. J. Trop. Biomed. 2014, 4, S27–S34. [Google Scholar] [CrossRef] [Green Version]
  54. Boye, A.; Barku, V.Y.A.; Acheampong, D.O.; Ofori, E.G. Abrus precatorius Leaf Extract Reverses Alloxan/Nicotinamide-Induced Diabetes Mellitus in Rats through Hormonal (Insulin, GLP-1, and Glucagon) and Enzymatic (α-Amylase/α-Glucosidase) Modulation. BioMed Res. Int. 2021, 2021, 9920826. [Google Scholar] [CrossRef]
  55. Rajvaidhya, S.; Nagori, B.; Singh, G.; Dubey, B.; Desai, P.; Jain, S. A review on Acacia arabica-an Indian medicinal plant. Int. J. Pharm. Sci. Res. 2012, 3, 1995–2005. [Google Scholar]
  56. Ansari, P.; Hannon-Fletcher, M.P.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Biosci. Rep. 2021, 41, BSR20203824. [Google Scholar] [CrossRef] [PubMed]
  57. Sunil, M.; Sunitha, V.; Radhakrishnan, E.; Jyothis, M. Immunomodulatory activities of Acacia catechu, a traditional thirst quencher of South India. J. Ayurveda Integr. Med. 2019, 10, 185–191. [Google Scholar] [CrossRef]
  58. Ikarashi, N.; Toda, T.; Okaniwa, T.; Ito, K.; Ochiai, W.; Sugiyama, K. Anti-obesity and anti-diabetic effects of acacia polyphenol in obese diabetic KKAy mice fed high-fat diet. Evid.-Based Complementary Altern. Med. 2011, 2011, 952031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  59. Ansari, P.; Afroz, N.; Jalil, S.; Azad, S.B.; Mustakim, M.G.; Anwar, S.; Haque, S.N.; Hossain, S.M.; Tony, R.R.; Hannan, J.M.A. Anti-hyperglycemic activity of Aegle marmelos (L.) corr. is partly mediated by increased insulin secretion, α-amylase inhibition, and retardation of glucose absorption. J. Pediatric Endocrinol. Metab. 2017, 30, 37–47. [Google Scholar] [CrossRef]
  60. Sankeshi, V.; Kumar, P.A.; Naik, R.R.; Sridhar, G.; Kumar, M.P.; Gopal, V.H.; Raju, T.N. Inhibition of aldose reductase by Aegle marmelos and its protective role in diabetic cataract. J. Ethnopharmacol. 2013, 149, 215–221. [Google Scholar] [CrossRef]
  61. Dzoyem, J.; McGaw, L.; Kuete, V.; Bakowsky, U. Anti-inflammatory and anti-nociceptive activities of African medicinal spices and vegetables. In Medicinal Spices and Vegetables from Africa, 1st ed.; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 239–270. ISBN 9780128092866. [Google Scholar]
  62. Mohammed, A.; Gbonjubola, V.A.; Koorbanally, N.A.; Islam, M.S. Inhibition of key enzymes linked to type 2 diabetes by compounds isolated from Aframomum melegueta fruit. Pharm. Biol. 2017, 55, 1010–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Ming, L.C. Ageratum conyzoides: A tropical source of medicinal and agricultural products. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, VA, USA, 1999; pp. 469–473. [Google Scholar]
  64. Agbafor, K.; Onuohah, S.; Ominyi, M.; Orinya, O.; Ezeani, N.; Alum, E. Antidiabetic, Hypolipidemic and Antiathrogenic Properties of Leaf Extracts of Ageratum conyzoides in Streptozotocin-Induced diabetic rats. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 816–824. [Google Scholar]
  65. Patel, P.A.; Parikh, M.P.; Johari, S.; Gandhi, T.R. Antihyperglycemic activity of Albizzia lebbeck bark extract in streptozotocin-nicotinamide induced type II diabetes mellitus rats. Ayu 2015, 36, 335. [Google Scholar] [CrossRef] [Green Version]
  66. Verma, S.; Vashishth, E.; Singh, R.; Kumari, A.; Meena, A.; Pant, P.; Bhuyan, G.; Padhi, M. A review on parts of Albizia lebbeck (L.) Benth. used as ayurvedic drugs. Res. J. Pharm. Technol. 2013, 6, 1307–1313. [Google Scholar]
  67. Maroyi, A. Albizia Adianthifolia: Botany, Medicinal Uses, Phytochemistry, and Pharmacological Properties. Sci. World J. 2018, 2018, 7463584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  68. Kumar, K.S.; Debjit, B.; Pankaj, T. Allium cepa: A traditional medicinal herb and its health benefits. J. Chem. Pharm. Res. 2010, 2, 283–291. [Google Scholar]
  69. Kianian, F.; Marefati, N.; Boskabady, M.; Ghasemi, S.Z.; Boskabady, M.H. Pharmacological Properties of Allium cepa, Preclinical and Clinical Evidences; A Review. Iran. J. Pharm. Res. 2021, 20, 107. [Google Scholar] [CrossRef] [PubMed]
  70. Mbaveng, A.T. Allium sativum. In Medicinal Spices and Vegetables from Africa, 1st ed.; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 363–377. ISBN 9780128094419. [Google Scholar]
  71. El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.; Al-Sagan, A.A.; El-Hack, A.; Mohamed, E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [Green Version]
  72. Adams, K.; Eliot, T.; Gerald, A. Extent of Use of Aloe vera Locally Extracted Products for Management of Ailments in Communities of Kitagata Sub-county in Sheema District, Western Uganda. Int. J. Sci. Basic Appl. Res. 2014, 15, 1–15. [Google Scholar]
  73. Kim, K.; Kim, H.; Kwon, J.; Lee, S.; Kong, H.; Im, S.-A.; Lee, Y.-H.; Lee, Y.-R.; Oh, S.-T.; Jo, T.H. Hypoglycemic and hypolipidemic effects of processed Aloe vera gel in a mouse model of non-insulin-dependent diabetes mellitus. Phytomedicine 2009, 16, 856–863. [Google Scholar] [CrossRef] [PubMed]
  74. Chan, E.; Baba, S.; Chan, H.T.; Kainuma, M.; Inoue, T.; Wong, S.K. Ulam herbs: A review on the medicinal properties of Anacardium occidentale and Barringtonia racemosa. J. Appl. Pharm. Sci. 2017, 7, 241–247. [Google Scholar] [CrossRef]
  75. Iyare, G.; Omorodion, N.; Erameh, T.; Achukwu, P.; Ogochukwu, A. The effects of Anacardium occidentale leaves extract on histology of selected organs of Wistar rats. MOJ Biol. Med. 2017, 2, 216–221. [Google Scholar]
  76. Olatunji, L.A.; Okwusidi, J.I.; Soladoye, A.O. Antidiabetic effect of Anacardium occidentale. Stem-bark in fructose-diabetic rats. Pharm. Biol. 2005, 43, 589–593. [Google Scholar] [CrossRef] [Green Version]
  77. Piwowar, A.; Rembiałkowska, N.; Rorbach-Dolata, A.; Garbiec, A.; Ślusarczyk, S.; Dobosz, A.; Długosz, A.; Marchewka, Z.; Matkowski, A.; Saczko, J. Anemarrhenae asphodeloides rhizoma Extract Enriched in Mangiferin Protects PC12 Cells against a Neurotoxic Agent-3-Nitropropionic Acid. Int. J. Mol. Sci. 2020, 21, 2510. [Google Scholar] [CrossRef] [Green Version]
  78. Singh, R.; Arif, T.; Khan, I.; Sharma, P. Phytochemicals in antidiabetic drug discovery. J. Biomed. Ther. Sci. 2014, 1, 1–33. [Google Scholar]
  79. Costa, E.V.; Dutra, L.M.; de Jesus, H.C.R.; de Lima Nogueira, P.C.; de Souza Moraes, V.R.; Salvador, M.J.; de Holanda Cavalcanti, S.C.; dos Santos, R.L.C.; do Nacimento Prata, A.P. Chemical composition and antioxidant, antimicrobial, and larvicidal activities of the essential oils of Annona salzmannii and A. pickelii (Annonaceae). Nat. Prod. Commun. 2011, 6, 908–912. [Google Scholar] [CrossRef] [Green Version]
  80. Cascaes, M.M.; Carneiro, O.d.S.; Nascimento, L.D.d.; de Moraes, Â.A.B.; de Oliveira, M.S.; Cruz, J.N.; Guilhon, G.M.S.P.; Andrade, E.H.d.A. Essential Oils from Annonaceae Species from Brazil: A Systematic Review of Their Phytochemistry, and Biological Activities. Int. J. Mol. Sci. 2021, 22, 12140. [Google Scholar] [CrossRef] [PubMed]
  81. Ma, C.; Chen, Y.; Chen, J.; Li, X.; Chen, Y. A review on Annona squamosa L.: Phytochemicals and biological activities. Am. J. Chin. Med. 2017, 45, 933–964. [Google Scholar] [CrossRef]
  82. Patil, U.; Gaikwad, D. Ethno-pharmacological review of a herbal drug: Anogeissus latifolia. Int. J. Pharma Sci. Res. 2011, 2, 41–43. [Google Scholar]
  83. Ramachandran, S.; Naveen, K.R.; Rajinikanth, B.; Akbar, M.; Rajasekaran, A. Antidiabetic, antihyperlipidemic and in vivo antioxidant potential of aqueous extract of Anogeissus latifolia bark in type 2 diabetic rats. Asian Pac. J. Trop. Dis. 2012, 2, S596–S602. [Google Scholar] [CrossRef]
  84. Patel, J.K.; Sharma, M.K. Origin, Bioactivities and Therapeutic uses of Arachis hypogaea (Peanut/Fabaceae). Plant Cell Biotechnol. Mol. Biol. 2019, 20, 1172–1179. [Google Scholar]
  85. Akter, F.; Jahan, N.; Sultana, N. Effect of Peanut (Arachis hypogaea L.) on Fasting Blood Glucose and HbA1c in Alloxan Induced Diabetic Male Rats. J. Bangladesh Soc. Physiol. 2014, 9, 48–53. [Google Scholar] [CrossRef] [Green Version]
  86. Karra, G.; Nadenla, R.; Kiran, R.S.; Srilatha, K.; Mamatha, P.; Rao, V.U. An overview on Arachis hypogaea plant. Int. J. Pharm. Sci. Res. 2013, 4, 4508–4518. [Google Scholar]
  87. Batiha, G.E.-S.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Magdy Beshbishy, A.; Murata, T.; Zaragoza-Bastida, A. Bioactive Compounds, Pharmacological Actions, and Pharmacokinetics of Wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef]
  88. Daradka, H.M.; Abas, M.M.; Mohammad, M.A.; Jaffar, M.M. Antidiabetic effect of Artemisia absinthium extracts on alloxan-induced diabetic rats. Comp. Clin. Pathol. 2014, 23, 1733–1742. [Google Scholar] [CrossRef]
  89. Hausner, E.A.; Poppenga, R.H. Hazards Associated with the Use of Herbal and Other Natural Products. In Small Animal Toxicology, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 335–356. [Google Scholar] [CrossRef]
  90. Jagtap, U.; Bapat, V. Artocarpus: A review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2010, 129, 142–166. [Google Scholar] [CrossRef] [PubMed]
  91. Hannan, J.M.A.; Ali, L.; Khaleque, J.; Akhter, M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Antihyperglycaemic activity of Asparagus racemosus roots is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of cellular insulin action. Br. J. Nutr. 2012, 107, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Goyal, R.; Singh, J.; Lal, H. Asparagus racemosus—An update. Indian J. Med. Sci. 2003, 57, 408–414. [Google Scholar]
  93. Marikani, K. Antidiabetic and antihyperlipidemic activities of Asparagus racemosus in alloxan induced diabetic rats. J. Pharm. Res. 2012, 5, 2469–2472. [Google Scholar]
  94. Hannan, J.M.A.; Marenah, L.; Ali, L.; Rokeya, B.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Insulin secretory actions of extracts of Asparagus racemosus root in perfused pancreas, isolated islets and clonal pancreatic β-cells. J. Endocrinol. 2007, 192, 159–168. [Google Scholar] [CrossRef]
  95. Lee, D.H.; Han, J.M.; Yang, W.M. The effects of Atractylodes japonica Koidz. on type 2 diabetic rats. J. Korean Med. 2015, 36, 75–85. [Google Scholar] [CrossRef]
  96. Zhang, W.-J.; Zhao, Z.-Y.; Chang, L.-K.; Cao, Y.; Wang, S.; Kang, C.-Z.; Wang, H.-Y.; Zhou, L.; Huang, L.-Q.; Guo, L.-P. Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. J. Ethnopharmacol. 2021, 266, 113415. [Google Scholar] [CrossRef]
  97. Alzohairy, M.A. Therapeutics role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment. Evid.-Based Complementary Altern. Med. 2016, 2016, 7382506. [Google Scholar] [CrossRef] [Green Version]
  98. Yarmohammadi, F.; Mehri, S.; Najafi, N.; Amoli, S.S.; Hosseinzadeh, H. The protective effect of Azadirachta indica (neem) against metabolic syndrome: A review. Iran. J. Basic Med. Sci. 2021, 24, 280–292. [Google Scholar] [CrossRef]
  99. Chothani, D.L.; Vaghasiya, H. A review on Balanites aegyptiaca Del (desert date): Phytochemical constituents, traditional uses, and pharmacological activity. Pharmacogn. Rev. 2011, 5, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  100. Ezzat, S.M.; Abdel Motaal, A.; El Awdan, S.A.W. In vitro and in vivo antidiabetic potential of extracts and a furostanol saponin from Balanites aegyptiaca. Pharm. Biol. 2017, 55, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
  101. Rahimi-Madiseh, M.; Lorigoini, Z.; Zamani-Gharaghoshi, H.; Rafieian-Kopaei, M. Berberis vulgaris: Specifications and traditional uses. Iran. J. Basic Med. Sci. 2017, 20, 569. [Google Scholar] [CrossRef]
  102. Meliani, N.; Dib, M.E.A.; Allali, H.; Tabti, B. Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed. 2011, 1, 468–471. [Google Scholar] [CrossRef] [Green Version]
  103. Xuan, T.D.; Khanh, T.D. Chemistry and pharmacology of Bidens pilosa: An overview. J. Pharm. Investig. 2016, 46, 91–132. [Google Scholar] [CrossRef]
  104. Yang, W.C. Botanical, pharmacological, phytochemical, and toxicological aspects of the antidiabetic plant Bidens pilosa L. Evid.-Based Complementary Altern. Med. 2014, 2014, 698617. [Google Scholar] [CrossRef] [Green Version]
  105. Ghogar, A.; Jiraungkoorskul, K.; Jiraungkoorskul, W. Paper Flower, Bougainvillea spectabilis: Update properties of traditional medicinal plant. J. Nat. Remedies 2016, 16, 82–87. [Google Scholar] [CrossRef]
  106. Ghogar, A.; Jiraungkoorskul, W. Antifertility effect of Bougainvillea spectabilis or paper flower. Pharmacogn. Rev. 2017, 11, 19. [Google Scholar] [CrossRef] [Green Version]
  107. Kumar, V.; Thakur, A.K.; Barothia, N.D.; Chatterjee, S.S. Therapeutic potentials of Brassica juncea: An overview. CellMed 2011, 1, 2.1–2.16. [Google Scholar] [CrossRef] [Green Version]
  108. Mahomoodally, M.F.; Jugreet, S.; Sinan, K.I.; Zengin, G.; Ak, G.; Ceylan, R.; Jekő, J.; Cziáky, Z.; Angelini, P.; Angeles Flores, G. Pharmacological Potential and Chemical Characterization of Bridelia ferruginea Benth.—A Native Tropical African Medicinal Plant. Antibiotics 2021, 10, 223. [Google Scholar] [CrossRef]
  109. Olajide, O.A.; Aderogba, M.A.; Okorji, U.P.; Fiebich, B.L. Bridelia ferruginea produces antineuroinflammatory activity through inhibition of nuclear factor-kappa B and p38 MAPK signalling. Evid.-Based Complementary Altern. Med. 2012, 2012, 546873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  110. Giancarlo, S.; Rosa, L.M.; Nadjafi, F.; Francesco, M. Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss. Nat. Prod. Res. 2006, 20, 882–886. [Google Scholar] [CrossRef] [PubMed]
  111. Seri, A.; Khorsand, M.; Rezaei, Z.; Hamedi, A.; Takhshid, M.A. Inhibitory effect of Bunium persicum hydroalcoholic extract on glucose-induced albumin glycation, oxidation, and aggregation in vitro. Iran. J. Med. Sci. 2017, 42, 369. [Google Scholar] [PubMed]
  112. Hussain, L.; Qadir, M.I.; ur Rehman, S. Antihyperglycemic and hypolipidemic potential of Caesalpinia decapetala in alloxan-induced diabetic rabbits. Bangladesh J. Pharmacol. 2014, 9, 529–532. [Google Scholar] [CrossRef] [Green Version]
  113. Parveen, A.; Akash, M.S.H.; Rehman, K.; Mahmood, Q.; Qadir, M.I. Analgesic, anti-inflammatory and anti-pyretic activities of Caesalpinia decapetala. Bioimpacts 2014, 4, 43. [Google Scholar] [CrossRef]
  114. Arora, D.; Rani, A.; Sharma, A. A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn. Rev. 2013, 7, 179. [Google Scholar] [CrossRef] [Green Version]
  115. Athaiban, M.A. Effect of Calendula officinalis Extract against Streptozotocin Induced Diabetes in Male Rats. Int. J. Pharm. Phytopharm. Res. 2018, 8, 22–28. [Google Scholar]
  116. Chopade, V.; Phatak, A.; Upaganlawar, A.; Tankar, A. Green tea (Camellia sinensis): Chemistry, Traditional, Medicinal uses and its Pharmacological activities-a review. Pharmacogn. Rev. 2008, 2, 157–162. [Google Scholar]
  117. Ansari, P.; Flatt, P.R.; Harriott, P.; Abdel-Wahab, Y.H.A. Anti-hyperglycaemic and insulin-releasing effects of Camellia sinensis leaves and isolation and characterisation of active compounds. Br. J. Nutr. 2021, 126, 1149–1163. [Google Scholar] [CrossRef]
  118. Batiha, G.E.-S.; Alqahtani, A.; Ojo, O.A.; Shaheen, H.M.; Wasef, L.; Elzeiny, M.; Ismail, M.; Shalaby, M.; Murata, T.; Zaragoza-Bastida, A. Biological Properties, Bioactive Constituents, and Pharmacokinetics of Some Capsicum spp. and Capsaicinoids. Int. J. Mol. Sci. 2020, 21, 5179. [Google Scholar] [CrossRef]
  119. Manukumar, H.; Shiva Kumar, J.; Chandrasekhar, B.; Raghava, S.; Umesha, S. Evidences for diabetes and insulin mimetic activity of medicinal plants: Present status and future prospects. Crit. Rev. Food Sci. Nutr. 2017, 57, 2712–2729. [Google Scholar] [CrossRef] [PubMed]
  120. Aravind, G.; Bhowmik, D.; Duraivel, S.; Harish, G. Traditional and medicinal uses of Carica papaya. J. Med. Plants Stud. 2013, 1, 7–15. [Google Scholar]
  121. Solikhah, T.I.; Setiawan, B.; Ismukada, D.R. Antidiabetic activity of papaya leaf extract (Carica Papaya L.) isolated with maceration method in alloxan-induces diabetic mice. Syst. Rev. Pharm. 2020, 11, 774–778. [Google Scholar] [CrossRef]
  122. Varghese, G.K.; Bose, L.V.; Habtemariam, S. Antidiabetic components of Cassia alata leaves: Identification through α-glucosidase inhibition studies. Pharm. Biol. 2013, 51, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  123. Fatmawati, S.; Purnomo, A.S.; Bakar, M.F.A. Chemical constituents, usage and pharmacological activity of Cassia alata. Heliyon 2020, 6, e04396. [Google Scholar] [CrossRef]
  124. Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The medicinal properties of Cassia fistula L.: A review. Biomed. Pharmacother. 2021, 144, 112240. [Google Scholar] [CrossRef]
  125. Danish, M.; Singh, P.; Mishra, G.; Srivastava, S.; Jha, K.; Khosa, R. Cassia fistula Linn. (Amulthus)—An important medicinal plant: A review of its traditional uses, phytochemistry and pharmacological properties. J. Nat. Prod. Plant Resourse 2011, 1, 101–118. [Google Scholar]
  126. Einstein, J.W.; Mohd Rais, M.; Mohd, M.A. Comparative evaluation of the antidiabetic effects of different parts of Cassia fistula Linn, a Southeast Asian Plant. J. Chem. 2013, 2013, 714063. [Google Scholar] [CrossRef] [Green Version]
  127. Jarald, E.; Joshi, S.; Jain, D.; Edwin, S. Biochemical evaluation of the hypoglycemic effects of extract and fraction of Cassia fistula Linn. in alloxan-induced diabetic rats. Indian J. Pharm. Sci. 2013, 75, 427. [Google Scholar] [CrossRef] [Green Version]
  128. Kumar, S.; Singh, B.; Singh, R. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. J. Ethnopharmacol. 2022, 284, 114647. [Google Scholar] [CrossRef]
  129. Tiong, S.H.; Looi, C.Y.; Hazni, H.; Arya, A.; Paydar, M.; Wong, W.F.; Cheah, S.C.; Mustafa, M.R.; Awang, K. Antidiabetic and Antioxidant Properties of Alkaloids from Catharanthus roseus (L.) G. Don. Molecules 2013, 18, 9770–9784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  130. Ahmed, M.F.; Kazim, S.M.; Ghori, S.S.; Mehjabeen, S.S.; Ahmed, S.R.; Ali, S.M.; Ibrahim, M. Antidiabetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Int. J. Endocrinol. 2010, 2010, 841090. [Google Scholar] [CrossRef] [PubMed]
  131. Rivera-Mondragón, A.; Ortíz, O.O.; Bijttebier, S.; Vlietinck, A.; Apers, S.; Pieters, L.; Caballero-George, C. Selection of chemical markers for the quality control of medicinal plants of the genus Cecropia. Pharm. Biol. 2017, 55, 1500–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  132. Street, R.A.; Sidana, J.; Prinsloo, G. Cichorium intybus: Traditional Uses, Phytochemistry, Pharmacology, and Toxicology. Evid.-Based Complementary Altern. Med. 2013, 2013, 579319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  133. Wang, J.; Su, B.; Jiang, H.; Cui, N.; Yu, Z.; Yang, Y.; Sun, Y. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia 2020, 146, 104675. [Google Scholar] [CrossRef]
  134. Ota, A.; Ulrih, N.P. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol. 2017, 8, 436. [Google Scholar] [CrossRef]
  135. Basli, A.; Younici, S.; Benkerrou, Z.; Khettal, B.; Madani, K. Evaluation of in-vitro antidiabetic and hypolipidaemic activities of extracts citrus lemon fruit. J. Environ. Sci. Eng. A 2016, 5, 612–618. [Google Scholar] [CrossRef]
  136. Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) Phenomenon—A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
  137. Sharma, M.; Fernandes, J.; Ahirwar, D.; Jain, R. Hypoglycemic and hypolipidimic activity of alcoholic extract of citrus aurantium in normal and alloxan-induced diabetic rats. Pharmacologyonline 2008, 3, 161–171. [Google Scholar]
  138. Suryawanshi, J.A.S. An overview of Citrus aurantium used in treatment of various diseases. Afr. J. Plant Sci. 2011, 5, 390–395. [Google Scholar] [CrossRef]
  139. Erukainure, O.L.; Sanni, O.; Ijomone, O.M.; Ibeji, C.U.; Chukwuma, C.I.; Islam, M.S. The antidiabetic properties of the hot water extract of kola nut (Cola nitida (Vent.) Schott & Endl.) in type 2 diabetic rats. J. Ethnopharmacol. 2019, 242, 112033. [Google Scholar] [CrossRef] [PubMed]
  140. Adeosun, O.I.; Olaniyi, K.S.; Amusa, O.A.; Jimoh, G.Z.; Oniyide, A.A. Methanolic extract of Cola nitida elicits dose-dependent diuretic, natriuretic and kaliuretic activities without causing electrolyte impairment, hepatotoxicity and nephrotoxicity in rats. Int. J. Physiol. Pathophysiol. Pharmacol. 2017, 9, 231. [Google Scholar] [PubMed]
  141. Zhen, Z.; Chang, B.; Li, M.; Lian, F.-M.; Chen, L.; Dong, L.; Wang, J.; Yu, B.; Liu, W.K.; Li, X.Y. Anti-Diabetic Effects of a Coptis chinensis Containing New Traditional Chinese Medicine Formula in Type 2 Diabetic Rats. Am. J. Chin. Med. 2011, 39, 53–63. [Google Scholar] [CrossRef] [PubMed]
  142. Friedemann, T.; Ying, Y.; Wang, W.; Kramer, E.R.; Schumacher, U.; Fei, J.; Schröder, S. Neuroprotective Effect of Coptis chinensis in MPP+ and MPTP-Induced Parkinson’s Disease Models. Am. J. Chin. Med. 2016, 44, 907–925. [Google Scholar] [CrossRef] [PubMed]
  143. He, K.; Song, S.; Zou, Z.; Feng, M.; Wang, D.; Wang, Y.; Li, X.; Ye, X. The Hypoglycemic and Synergistic Effect of Loganin, Morroniside, and Ursolic Acid Isolated from the Fruits of Cornus officinalis. Phytother. Res. 2016, 30, 283–291. [Google Scholar] [CrossRef] [PubMed]
  144. Kim, J.S. Seeds of Cornus officinalis and Diabetic Cataracts. In Handbook of Nutrition, Diet and the Eye, 1st ed.; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 451–458. [Google Scholar] [CrossRef]
  145. Tung, B.T.; Nham, D.T.; Hai, N.T.; Thu, D.K. Curcuma longa, the Polyphenolic Curcumin Compound and Pharmacological Effects on Liver. In Dietary Interventions in Liver Disease; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 125–134. [Google Scholar] [CrossRef]
  146. Olatunde, A.; Joel, E.; Tijjani, H.; Obidola, S.; Luka, C. Anti-diabetic activity of aqueous extract of Curcuma longa (Linn) rhizome in normal and alloxan-induced diabetic rats. Researcher 2014, 6, 58–65. [Google Scholar]
  147. Fukai, T.; Oku, Y.; Hou, A.J.; Yonekawa, M.; Terada, S. Antimicrobial activity of Hydrophobic Xanthones from Cudrania cochinchinensis against Bacillus subtilis and Methicillin-Resistant Staphylococcus aureus. Chem. Biodivers. 2004, 1, 1385–1390. [Google Scholar] [CrossRef]
  148. Antu, K.A.; Riya, M.P.; Mishra, A.; Anilkumar, K.S.; Chandrakanth, C.K.; Tamrakar, A.K.; Srivastava, A.K.; Raghu, K.G. Antidiabetic property of Symplocos cochinchinensis is mediated by inhibition of alpha glucosidase and enhanced insulin sensitivity. PLoS ONE 2014, 9, e105829. [Google Scholar] [CrossRef]
  149. Tran, N.; Pham, B.; Le, L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology 2020, 9, 252. [Google Scholar] [CrossRef]
  150. Singh, S.; Bhagwati, D. Cyamopsis tetragonoloba (L). Taub.: A Phyto-Pharmacological Review. Int. J. Pharm. Pharm. Res. 2016, 7, 166–174. [Google Scholar]
  151. Shah, M.H.; Mukhtar, I.; Khan, S.N. Medicinal importance and association of pathological constraints with Dalbergia sissoo. Pak. J. Phytopathol. 2010, 22, 135–138. [Google Scholar]
  152. Sehra, S.; Sharma, J. Pharmacological Effects and Medicinal Importance of Dalbergia sissoo—A Review. Int. J. Pharm. Chem. Biol. Sci. 2018, 8, 234–243. [Google Scholar]
  153. Tanaka, K.; Nishizono, S.; Makino, N.; Tamaru, S.; Terai, O.; Ikeda, I. Hypoglycemic Activity of Eriobotrya japonica Seeds in Type 2 Diabetic Rats and Mice. Biosci. Biotechnol. Biochem. 2008, 72, 686–693. [Google Scholar] [CrossRef] [Green Version]
  154. Baljinder, S.; Seena, G.; Dharmendra, K.; Vikas, G.; Bansal, P. Pharmacological potential of Eriobotrya japonica—An overview. Int. Res. J. Pharm. 2010, 1, 95–99. [Google Scholar]
  155. Ansari, P.; Flatt, P.R.; Harriott, P.; Abdel-Wahab, Y.H.A. Insulinotropic and antidiabetic properties of Eucalyptus citriodora leaves and isolation of bioactive phytomolecules. J. Pharm. Pharmacol. 2021, 23, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
  156. Saba, I.; Iqbal, M.; Iqbal, M. Bioactivity of Eucalyptus citriodora leaves essential oil. J. Agrochim. 2013, 57, 128. [Google Scholar]
  157. Gray, A.M.; Flatt, P.R. Antihyperglycemic actions of Eucalyptus globulus (Eucalyptus) are associated with pancreatic and extra-pancreatic effects in mice. J. Nutr. 1998, 128, 2319–2323. [Google Scholar] [CrossRef] [Green Version]
  158. Hayat, U.; Jilani, M.I.; Rehman, R.; Nadeem, F. A Review on Eucalyptus globulus: A new perspective in therapeutics. Int. J. Chem. Biochem. Sci. 2015, 8, 85–91. [Google Scholar]
  159. Maroyi, A. Euclea undulata Thunb.: Review of its botany, ethnomedicinal uses, phytochemistry and biological activities. Asian Pac. J. Trop. Med. 2017, 10, 1030–1036. [Google Scholar] [CrossRef]
  160. Jana, K.; Bera, T.K.; Ghosh, D. Antidiabetic effects of Eugenia jambolana in the streptozotocin-induced diabetic male albino rat. Biomark. Genom. Med. 2015, 7, 116–124. [Google Scholar] [CrossRef] [Green Version]
  161. Khalique, A.; Rauf, A. An overview of Jamun (Eugenia Jambolana Linn): A traditional multipotential drug. Indian J. Unani Med. 2016, 9, 71–75. [Google Scholar]
  162. Ghosh, P.; Ghosh, C.; Das, S.; Das, C.; Mandal, S.; Chatterjee, S. Botanical Description, Phytochemical Constituents and Pharmacological Properties of Euphorbia hirta Linn.: A review. Int. J. Health Sci. Res. 2019, 9, 273–286. [Google Scholar]
  163. Kumar, S.; Malhotra, R.; Kumar, D. Euphorbia hirta: Its Chemistry, Traditional and Medicinal Uses, and Pharmacological Activities. Pharmacogn. Rev. 2010, 4, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Rizvi, S.I.; Matteucci, E.; Atukeren, P. Traditional Medicine in Management of Type 2 Diabetes Mellitus. J. Diabetes Res. 2013, 2013, 580823. [Google Scholar] [CrossRef] [PubMed]
  165. Patel, R.; Gautam, P. Medicinal Potency of Ficus Bengalensis: A Review. Int. J. Med. Chem. Anal. 2014, 4, 53–58. [Google Scholar]
  166. Adaramoye, O. Antidiabetic effect of kolaviron, a biflavonoid complex isolated from Garcinia kola seeds, in Wistar rats. Afr. Health Sci. 2012, 12, 498–506. [Google Scholar] [CrossRef] [Green Version]
  167. Emmanuel, O.; Uche, M.E.; Dike, E.D.; Etumnu, L.R.; Ugbogu, O.C.; Ugbogu, E.A. A review on Garcinia kola Heckel: Traditional uses, phytochemistry, pharmacological activities, and toxicology. Biomarkers 2021, 27, 101–117. [Google Scholar] [CrossRef]
  168. Mahmoud, M.H.; Taha, M.M.; Shahy, E.M. Germination of Glycine max seeds potentiates its antidiabetic effect in streptozotocin induced diabetic rats. Int. J. Pharm. Clin. Res. 2016, 8, 1429–1437. [Google Scholar]
  169. Lee, K.J.; Baek, D.-Y.; Lee, G.-A.; Cho, G.-T.; So, Y.-S.; Lee, J.-R.; Ma, K.-H.; Chung, J.-W.; Hyun, D.Y. Phytochemicals and Antioxidant Activity of Korean Black Soybean (Glycine max L.) Landraces. Antioxidants 2020, 9, 213. [Google Scholar] [CrossRef] [Green Version]
  170. Batiha, G.E.S.; Beshbishy, A.M.; El-Mleeh, A.; Abdel-Daim, M.M.; Devkota, H.P. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352. [Google Scholar] [CrossRef] [Green Version]
  171. Khan, F.; Sarker, M.; Rahman, M.; Ming, L.C.; Mohamed, I.N.; Zhao, C.; Sheikh, B.Y.; Tsong, H.F.; Rashid, M.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front. Pharmacol. 2019, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
  172. Kanetkar, P.; Singhal, R.; Kamat, M. Gymnema sylvestre: A Memoir. J. Clin. Biochem. Nutr. 2007, 41, 77–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  173. Kadima, J.; Kasali, F.; Bavhure, B.; Mahano, A.; Bwironde, F. Comparative Antidiabetic Potential and Survival Function of Harungana madagascariensis, Physalis peruviana, Solanum americanum and Tithonia diversifolia Extracts on Alloxan-Induced Diabetes in Guinea-Pigs. Int. J. Pharm. Pharm. Res. 2016, 5, 196–206. [Google Scholar]
  174. Suthar, M.; Rathore, G.; Pareek, A. Antioxidant and Antidiabetic Activity of Helicteres isora (L.) Fruits. Indian J. Pharm. Sci. 2009, 71, 695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  175. Kumar, N.; Singh, A.K. Plant profile, phytochemistry and pharmacology of Avartani (Helicteres isora Linn.): A review. Asian Pac. J. Trop. Biomed. 2014, 4, S22–S26. [Google Scholar] [CrossRef] [Green Version]
  176. Mahmud, I.; Islam, M.K.; Saha, S.; Barman, A.K.; Rahman, M.M.; Anisuzzman, M.; Rahman, T.; Al-Nahain, A.; Jahan, R.; Rahmatullah, M. Pharmacological and Ethnomedicinal Overview of Heritiera fomes: Future Prospects. Int. Sch. Res. Not. 2014, 2014, 938543. [Google Scholar] [CrossRef] [Green Version]
  177. Sabitha, V.; Ramachandran, S.; Naveen, K.; Panneerselvam, K. Antidiabetic and antihyperlipidemic potential of Abelmoschus esculentus (L.) Moench. in streptozotocin-induced diabetic rats. J. Pharm. Bioallied Sci. 2011, 3, 397. [Google Scholar] [CrossRef]
  178. Chanchal, D.K.; Alok, S.; Kumar, M.; Bijauliya, R.K.; Rashi, S.; Gupta, S. A Brief Review on Abelmoschus esculentus Linn. Okra. Int. J. Pharm. Sci. Res. 2018, 9, 58–66. [Google Scholar] [CrossRef]
  179. Ansari, P.; Azam, S.; Hannan, J.M.A.; Flatt, P.R.; Wahab, Y.H.A. Anti-hyperglycaemic activity of H. rosa-sinensis leaves is partly mediated by inhibition of carbohydrate digestion and absorption, and enhancement of insulin secretion. J. Ethnopharmacol. 2020, 253, 112647. [Google Scholar] [CrossRef]
  180. Jadhav, V.; Thorat, R.; Kadam, V.; Sathe, N. Traditional medicinal uses of Hibiscus rosa-sinensis. J. Pharm. Res. 2009, 2, 1220–1222. [Google Scholar]
  181. Kumar, J.; Singh, S.P.; Choudhary, G.K. Pharmacological evaluation of leaves of Jatropha curcas L. for anti-diabetic activity in alloxan induced diabetic rats. Indian J. Anim. Sci. 2016, 86, 387–391. [Google Scholar]
  182. Pabón, L.C.; Hernández-Rodríguez, P. Chemical importance of Jatropha curcas and its biological, pharmacological and industrial applications. Rev. Cuba. De Plantas Med. 2012, 17, 194–209. [Google Scholar]
  183. Sen, S.; Chakraborty, R. Pharmacognostic and anti-hyperglycemic evaluation of Lantana camara (L.) var. aculeate leaves in alloxan-induced hyperglycemic rats. Int. J. Res. Pharm. Sci. 2010, 1, 247–252. [Google Scholar]
  184. Kirimuhuzya, C.; Waako, P.; Joloba, M.; Odyek, O. The anti-mycobacterial activity of Lantana camara a plant traditionally used to treat symptoms of tuberculosis in South-western Uganda. Afr. Health Sci. 2009, 9, 40–45. [Google Scholar] [PubMed]
  185. Palla, A.H.; Khan, N.A.; Bashir, S.; Iqbal, J.; Gilani, A.H. Pharmacological basis for the medicinal use of Linum usitatissimum (Flaxseed) in infectious and non-infectious diarrhea. J. Ethnopharmacol. 2015, 160, 61–68. [Google Scholar] [CrossRef]
  186. Saleem, M.; Tanvir, M.; Akhtar, M.F.; Iqbal, M.; Saleem, A. Antidiabetic Potential of Mangifera indica L. cv. Anwar Ratol Leaves: Medicinal Application of Food Wastes. Medicina 2019, 55, 353. [Google Scholar] [CrossRef] [Green Version]
  187. Shah, K.; Patel, M.; Patel, R.; Parmar, P. Mangifera indica (mango). Pharmacogn. Rev. 2010, 4, 42. [Google Scholar] [CrossRef]
  188. Bortolotti, M.; Mercatelli, D.; Polito, L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front. Pharmacol. 2019, 10, 486. [Google Scholar] [CrossRef] [Green Version]
  189. Azad, S.B.; Ansari, P.; Azam, S.; Hossain, S.M.; Shahid, M.I.-B.; Hasan, M.; Hannan, J.M.A. Anti-hyperglycaemic activity of Moringa oleifera is partly mediated by carbohydrase inhibition and glucose-fibre binding. Biosci. Rep. 2017, 3, BSR20170059. [Google Scholar] [CrossRef] [Green Version]
  190. Mishra, G.; Singh, P.; Verma, R.; Kumar, S.; Srivastav, S.; Jha, K.; Khosa, R. Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: An overview. Der Pharm. Lett. 2011, 3, 141–164. [Google Scholar]
  191. Balakrishnan, R.; Vijayraja, D.; Jo, S.-H.; Ganesan, P.; Su-Kim, I.; Choi, D.-K. Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds. Antioxidants 2020, 9, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  192. Murthy, S.S.N.; Felicia, C. Antidiabetic activity of Musa sapientum fruit peel extract on streptozotocin induced diabetic rats. Int. J. Pharma Bio Sci. 2015, 6, 537–543. [Google Scholar]
  193. Imam, M.Z.; Akter, S. Musa paradisiaca L. and Musa sapientum L.: A Phytochemical and Pharmacological Review. J. Appl. Pharm. Sci. 2011, 1, 14–20. [Google Scholar]
  194. Hannan, J.M.A.; Ansari, P.; Haque, A.; Sanju, A.; Huzaifa, A.; Rahman, A.; Ghosh, A.; Azam, S. Nigella sativa stimulates insulin secretion from isolated rat islets and inhibits the digestion and absorption of (CH2O) n in the gut. Biosci. Rep. 2019, 39, BSR20190723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  195. Salehi, B.; Quispe, C.; Imran, M.; Ul-Haq, I.; Živković, J.; Abu-Reidah, I.M.; Sen, S.; Taheri, Y.; Acharya, K.; Azadi, H. Nigella Plants–Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies. Front. Pharmacol. 2021, 12, 417. [Google Scholar] [CrossRef] [PubMed]
  196. Ezeani, C.; Ezenyi, I.; Okoye, T.; Okoli, C. Ocimum basilicum extract exhibits antidiabetic effects via inhibition of hepatic glucose mobilization and carbohydrate metabolizing enzymes. J. Intercult. Ethnopharmacol. 2017, 6, 22–28. [Google Scholar] [CrossRef]
  197. El-Beshbishy, H.; Bahashwan, S. Hypoglycemic effect of basil (Ocimum basilicum) aqueous extract is mediated through inhibition of α-glucosidase and α-amylase activities: An in vitro study. Toxicol. Ind. Health 2012, 28, 42–50. [Google Scholar] [CrossRef]
  198. Joshi, R.K. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. Anc. Sci. Life 2014, 33, 151. [Google Scholar] [CrossRef]
  199. Hannan, J.M.A.; Marenah, L.; Ali, L.; Rokeya, B.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells. J. Endocrinol. 2006, 189, 127–136. [Google Scholar] [CrossRef] [Green Version]
  200. Qadir, N.M.; Ali, K.A.; Qader, S.W. Antidiabetic effect of Oleuropein from Olea europaea Leaf against Alloxan Induced Type 1 Diabetic in Rats. Braz. Arch. Biol. Technol. 2016, 59, 347–350. [Google Scholar] [CrossRef] [Green Version]
  201. Khan, Y.; Panchal, S.; Vyas, N.; Butani, A.; Kumar, V. Olea europaea: A phyto-pharmacological review. Pharmacogn. Rev. 2007, 1, 114–118. [Google Scholar]
  202. Attele, A.S.; Zhou, Y.-P.; Xie, J.-T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.S. Antidiabetic Effects of Panax ginseng Berry Extract and the Identification of an Effective Component. Diabetes 2002, 51, 1851–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  203. Xiang, Y.Z.; Shang, H.C.; Gao, X.M.; Zhang, B.L. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother. Res. 2008, 22, 851–858. [Google Scholar] [CrossRef] [PubMed]
  204. Muhoya, F.K.; Kadima, J.N.; Ranarivelo, N.; Frédérich, M.; Hubert, P.; Marini, R.D. Preliminary Phytochemical Content and Antidiabetic Potential Investigations of Panda oleosa (Pierre) Used in Kisangani Areas. Am. J. Anal. Chem. 2017, 8, 564–581. [Google Scholar] [CrossRef] [Green Version]
  205. Saleem, Z.M.; Ahmed, S.; Hasan, M.M. Phaseoulus vulgaris Linn.: Botany, Medicinal Uses, Phytochemistry and Pharmacology. World J. Pharm. Res. 2016, 5, 1611–1616. [Google Scholar] [CrossRef]
  206. Lawson-Evi, P.; Eklu-Gadegbeku, K.; Agbonon, A.; Aklikokou, K.; Creppy, E.; Gbeassor, M. Antidiabetic activity of Phyllanthus amarus Schum and Thonn (Euphorbiaceae) on Alloxan Induced Diabetes in Male Wistar Rats. J. Appl. Sci. 2011, 11, 2968–2973. [Google Scholar] [CrossRef]
  207. Patel, J.R.; Tripathi, P.; Sharma, V.; Chauhan, N.S.; Dixit, V.K. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. J. Ethnopharmacol. 2011, 138, 286–313. [Google Scholar] [CrossRef]
  208. Hannan, J.M.A.; Ali, L.; Khaleque, J.; Akhter, M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Aqueous extracts of husks of Plantago ovata reduce hyperglycaemia in type 1 and type 2 diabetes by inhibition of intestinal glucose absorption. Br. J. Nutr. 2006, 96, 131–137. [Google Scholar] [CrossRef] [Green Version]
  209. Madgulkar, A.R.; Rao, M.R.; Warrier, D. Characterization of Psyllium (Plantago ovata) Polysaccharide and Its Uses. In Polysaccharides; Ramawat, K., Mérillon, J.M., Eds.; Springer: New York, NY, USA, 2015; pp. 871–890. [Google Scholar] [CrossRef]
  210. Reyad-ul-Ferdous, M.; Ahmmed, A.; Kamal, M.A.H.M.; Ansari, P.; Shahjahan, D.S.; Akter, F.; Sakib, M.H. Herbal remedies as Alternative to Antidiabetic and Plants are Available in Bangladesh: A comprehensive. World J. Pharm. Res. 2015, 4, 2382–2389. [Google Scholar]
  211. Rahman, M.S.; Mujahid, M.; Siddiqui, M.A.; Rahman, M.A.; Arif, M.; Eram, S.; Khan, A.; Azeemuddin, M. Ethnobotanical Uses, Phytochemistry and Pharmacological Activities of Pterocarpus marsupium: A Review. Pharmacogn. J. 2018, 10, s1–s8. [Google Scholar] [CrossRef] [Green Version]
  212. Tang, D.; Liu, L.; Ajiakber, D.; Ye, J.; Xu, J.; Xin, X.; Aisa, H.A. Anti-diabetic Effect of Punica granatum Flower Polyphenols Extract in Type 2 Diabetic Rats: Activation of Akt/GSK-3β and Inhibition of IRE1α-XBP1 Pathways. Front. Endocrinol. 2018, 9, 586. [Google Scholar] [CrossRef] [PubMed]
  213. Bhowmik, D.; Gopinath, H.; Kumar, B.P.; Kumar, K. Medicinal Uses of Punica granatum and Its Health Benefits. J. Pharmacogn. Phytochem. 2013, 1, 28–35. [Google Scholar]
  214. Zhu, H.; Wang, Y.; Liu, Z.; Wang, J.; Wan, D.; Feng, S.; Yang, X.; Wang, T. Antidiabetic and antioxidant effects of catalpol extracted from Rehmannia glutinosa (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed. Chin. Med. 2016, 11, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  215. Zhang, R.-X.; Li, M.-X.; Jia, Z.-P. Rehmannia glutinosa: Review of botany, chemistry and pharmacology. J. Ethnopharmacol. 2008, 117, 199–214. [Google Scholar] [CrossRef] [PubMed]
  216. Kumar, R.; Anjum, N.; Tripathi, Y. Phytochemistry and Pharmacology of Santalum album L.: A Review. World J. Pharm. Res. 2015, 4, 1842–1876. [Google Scholar]
  217. Paswan, S.K.; Gautam, A.; Verma, P.; Rao, C.V.; Sidhu, O.P.; Singh, A.P.; Srivastava, S. The Indian Magical Herb ‘Sanjeevni’(Selaginella bryopteris L.)—A Promising Anti-inflammatory Phytomedicine for the Treatment of Patients with Inflammatory Skin Diseases. J. Pharmacopunct. 2017, 20, 93–99. [Google Scholar] [CrossRef]
  218. Amutha, K.; Godavari, A. In-vitro-antidiabetic activity of N-butanol extract of Sesamum indicum. Asian J. Pharm. Clin. Res. 2016, 9, 60–62. [Google Scholar]
  219. Anilakumar, K.R.; Pal, A.; Khanum, F.; Bawa, A.S. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds-an overview. Agric. Conspec. Sci. 2010, 75, 159–168. [Google Scholar]
  220. Nyaga, S.N.; Mathiu, P.M.; Onyango, C.M.; Areba, G.O. Antidiabetic Properties of Solanum Villosum and Solanum Nigrum Var. sarrachoides in a Streptozotocin-induced Diabetic Mice Model. Int. J. Basic Clin. Pharmacol. 2019, 8, 2396–2402. [Google Scholar] [CrossRef]
  221. Kuete, V. Physical, hematological, and histopathological signs of toxicity induced by African medicinal plants. In Toxicological Survey of African Medicinal Plants; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 635–657. [Google Scholar] [CrossRef]
  222. Hannan, J.M.A.; Ansari, P.; Azam, S.; Flatt, P.R.; Wahab, Y.H.A. Effects of Spirulina platensis on insulin secretion, dipeptidyl peptidase IV activity and both carbohydrate digestion and absorption indicate potential as an adjunctive therapy for diabetes. Br. J. Nutr. 2020, 124, 1021–1034. [Google Scholar] [CrossRef]
  223. Kumari, D.J.; Babitha, B.; Jaffar, S.; Prasad, M.G.; Ibrahim, M.; Khan, M.S. Potential health benefits of Spirulina platensis. Int. J. Adv. Pharm. Sci. 2011, 2, 417–422. [Google Scholar]
  224. Kumar, V.; Van Staden, J. A review of Swertia chirayita (Gentianaceae) as a traditional medicinal plant. Front. Pharmacol. 2016, 6, 308. [Google Scholar] [CrossRef] [PubMed]
  225. Kuru, P. Tamarindus indica and its health related effects. Asian Pac. J. Trop. Biomed. 2014, 4, 676–681. [Google Scholar] [CrossRef] [Green Version]
  226. Amalraj, A.; Gopi, S. Medicinal Properties of Terminalia arjuna (Roxb.) Wight & Arn.: A review. J. Tradit. Complementary Med. 2017, 7, 65–78. [Google Scholar] [CrossRef] [Green Version]
  227. Kumar, G.P.S.; Arulselvan, P.; Kumar, D.S.; Subramanian, S.P. Anti-diabetic Activity of Fruits of Terminalia chebula on Streptozotocin Induced Diabetic Rats. J. Health Sci. 2006, 52, 283–291. [Google Scholar] [CrossRef] [Green Version]
  228. Jokar, A.; Masoomi, F.; Sadeghpour, O.; Nassiri-Toosi, M.; Hamedi, S. Potential therapeutic applications for Terminalia chebula in Iranian traditional medicine. J. Tradit. Chin. Med. 2016, 36, 250–254. [Google Scholar] [CrossRef] [Green Version]
  229. Saha, S.; Ghosh, S. Tinospora cordifolia: One plant, many roles. Anc. Sci. Life 2012, 31, 151–159. [Google Scholar] [CrossRef]
  230. Hannan, J.M.A.; Ali, L.; Rokeya, B.; Khaleque, J.; Akhter, M.; Flatt, P.R.; Abdel-Wahab, Y.H.A. Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption and enhancing insulin action. Br. J. Nutr. 2007, 97, 514–521. [Google Scholar] [CrossRef] [Green Version]
  231. Mandal, S.; DebMandal, M. Fenugreek (Trigonella foenum-graecum L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 421–429. [Google Scholar] [CrossRef]
  232. Ahangarpour, A.; Mohammadian, M.; Dianat, M. Antidiabetic effect of hydroalcholic Urtica dioica leaf extract in male rats with fructose-induced insulin resistance. Iran. J. Med. Sci. 2012, 37, 181–186. [Google Scholar]
  233. Hall, J.; Bravo-Clouzet, R. Anti-Inflammatory Herbs for Arthritis. In Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases, 2nd ed.; Watson, R.R., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 619–631. [Google Scholar]
  234. Asante, D.-B.; Effah-Yeboah, E.; Barnes, P.; Abban, H.A.; Ameyaw, E.O.; Boampong, J.N.; Ofori, E.G.; Dadzie, J.B. Antidiabetic effect of young and old ethanolic leaf extracts of Vernonia amygdalina: A comparative study. J. Diabetes Res. 2016, 2016, 8252741. [Google Scholar] [CrossRef] [Green Version]
  235. Oyeyemi, I.T.; Akinlabi, A.A.; Adewumi, A.; Aleshinloye, A.O.; Oyeyemi, O.T. Vernonia amygdalina: A folkloric herb with anthelminthic properties. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 43–49. [Google Scholar] [CrossRef]
  236. Gupta, P.C. Withania coagulans Dunal-an overview. Int. J. Pharm. Sci. Rev. Res. 2012, 12, 68–71. [Google Scholar]
  237. Akram, M.; Shah, M.I.; Usmanghan, K.; Mohiuddin, E.; Sami, A.; Asif, M.; Shah, S.A.; Ahmed, K.; Shaheen, G. Zingiber officinale roscoe (A medicinal plant). Pak. J. Nutr. 2011, 10, 399–400. [Google Scholar] [CrossRef] [Green Version]
  238. Firdous, S. Phytochemicals for treatment of diabetes. EXCLI J. 2014, 13, 451–453. [Google Scholar] [PubMed]
  239. Prabhakar, P.; Banerjee, M. Antidiabetic phytochemicals: A comprehensive review on opportunities and challenges in targeted therapy for herbal drug development. Int. J. Pharm. Res. 2020, 12, 1673–1696. [Google Scholar]
  240. Soni, H.; Malik, J.; Yadav, A.P.; Yadav, B. Characterization of rutin isolated by leaves Annona squamosa by modern analytical techniques. Eur. J. Biomed. Pharm. Sci. 2018, 5, 484–489. [Google Scholar]
  241. Zhang, R.; Yao, Y.; Wang, Y.; Ren, G. Antidiabetic activity of isoquercetin in diabetic KK-A y mice. Nutr. Metab. 2011, 8, 85. [Google Scholar] [CrossRef] [Green Version]
  242. Sangeetha, R. Luteolin in the Management of Type 2 Diabetes Mellitus. Curr. Res. Nutr. Food Sci. J. 2019, 7, 393–398. [Google Scholar] [CrossRef] [Green Version]
  243. Xu, F.; Wu, H.; Wang, Y.; Yang, Y.; Wang, X. Study on the Mechanism of Lupenone for Treating type 2 Diabetes by Integrating Pharmacological Evaluation and Network Pharmacology. Pharm. Biol. 2021, 60, 997–1010. [Google Scholar] [CrossRef]
  244. Pawar, M.R.V.; Karthikeyan, E. Role of Catechins in Diabetes Mellitus. Eur. J. Mol. Clin. Med. 2020, 7, 7604–7609. [Google Scholar]
  245. Celine, S.; Tomy, S.; Ujwala, T.; Johnson, S.; Chander, U. A detailed overview of medicinal plants having hypoglycemic activity. Int. J. Phytomedicine 2016, 8, 139–175. [Google Scholar] [CrossRef] [Green Version]
  246. Abdulkhaleq, L.A.; Assi, M.A.; Noor, M.H.M.; Abdullah, R.; Saad, M.Z.; Taufiq-Yap, Y.H. Therapeutic uses of epicatechin in diabetes and cancer. Vet. World 2017, 10, 869–872. [Google Scholar] [CrossRef] [PubMed]
  247. Lakshmi, T.; Ramasamy, R.; Thirumalaikumaran, R. Preliminary phytochemical analysis and in vitro antioxidant, FTIR spectroscopy, anti-diabetic activity of Acacia catechu ethanolic seed extract. Pharmacogn. J. 2015, 7, 356–362. [Google Scholar] [CrossRef] [Green Version]
  248. Bharti, S.K.; Krishnan, S.; Kumar, A.; Kumar, A. Antidiabetic phytoconstituents and their mode of action on metabolic pathways. Ther. Adv. Endocrinol. Metab. 2018, 9, 81–100. [Google Scholar] [CrossRef]
  249. Niture, N.T.; Ansari, A.A.; Naik, S.R. Anti-hyperglycemic activity of rutin in streptozotocin-induced diabetic rats: An effect mediated through cytokines, antioxidants and lipid biomarkers. Indian J. Exp. Biol. 2014, 52, 720–727. [Google Scholar]
  250. Ramalingam, S.; Packirisamy, M.; Karuppiah, M.; Vasu, G.; Gopalakrishnan, R.; Gothandam, K.; Thiruppathi, M. Effect of β-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPRγ and glucose transporter 4 in high fat diet and streptozotocin-induced diabetic rats. Cytotechnology 2020, 72, 357–366. [Google Scholar] [CrossRef]
  251. Nigam, V.; Nambiar, V. Therapeutic potential of Aegle marmelos (L.) Correa leaves as an antioxidant and anti-diabetic agent: A review. Int. J. Pharma Sci. Res. 2015, 6, 611–621. [Google Scholar]
  252. Baliga, M.S.; Thilakchand, K.R.; Rai, M.P.; Rao, S.; Venkatesh, P. Aegle marmelos (L.) Correa (Bael) and its phytochemicals in the treatment and prevention of cancer. Integr. Cancer Ther. 2013, 12, 187–196. [Google Scholar] [CrossRef] [Green Version]
  253. Wei, C.-K.; Tsai, Y.-H.; Korinek, M.; Hung, P.-H.; El-Shazly, M.; Cheng, Y.-B.; Wu, Y.-C.; Hsieh, T.-J.; Chang, F.-R. 6-Paradol and 6-Shogaol, the Pungent Compounds of Ginger, Promote Glucose Utilization in Adipocytes and Myotubes, and 6-Paradol Reduces Blood Glucose in High-Fat Diet-Fed Mice. Int. J. Mol. Sci. 2017, 18, 168. [Google Scholar] [CrossRef] [Green Version]
  254. Son, M.J.; Miura, Y.; Yagasaki, K. Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice. Cytotechnology 2015, 67, 641–652. [Google Scholar] [CrossRef]
  255. Wang, X.; Li, Y.L.; Wu, H.; Liu, J.Z.; Hu, J.X.; Liao, N.; Peng, J.; Cao, P.P.; Liang, X.; Hai, C.X. Antidiabetic effect of oleanolic acid: A promising use of a traditional pharmacological agent. Phytother. Res. 2011, 25, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
  256. Chandramohan, G.; Al-Numair, K.S.; Alsaif, M.A.; Veeramani, C. Antidiabetic effect of kaempferol a flavonoid compound, on streptozotocin-induced diabetic rats with special reference to glycoprotein components. Prog. Nutr. 2015, 17, 50–57. [Google Scholar]
  257. Gupta, R.; Sharma, A.K.; Sharma, M.; Dobhal, M.; Gupta, R. Evaluation of antidiabetic and antioxidant potential of lupeol in experimental hyperglycaemia. Nat. Prod. Res. 2012, 26, 1125–1129. [Google Scholar] [CrossRef]
  258. Sunil, C.; Irudayaraj, S.S.; Duraipandiyan, V.; Alrashood, S.T.; Alharbi, S.A.; Ignacimuthu, S. Friedelin exhibits antidiabetic effect in diabetic rats via modulation of glucose metabolism in liver and muscle. J. Ethnopharmacol. 2021, 268, 113659. [Google Scholar] [CrossRef] [PubMed]
  259. Kumar, D.; Dash, G.; Tripathy, N. Hypoglycaemic activity of bark extracts of Albizia lebbeck Benth. in streptozotocin induced diabetic rats. Int. J. Pharm. Sci. Rev. Res. 2013, 18, 28–32. [Google Scholar]
  260. Hashiesh, H.M.; Meeran, M.F.N.; Sharma, C.; Sadek, B.; Kaabi, J.A.; Ojha, S.K. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. Nutrients 2020, 12, 2963. [Google Scholar] [CrossRef]
  261. Zhai, B.; Zhang, C.; Sheng, Y.; Zhao, C.; He, X.; Xu, W.; Huang, K.; Luo, Y. Hypoglycemic and hypolipidemic effect of S-allyl-cysteine sulfoxide (alliin) in DIO mice. Sci. Rep. 2018, 8, 3527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  262. Chan, C.-H.; Ngoh, G.-C.; Yusoff, R. A brief review on anti diabetic plants: Global distribution, active ingredients, extraction techniques and acting mechanisms. Pharmacogn. Rev. 2012, 6, 22–28. [Google Scholar] [CrossRef] [Green Version]
  263. Abdulghafoor, H.A.; Ramadhan, S.J.; Nawfal, A.J. Therapeutic Effects of Allicin against the Diabetes Mellitus Induced by Streptozotocin in Male Rats. Nat. Volatiles Essent. Oils J. 2021, 8, 8934–8945. [Google Scholar]
  264. Zhong, R.; Chen, L.; Liu, Y.; Xie, S.; Li, S.; Liu, B.; Zhao, C. Anti-diabetic effect of aloin via JNK-IRS1/PI3K pathways and regulation of gut microbiota. Food Sci. Hum. Wellness 2022, 11, 189–198. [Google Scholar] [CrossRef]
  265. Alinejad-Mofrad, S.; Foadoddini, M.; Saadatjoo, S.A.; Shayesteh, M. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: A randomized controlled-trial. J. Diabetes Metab. Disord. 2015, 14, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  266. Martorell, M.; Castro, N.; Victoriano, M.; Capó, X.; Tejada, S.; Vitalini, S.; Pezzani, R.; Sureda, A. An update of anthraquinone derivatives emodin, diacerein, and catenarin in diabetes. Evid.-Based Complementary Altern. Med. 2021, 2021, 3313419. [Google Scholar] [CrossRef] [PubMed]
  267. Palheta, I.; Ferreira, L. Hypoglycemic potential of Anacardium occidentale L. J. Anal. Pharm. Res. 2018, 7, 152–153. [Google Scholar]
  268. Prabhakar, P.K.; Doble, M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr. Diabetes Rev. 2008, 4, 291–308. [Google Scholar] [CrossRef]
  269. Muruganandan, S.; Srinivasan, K.; Gupta, S.; Gupta, P.; Lal, J. Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J. Ethnopharmacol. 2005, 97, 497–501. [Google Scholar] [CrossRef] [PubMed]
  270. Liu, Y.W.; Hao, Y.C.; Chen, Y.J.; Yin, S.Y.; Zhang, M.Y.; Kong, L.; Wang, T.Y. Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats. Phytother. Res. 2018, 32, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
  271. Jayachandran, M.; Zhang, T.; Ganesan, K.; Xu, B.; Chung, S.S.M. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2018, 829, 112–120. [Google Scholar] [CrossRef]
  272. Amor, A.J.; Gómez-Guerrero, C.; Ortega, E.; Sala-Vila, A.; Lázaro, I. Ellagic Acid as a Tool to Limit the Diabetes Burden: Updated Evidence. Antioxidants 2020, 9, 1226. [Google Scholar] [CrossRef]
  273. Sharma, V.C.; Kaushik, A.; Dey, Y.N.; Srivastava, B.; Wanjari, M.; Pawar, S.; Chougule, S. Nephroprotective potential of Anogeissus latifolia Roxb. (Dhava) against gentamicin-induced nephrotoxicity in rats. J. Ethnopharmacol. 2021, 273, 114001. [Google Scholar] [CrossRef]
  274. Szkudelski, T.; Szkudelska, K. Anti-diabetic effects of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 34–39. [Google Scholar] [CrossRef]
  275. Dabe, N.E.; Kefale, A.T. Antidiabetic Effects of Artemisia Species: A Systematic Review. Anc. Sci. Life 2017, 36, 175–181. [Google Scholar] [CrossRef] [PubMed]
  276. Bakun, P.; Czarczynska-Goslinska, B.; Goslinski, T.; Lijewski, S. In vitro and in vivo biological activities of azulene derivatives with potential applications in medicine. Med. Chem. Res. 2021, 30, 834–846. [Google Scholar] [CrossRef] [PubMed]
  277. Ramírez-Espinosa, J.J.; Saldaña-Ríos, J.; García-Jiménez, S.; Villalobos-Molina, R.; Ávila-Villarreal, G.; Rodríguez-Ocampo, A.N.; Bernal-Fernández, G.; Estrada-Soto, S. Chrysin Induces Antidiabetic, Antidyslipidemic and Anti-Inflammatory Effects in Athymic Nude Diabetic Mice. Molecules 2018, 23, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  278. Voroneanu, L.; Nistor, I.; Dumea, R.; Apetrii, M.; Covic, A. Silymarin in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Diabetes Res. 2016, 2016, 5147468. [Google Scholar] [CrossRef] [Green Version]
  279. Mousavi, L.; Salleh, M.; Vikneswaran, M.; Asmawi, M. Anti-diabetic chemical constituents isolated from traditional medicinal plants. J. Glob. Trends Pharm. Sci. 2016, 7, 3074–3083. [Google Scholar]
  280. Maji, S. Role of Neem leaves in Diabetes and Obesity. In Role of Phytochemicals in Human Physiological Disorders: Diabetes and Obesity; Scholars’ Press: Atlanta, GA, USA, 2020; pp. 85–102. [Google Scholar]
  281. Zaky, A.S.; Kandeil, M.; Abdel-Gabbar, M.; Fahmy, E.M.; Almehmadi, M.M.; Ali, T.M.; Ahmed, O.M. The Antidiabetic Effects and Modes of Action of the Balanites aegyptiaca Fruit and Seed Aqueous Extracts in NA/STZ-Induced Diabetic Rats. Pharmaceutics 2022, 14, 263. [Google Scholar] [CrossRef]
  282. Yin, J.; Ye, J.; Jia, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharm. Sin. B 2012, 2, 327–334. [Google Scholar] [CrossRef] [Green Version]
  283. Sankaranarayanan, C.; Nishanthi, R.; Pugalendi, P. Ameliorating effect of berbamine on hepatic key enzymes of carbohydrate metabolism in high-fat diet and streptozotocin induced type 2 diabetic rats. Biomed. Pharmacother. 2018, 103, 539–545. [Google Scholar] [CrossRef]
  284. Chang, C.L.-T.; Liu, H.-Y.; Kuo, T.-F.; Hsu, Y.-J.; Shen, M.-Y.; Pan, C.-Y.; Yang, W.-C. Antidiabetic effect and mode of action of cytopiloyne. Evid.-Based Complementary Altern. Med. 2013, 2013, 685642. [Google Scholar] [CrossRef] [Green Version]
  285. Barky, A.; Ezz, A.; Mohammed, T. The Potential role of apigenin in diabetes mellitus. Int. J. Clin. Case Rep. Rev. 2020, 3, 32. [Google Scholar] [CrossRef]
  286. Parveen, G.; Ali, M. Extraction Isolation and Phytochemical Screening of Leaves and Stems of Bidens Pilosa and Evaluation of Antifungal Potential of Extracts. J. Pharm. Biol. Sci. 2019, 14, 73–85. [Google Scholar] [CrossRef]
  287. Kim, H.J.; Park, K.S.; Lee, S.K.; Min, K.W.; Han, K.A.; Kim, Y.K.; Ku, B.J. Effects of pinitol on glycemic control, insulin resistance and adipocytokine levels in patients with type 2 diabetes mellitus. Ann. Nutr. Metab. 2012, 60, 1–5. [Google Scholar] [CrossRef] [PubMed]
  288. Hafizur, R.M.; Hameed, A.; Shukrana, M.; Raza, S.A.; Chishti, S.; Kabir, N.; Siddiqui, R.A. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 2015, 22, 297–300. [Google Scholar] [CrossRef]
  289. Ortsäter, H.; Grankvist, N.; Wolfram, S.; Kuehn, N.; Sjöholm, Å. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutr. Metab. 2012, 9, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  290. Wolfram, S.; Raederstorff, D.; Preller, M.; Wang, Y.; Teixeira, S.R.; Riegger, C.; Weber, P. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J. Nutr. 2006, 136, 2512–2518. [Google Scholar] [CrossRef]
  291. Belury, M.A.; Cole, R.M.; Snoke, D.B.; Banh, T.; Angelotti, A. Linoleic acid, glycemic control and Type 2 diabetes. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 30–33. [Google Scholar] [CrossRef]
  292. Pu, J.; Peng, G.; Li, L.; Na, H.; Liu, Y.; Liu, P. Palmitic acid acutely stimulates glucose uptake via activation of Akt and ERK1/2 in skeletal muscle cells [S]. J. Lipid Res. 2011, 52, 1319–1327. [Google Scholar] [CrossRef] [Green Version]
  293. Mishra, C.; Code, Q. Comparative anti-diabetic study of three phytochemicals on high-fat diet and streptozotocin-induced diabetic dyslipidemic rats. Int. J. Biomed. Adv. Res. 2018, 9, 286–293. [Google Scholar] [CrossRef]
  294. Majidi, Z.; Bina, F.; Kahkeshani, N.; Rahimi, R. Bunium persicum: A review of ethnopharmacology, phytochemistry, and biological activities. Tradit. Integr. Med. 2020, 5, 150–176. [Google Scholar] [CrossRef]
  295. Babujanarthanam, R.; Kavitha, P.; Pandian, M.R. Quercitrin, a bioflavonoid improves glucose homeostasis in streptozotocin-induced diabetic tissues by altering glycolytic and gluconeogenic enzymes. Fundam. Clin. Pharmacol. 2010, 24, 357–364. [Google Scholar] [CrossRef]
  296. Han, X.-X.; Jiang, Y.-P.; Liu, N.; Wu, J.; Yang, J.-M.; Li, Y.-X.; Sun, M.; Sun, T.; Zheng, P.; Yu, J.-Q. Protective effects of astragalin on spermatogenesis in streptozotocin-induced diabetes in male mice by improving antioxidant activity and inhibiting inflammation. Biomed. Pharmacother. 2019, 110, 561–570. [Google Scholar] [CrossRef] [PubMed]
  297. Yusuf, M.; Nasiruddin, M.; Sultana, N.; Akhtar, J.; Khan, M.I.; Ahmad, M. Regulatory Mechanism of Caffeic acid on glucose Metabolism in Diabetes. Res. J. Pharm. Technol. 2019, 12, 4735–4740. [Google Scholar] [CrossRef]
  298. Kadakol, A.; Malek, V.; Goru, S.K.; Pandey, A.; Sharma, N.; Gaikwad, A.B. Esculetin ameliorates insulin resistance and type 2 diabetic nephropathy through reversal of histone H3 acetylation and H2A lysine 119 monoubiquitination. J. Funct. Foods 2017, 35, 256–266. [Google Scholar] [CrossRef]
  299. Song, J.-X.; Ren, H.; Gao, Y.-F.; Lee, C.-Y.; Li, S.-F.; Zhang, F.; Li, L.; Chen, H. Dietary capsaicin improves glucose homeostasis and alters the gut microbiota in obese diabetic ob/ob mice. Front. Physiol. 2017, 8, 602. [Google Scholar] [CrossRef] [Green Version]
  300. Marcelino, G.; Machate, D.J.; de Cássia Freitas, K.; Hiane, P.A.; Maldonade, I.R.; Pott, A.; Asato, M.A.; Candido, C.J.; de Cássia Avellaneda Guimarães, R. β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review. Molecules 2020, 25, 5803. [Google Scholar] [CrossRef] [PubMed]
  301. Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid.-Based Complementary Altern. Med. 2013, 2013, 801457. [Google Scholar] [CrossRef] [PubMed]
  302. Ranđelović, S.; Bipat, R. A Review of Coumarins and Coumarin-Related Compounds for Their Potential Antidiabetic Effect. Clin. Med. Insights: Endocrinol. Diabetes 2021, 14, 11795514211042023. [Google Scholar] [CrossRef]
  303. Malik, A.; Jamil, U.; Butt, T.T.; Waquar, S.; Gan, S.H.; Shafique, H.; Jafar, T.H. In silico and in vitro studies of lupeol and iso-orientin as potential antidiabetic agents in a rat model. Drug Des. Dev. Ther. 2019, 13, 1501–1513. [Google Scholar] [CrossRef] [Green Version]
  304. Bak, E.-J.; Kim, J.; Jang, S.; Woo, G.-H.; Yoon, H.-G.; Yoo, Y.-J.; Cha, J.-H. Gallic acid improves glucose tolerance and triglyceride concentration in diet-induced obesity mice. Scand. J. Clin. Lab. Investig. 2013, 73, 607–614. [Google Scholar] [CrossRef]
  305. Goboza, M.; Aboua, Y.G.; Chegou, N.; Oguntibeju, O.O. Vindoline effectively ameliorated diabetes-induced hepatotoxicity by docking oxidative stress, inflammation and hypertriglyceridemia in type 2 diabetes-induced male Wistar rats. Biomed. Pharmacother. 2019, 112, 108638. [Google Scholar] [CrossRef]
  306. Alonso-Castro, A.J.; Zapata-Bustos, R.; Gómez-Espinoza, G.; Salazar-Olivo, L.A. Isoorientin reverts TNF-α-induced insulin resistance in adipocytes activating the insulin signaling pathway. Endocrinology 2012, 153, 5222–5230. [Google Scholar] [CrossRef] [PubMed]
  307. Cadena-Zamudio, J.D.; Nicasio-Torres, M.d.P.; Guerrero-Analco, J.A.; Ibarra-Laclette, E. Ethnopharmacological studies of Cecropia obtusifolia (Urticaceae) and its importance in the treatment of type 2 diabetes mellitus: A mini-review. Acta Bot. Mex. 2019, 126. [Google Scholar] [CrossRef]
  308. Abbas, Z.K.; Saggu, S.; Sakeran, M.I.; Zidan, N.; Rehman, H.; Ansari, A.A. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J. Biol. Sci. 2015, 22, 322–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  309. Guo, X.; Sun, W.; Huang, L.; Wu, L.; Hou, Y.; Qin, L.; Liu, T. Effect of cinnamaldehyde on glucose metabolism and vessel function. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 3844–3853. [Google Scholar] [CrossRef] [Green Version]
  310. Singh, P.; Jayaramaiah, R.H.; Agawane, S.B.; Vannuruswamy, G.; Korwar, A.M.; Anand, A.; Dhaygude, V.S.; Shaikh, M.L.; Joshi, R.S.; Boppana, R. Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: Proteomic and mechanistic insights. Sci. Rep. 2016, 6, 18798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  311. Hsu, C.-C.; Lin, M.H.; Cheng, J.-T.; Wu, M.C. Diosmin, a Citrus Nutrient, Activates Imidazoline Receptors to Alleviate Blood Glucose and Lipids in Type 1-Like Diabetic Rats. Nutrients 2017, 9, 684. [Google Scholar] [CrossRef] [Green Version]
  312. Revathy, J.; Sheik Abdullah, S. The role of hesperetin in the management of diabetes mellitus and its complications. J. Cancer Treat. Res. 2017, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
  313. Den Hartogh, D.J.; Tsiani, E. Antidiabetic Properties of Naringenin: A Citrus Fruit Polyphenol. Biomolecules 2019, 9, 99. [Google Scholar] [CrossRef] [Green Version]
  314. Yan, F.; Benrong, H.; Qiang, T.; Qin, F.; Jizhou, X. Hypoglycemic activity of jatrorrhizine. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 2005, 25, 491–493. [Google Scholar] [CrossRef]
  315. Li, Y.; Sun, M.; Liu, Y.; Liang, J.; Wang, T.; Zhang, Z. Gymnemic acid alleviates type 2 diabetes mellitus and suppresses endoplasmic reticulum stress in vivo and in vitro. J. Agric. Food Chem. 2019, 67, 3662–3669. [Google Scholar] [CrossRef]
  316. Castro, A.J.G.; Frederico, M.J.S.; Cazarolli, L.H.; Mendes, C.P.; Bretanha, L.C.; Schmidt, E.C.; Bouzon, Z.L.; de Medeiros Pinto, V.A.; da Fonte Ramos, C.; Pizzolatti, M.G. The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochim. Et Biophys. Acta (BBA)-Gen. Subj. 2015, 1850, 51–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  317. Marton, L.T.; Pescinini-e-Salzedas, L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.F.; Sinatora, R.V.; Detregiachi, C.R.P.; Girio, R.J.; Buchaim, D.V.; Cincotto dos Santos Bueno, P. The effects of curcumin on diabetes mellitus: A systematic review. Front. Endocrinol. 2021, 12, 443. [Google Scholar] [CrossRef] [PubMed]
  318. Lekshmi, P.; Arimboor, R.; Raghu, K.; Menon, A.N. Turmerin, the antioxidant protein from turmeric (Curcuma longa) exhibits antihyperglycaemic effects. Nat. Prod. Res. 2012, 26, 1654–1658. [Google Scholar] [CrossRef]
  319. Zabad, I.E.M.; Amin, M.N.; El-Shishtawy, M.M. Protective effect of vanillin on diabetic nephropathy by decreasing advanced glycation end products in rats. Life Sci. 2019, 239, 117088. [Google Scholar] [CrossRef] [PubMed]
  320. Zhou, Q.; Chen, L.; Chen, Q.-W.; Chen, H.-W.; Dong, J.-X. Chemical constituents of Cudrania cochinchinensis. J. Chin. Med. Mater. 2013, 36, 1444–1447. [Google Scholar]
  321. Oza, M.J.; Kulkarni, Y.A. Biochanin A improves insulin sensitivity and controls hyperglycemia in type 2 diabetes. Biomed. Pharmacother. 2018, 107, 1119–1127. [Google Scholar] [CrossRef]
  322. Yao, X.; Li, K.; Liang, C.; Zhou, Z.; Wang, J.; Wang, S.; Liu, L.; Yu, C.-L.; Song, Z.-B.; Bao, Y.-L. Tectorigenin enhances PDX1 expression and protects pancreatic β-cells by activating ERK and reducing ER stress. J. Biol. Chem. 2020, 295, 12975–12992. [Google Scholar] [CrossRef]
  323. Sultana, S.; Asif, H.M.; Naveed Akhtar, N.; Akhtar, N. Dalbergia sissoo Roxb: Monograph. Int. J. Pharmacogn. 2015, 2, 440–443. [Google Scholar]
  324. Yuan, Y.-L.; Guo, C.-R.; Cui, L.-L.; Ruan, S.-X.; Zhang, C.-F.; Ji, D.; Yang, Z.-L.; Li, F. Timosaponin B-II ameliorates diabetic nephropathy via TXNIP, mTOR, and NF-κB signaling pathways in alloxan-induced mice. Drug Des. Dev. Ther. 2015, 9, 6247–6258. [Google Scholar] [CrossRef] [Green Version]
  325. Qa’dan, F.; Verspohl, E.J.; Nahrstedt, A.; Petereit, F.; Matalka, K.Z. Cinchonain Ib isolated from Eriobotrya japonica induces insulin secretion in vitro and in vivo. J. Ethnopharmacol. 2009, 124, 224–227. [Google Scholar] [CrossRef]
  326. Song, T.-J.; Park, C.-H.; In, K.-R.; Kim, J.-B.; Kim, J.H.; Kim, M.; Chang, H.J. Antidiabetic effects of betulinic acid mediated by the activation of the AMP-activated protein kinase pathway. PLoS ONE 2021, 16, e0249109. [Google Scholar] [CrossRef]
  327. Kim, D.Y.; Kang, M.-K.; Lee, E.-J.; Kim, Y.-H.; Oh, H.; Kim, S.-I.; Oh, S.Y.; Na, W.; Kang, Y.-H. Eucalyptol Inhibits Amyloid-β-Induced Barrier Dysfunction in Glucose-Exposed Retinal Pigment Epithelial Cells and Diabetic Eyes. Antioxidants 2020, 9, 1000. [Google Scholar] [CrossRef]
  328. Kolhe, S.S.; Rachh, P.R. Review on potent anti-diabetic plants or herbs from traditional medicine. J. Drug Deliv. Ther. 2018, 8, 92–98. [Google Scholar] [CrossRef] [Green Version]
  329. Cherian, S.; Kumar, R.V.; Augusti, K.; Kidwai, J. Antidiabetic effect of a glycoside of pelargonidin isolated from the bark of Ficus bengalensis Linn. Indian J. Biochem. Biophys. 1992, 29, 380–382. [Google Scholar]
  330. Murugesu, S.; Selamat, J.; Perumal, V. Phytochemistry, Pharmacological Properties, and Recent Applications of Ficus benghalensis and Ficus religiosa. Plants 2021, 10, 2749. [Google Scholar] [CrossRef]
  331. Ayepola, O.R.; Chegou, N.N.; Brooks, N.L.; Oguntibeju, O.O. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses. BMC Complementary Altern. Med. 2013, 13, 363. [Google Scholar] [CrossRef]
  332. Ogunmoyole, T.; Olalekan, O.; Fatai, O.; Makun, J.; Kade, I. Antioxidant and phytochemical profile of aqueous and ethanolic extract of Garcinia kola. J. Pharmacogn. Phytother. 2012, 4, 66–74. [Google Scholar] [CrossRef]
  333. Sharma, V.; Katiyar, A.; Agarwal, R.C. Glycyrrhiza glabra: Chemistry and Pharmacological Activity. In Sweeteners; Ramawat, K., Mérillon, J.M., Eds.; Springer: New York, NY, USA, 2018; pp. 87–100. [Google Scholar] [CrossRef]
  334. Takii, H.; Kometani, T.; Nishimura, T.; Nakae, T.; Okada, S.; Fushiki, T. Antidiabetic effect of glycyrrhizin in genetically diabetic KK-Ay mice. Biol. Pharm. Bull. 2001, 24, 484–487. [Google Scholar] [CrossRef] [Green Version]
  335. Kalaiarasi, P.; Pugalendi, K.V. Antihyperglycemic effect of 18β-glycyrrhetinic acid, aglycone of glycyrrhizin, on streptozotocin-diabetic rats. Eur. J. Pharmacol. 2009, 606, 269–273. [Google Scholar] [CrossRef]
  336. Gupta, R.; Bajpai, K.G.; Johri, S.; Saxena, A. An overview of Indian novel traditional medicinal plants with anti-diabetic potentials. Afr. J. Tradit. Complementary Altern. Med. 2008, 5, 1–17. [Google Scholar]
  337. Ahangarpour, A.; Oroojan, A.A.; Khorsandi, L.; Shabani, R.; Mojaddami, S. Preventive effects of betulinic acid on streptozotocinnicotinamide induced diabetic nephropathy in male mouse. J. Nephropathol. 2016, 5, 128–133. [Google Scholar] [CrossRef] [Green Version]
  338. Iwalewa, E.O.; Adewale, I.O.; Taiwo, B.J.; Arogundade, T.; Osinowo, A.; Daniyan, O.M.; Adetogun, G.E. Effects of Harungana madagascariensis stem bark extract on the antioxidant markers in alloxan induced diabetic and carrageenan induced inflammatory disorders in rats. J. Complementary Integr. Med. 2008, 5. [Google Scholar] [CrossRef]
  339. Amalan, V.; Vijayakumar, N.; Indumathi, D.; Ramakrishnan, A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: In vivo approach. Biomed. Pharmacother. 2016, 84, 230–236. [Google Scholar] [CrossRef]
  340. Wang, J.; Huang, M.; Yang, J.; Ma, X.; Zheng, S.; Deng, S.; Huang, Y.; Yang, X.; Zhao, P. Anti-diabetic activity of stigmasterol from soybean oil by targeting the GLUT4 glucose transporter. Food Nutr. Res. 2017, 61, 1364117. [Google Scholar] [CrossRef] [Green Version]
  341. Sindhu, R.K.; Puri, V. Phytochemical, nutritional and pharmacological evidences for Abelmoschus esculentus (L.). J. Phytopharm. 2016, 5, 238–241. [Google Scholar] [CrossRef]
  342. Anwar, A.; Azmi, M.A.; Siddiqui, J.A.; Panhwar, G.; Shaikh, F.; Ariff, M. Thiamine level in type I and type II diabetes mellitus patients: A comparative study focusing on hematological and biochemical evaluations. Cureus 2020, 12, e8027. [Google Scholar] [CrossRef]
  343. Shi, L.; Du, X.; Guo, P.; Huang, L.; Qi, P.; Gong, Q. Ascorbic acid supplementation in type 2 diabetes mellitus: A protocol for systematic review and meta-analysis. Medicine 2020, 99, e23125. [Google Scholar] [CrossRef]
  344. Chowdhury, S.; Ghosh, S.; Das, A.K.; Sil, P.C. Ferulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front. Pharmacol. 2019, 10, 27. [Google Scholar] [CrossRef]
  345. Wang, H.; Wang, J.; Qiu, C.; Ye, Y.; Guo, X.; Chen, G.; Li, T.; Wang, Y.; Fu, X.; Liu, R.H. Comparison of phytochemical profiles and health benefits in fiber and oil flaxseeds (Linum usitatissimum L.). Food Chem. 2017, 214, 227–233. [Google Scholar] [CrossRef]
  346. Mitra, A.; Mahadevappa, M. Antidiabetic and hypolipidemic effects of mahanimbine (carbazole alkaloid) from Murraya koenigii (rutaceae) leaves. Int. J. Phytomedicine 2010, 2, 22–30. [Google Scholar] [CrossRef]
  347. Song, S.E.; Jo, H.J.; Kim, Y.-W.; Cho, Y.-J.; Kim, J.-R.; Park, S.-Y. Delphinidin prevents high glucose-induced cell proliferation and collagen synthesis by inhibition of NOX-1 and mitochondrial superoxide in mesangial cells. J. Pharmacol. Sci. 2016, 130, 235–243. [Google Scholar] [CrossRef] [Green Version]
  348. Desai, S.; Saheb, S.H.; Das, K.K.; Haseena, S. Phytochemical Analysis of Nigella sativa and its Antidiabetic Effect. J. Pharm. Sci. Res. 2015, 7, 527–532. [Google Scholar]
  349. Abdelrazek, H.; Kilany, O.E.; Muhammad, M.A.; Tag, H.M.; Abdelazim, A.M. Black seed thymoquinone improved insulin secretion, hepatic glycogen storage, and oxidative stress in streptozotocin-induced diabetic male Wistar rats. Oxidative Med. Cell. Longev. 2018, 2018, 8104165. [Google Scholar] [CrossRef]
  350. Saravanan, S.; Pari, L. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. Eur. J. Pharmacol. 2015, 761, 279–287. [Google Scholar] [CrossRef]
  351. More, T.A.; Kulkarni, B.R.; Nalawade, M.L.; Arvindekar, A.U. Antidiabetic activity of linalool and limonene in streptozotocin-induced diabetic rat: A combinatorial therapy approach. Int. J. Pharm. Pharm. Sci. 2014, 6, 159–163. [Google Scholar]
  352. Al-Azzawie, H.F.; Alhamdani, M.S.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 2006, 78, 1371–1377. [Google Scholar] [CrossRef]
  353. Dai, S.; Hong, Y.; Xu, J.; Lin, Y.; Si, Q.; Gu, X. Ginsenoside Rb2 promotes glucose metabolism and attenuates fat accumulation via AKT-dependent mechanisms. Biomed. Pharmacother. 2018, 100, 93–100. [Google Scholar] [CrossRef]
  354. Li, Y.; Zheng, X.; Yi, X.; Liu, C.; Kong, D.; Zhang, J.; Gong, M. Myricetin: A potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. FASEB J. 2017, 31, 2603–2611. [Google Scholar] [CrossRef] [Green Version]
  355. Kulkarni, C.R.; Joglekar, M.M.; Patil, S.B.; Arvindekar, A.U. Antihyperglycemic and antihyperlipidemic effect of Santalum album in streptozotocin induced diabetic rats. Pharm. Biol. 2012, 50, 360–365. [Google Scholar] [CrossRef]
  356. Paswan, S.K.; Verma, P.; Azmi, L.; Srivastava, S.; Venkateswara Rao, C. Phytochemical Investigation and HPTLC Fingerprinting Analysis of Selaginella bryopteris Ethanolic Plant Extract for Analgesic and Anti-inflammatory Activities in Animals. J. Biol. Act. Prod. Nat. 2021, 11, 395–405. [Google Scholar] [CrossRef]
  357. Neeta, M.; Mukta, N.; Bilwa, K. Comparative qualitative phytochemical analysis of Sesamum indicum L. Int. J. Curr. Microbiol. Appl. Sci. 2015, 2, 172–181. [Google Scholar]
  358. Mohammad Shahi, M.; Zakerzadeh, M.; Zakerkish, M.; Zarei, M.; Saki, A. Effect of sesamin supplementation on glycemic status, inflammatory markers, and adiponectin levels in patients with type 2 diabetes mellitus. J. Diet. Suppl. 2017, 14, 65–75. [Google Scholar] [CrossRef] [PubMed]
  359. Bhadoriya, S.S.; Ganeshpurkar, A.; Bhadoriya, R.P.S.; Sahu, S.K.; Patel, J.R. Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 37–45. [Google Scholar] [CrossRef] [PubMed]
  360. Harakeh, S.; Almuhayawi, M.; Al Jaouni, S.; Almasaudi, S.; Hassan, S.; Al Amri, T.; Azhar, N.; Abd-Allah, E.; Ali, S.; El-Shitany, N. Antidiabetic effects of novel ellagic acid nanoformulation: Insulin-secreting and anti-apoptosis effects. Saudi J. Biol. Sci. 2020, 27, 3474–3480. [Google Scholar] [CrossRef]
  361. Chang, C.L.; Lin, C.S. Phytochemical composition, antioxidant activity, and neuroprotective effect of Terminalia chebula Retzius extracts. Evid.-Based Complementary Altern. Med. 2012, 2012, 125247. [Google Scholar] [CrossRef] [Green Version]
  362. Liu, X.; Kim, J.-k.; Li, Y.; Li, J.; Liu, F.; Chen, X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J. Nutr. 2005, 135, 165–171. [Google Scholar] [CrossRef] [Green Version]
  363. Rajalakshmi, M.; Anita, R. β-cell regenerative efficacy of a polysaccharide isolated from methanolic extract of Tinospora cordifolia stem on streptozotocin-induced diabetic Wistar rats. Chem.-Biol. Interact. 2016, 243, 45–53. [Google Scholar] [CrossRef]
  364. Kalailingam, P.; Kannaian, B.; Tamilmani, E.; Kaliaperumal, R. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine 2014, 21, 1154–1161. [Google Scholar] [CrossRef]
  365. Leng, J.; Li, X.; Tian, H.; Liu, C.; Guo, Y.; Zhang, S.; Chu, Y.; Li, J.; Wang, Y.; Zhang, L. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/HO-1 pathway. BMC Complementary Med. Ther. 2020, 20, 126. [Google Scholar] [CrossRef] [Green Version]
  366. Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Kabbashi, N.A. Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. J. Taibah Univ. Sci. 2019, 13, 414–422. [Google Scholar] [CrossRef] [Green Version]
  367. Balbi, M.E.; Tonin, F.S.; Mendes, A.M.; Borba, H.H.; Wiens, A.; Fernandez-Llimos, F.; Pontarolo, R. Antioxidant effects of vitamins in type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetol. Metab. Syndr. 2018, 10, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  368. Ram, H.; Kumar, P.; Purohit, A.; Kashyap, P.; Kumar, S.; Kumar, S.; Singh, G.; Alqarawi, A.A.; Hashem, A.; Abd-Allah, E.F. Improvements in HOMA indices and pancreatic endocrinal tissues in type 2-diabetic rats by DPP-4 inhibition and antioxidant potential of an ethanol fruit extract of Withania coagulans. Nutr. Metab. 2021, 18, 43. [Google Scholar] [CrossRef] [PubMed]
  369. Peerzade, N.; Sayed, N.; Das, N. Antimicrobial and phytochemical screening of methanolic fruit extract of Withania coagulans L. Dunal for evaluating the antidiabetic activity. Pharma Innov. J. 2018, 7, 197–204. [Google Scholar]
  370. Osadebe, P.O.; Odoh, E.U.; Uzor, P.F. Natural products as potential sources of antidiabetic drugs. J. Pharm. Res. Int. 2014, 4, 2075–2095. [Google Scholar] [CrossRef]
  371. Dev, S. Prime Ayurvedic Plant Drugs: A Modern Scientific Appraisal, 1st ed.; Ane Books Pvt. Limited: New Delhi, India, 2012; p. 464. [Google Scholar]
  372. Adedapo, A.; Ogunmiluyi, I. The use of natural products in the management of diabetes: The current trends. J. Drug Deliv. Ther. 2020, 10, 153–162. [Google Scholar] [CrossRef]
  373. Kalita, P.; Deka, S.; Saharia, B.J.; Chakraborty, A.; Basak, M.; Deka, M. An overview and future scope on traditionally used herbal plants of Assam having Antidiabetic activity. Int. J. Adv. Pharm. Biol. Chem. 2014, 3, 299–304. [Google Scholar]
  374. Rout, S.P.; Chowdary, K.; Kar, D.; Das, L. Plants as source of novel anti-diabetic drug: Present scenario and future perspectives. Curr. Trends Biotechnol. Pharmacol. 2008, 3, 614–632. [Google Scholar]
  375. Verma, S.; Singh, S. Current and future status of herbal medicines. Vet. World 2008, 1, 347. [Google Scholar] [CrossRef]
  376. Kifle, Z.D.; Abdelwuhab, M.; Melak, A.D.; Meseret, T.; Adugna, M. Pharmacological evaluation of medicinal plants with antidiabetic activities in Ethiopia: A review. Metab. Open 2022, 13, 100174. [Google Scholar] [CrossRef]
Figure 1. Flavonoids exerting antidiabetic activity via different mechanistic pathways: Flavonoids increase insulin secretion and improve β-cell function via the PI3K/AKT signaling pathway; increase GLUT-4 translocation through AMPK activation to increase glucose uptake in adipose tissues and skeletal muscles; activate PPAR-γ expression to decrease insulin resistance; activate cAMP/PKA pathway to reduce blood glucose levels and improve glucose tolerance; increase glutathione peroxidase activity to reduce HbA1c levels; decrease G-6-Pase, PEPCK, glycogen phosphorylase, fructose 1,6-biphosphatase and DPP-IV activity in liver to decrease gluconeogenesis, glycogenolysis, and glycoslysis; inhibit SGLT pathway in kidney to decrease renal glucose reabsorption; inhibit GLUT-2, α-amylase and α-glucosidase activity to decrease glucose absorption in the small intestine.
Figure 1. Flavonoids exerting antidiabetic activity via different mechanistic pathways: Flavonoids increase insulin secretion and improve β-cell function via the PI3K/AKT signaling pathway; increase GLUT-4 translocation through AMPK activation to increase glucose uptake in adipose tissues and skeletal muscles; activate PPAR-γ expression to decrease insulin resistance; activate cAMP/PKA pathway to reduce blood glucose levels and improve glucose tolerance; increase glutathione peroxidase activity to reduce HbA1c levels; decrease G-6-Pase, PEPCK, glycogen phosphorylase, fructose 1,6-biphosphatase and DPP-IV activity in liver to decrease gluconeogenesis, glycogenolysis, and glycoslysis; inhibit SGLT pathway in kidney to decrease renal glucose reabsorption; inhibit GLUT-2, α-amylase and α-glucosidase activity to decrease glucose absorption in the small intestine.
Molecules 27 04278 g001
Table 1. Traditional uses and pharmacological effects of antidiabetic medicinal plants.
Table 1. Traditional uses and pharmacological effects of antidiabetic medicinal plants.
Medicinal PlantsPartsTraditional UsesPharmacological EffectsReferences
  • Abrus precatorius
Leaves, seedsDiabetes, wounds, fever, cough, cold, tetanusImproves β-cell function, inhibits α-amylase and α-glucosidase activity[53,54]
2.
Acacia arabica
Bark, rootsDiabetes, astringent, diarrhea, parasitic worms, diuretic, liver tonicLowers blood glucose levels, increases insulin secretion, improves glucose uptake and glucose tolerance[24,55]
3.
Acacia catechu
BarkDiabetes, asthma, bronchitis, diarrhea, obesity, dysentery, skin diseasesLowers blood glucose levels, increases insulin secretion[56,57,58]
4.
Aegle marmelos
LeavesDiabetes, dysentery, inflammation, ulcer, diarrhea, asthmaLowers blood glucose levels, increases insulin secretion, glucose uptake and metabolism, inhibits aldose reductase and DPP-IV enzyme activity[56,59,60]
5.
Aframomum melegueta
Fruit, leaves Diabetes, cough, diarrhea, stomach ache, leprosy, hypertension, measlesLowers plasma glucose levels, inhibits α-amylase and α-glucosidase activity[61,62]
6.
Ageratum conyzoides
LeavesDiabetes, fever, rheumatism, cardiovascular diseases, malaria, wounds, spasmsLowers blood glucose levels, improves β-cell function, increases insulin secretion[63,64]
7.
Albizia lebbeck
Bark, podsDiabetes, asthma, diarrhea, infections, dysentery, inflammationLowers blood glucose levels, increases insulin secretion, enhances glucose uptake[56,65,66]
8.
Albizia adianthifolia
Bark, leavesDiabetes, eye problems, hemorrhoids, skin diseases, wounds, malaria diarrhea, indigestionLowers blood glucose levels, improves glucose tolerance[16,67]
9.
Allium cepa
BulbDiabetes, bronchitis, hypertension, skin infections, swelling, lower cholesterol levelIncreases insulin secretion and insulin sensitivity, improves glucose uptake [68,69]
10.
Allium sativum
BulbDiabetes, fever, hypertension, rheumatism, dysentery, bronchitis, intestinal wormsIncreases insulin secretion and insulin sensitivity to cells[70,71]
11.
Aloe vera
Leaves Diabetes, constipation, infections, ulcer, dysentery, piles, rheumatoid arthritisLowers blood glucose levels, increases insulin secretion, reduces insulin resistance, improves glucose tolerance[72,73]
12.
Anacradium occidentale
Leaves, stem barkDiabetes, fever, hypertension, rheumatism, toothache, piles, dysentery Lowers blood glucose levels, reduces oxidative stress, decreases total cholesterol and triglyceride levels[74,75,76]
13.
Anemarrhena asphodeloides
RhizomeDiabetes, fever, cough, inflammation, infections, night sweats, dementiaLowers blood glucose levels, increases insulin sensitivity, improves glucose uptake [77,78]
14.
Annona salzmannii
Leaves, barkDiabetes, inflammation, tumorsLowers blood glucose levels, improves β-cell function, increases insulin secretion[79,80]
15.
Annona squamosa
LeavesDiabetes, wounds, inflammation, hypertension, malaria, insect bitesLowers blood glucose levels, increases insulin secretion, improves glucose tolerance and β-cell function [10,81]
16.
Anogeissus latifolia
BarkDiabetes, diarrhea, hemorrhoids, dysentery, snake bites, stomach disorders, skin diseases, leprosyDecreases blood glucose levels, improves β-cell function, increases insulin secretion, inhibits DPP-IV enzyme activity[56,82,83]
17.
Arachis hypogaea
SeedsDiabetes, inflammation, heart diseases, coagulation, rheumatism, hypertension, Alzheimer’s diseaseIncreases insulin secretion and insulin sensitivity, improves glucose tolerance[84,85,86]
18.
Artemisia absinthium
RhizomeDiabetes, wounds, indigestion, gastritis, anemia, hepatitis, cardiovascular diseases, gall bladder disordersIncreases insulin sensitivity, improves glucose uptake, enhances GLUT-4 translocation[87,88,89]
19.
Artocarpus heterophyllus
Leaves, rhizomeDiabetes, diarrhea, malaria, wounds, anemia, inflammation Lowers blood glucose levels, decreases glycosylated hemoglobin levels[78,90]
20.
Asparagus racemosus
Roots Diabetes, constipation, ulcers, stomach disorders, cough, inflammationIncreases insulin secretion and action, improves β-cell function, inhibits carbohydrate digestion and absorption[91,92,93,94]
21.
Atractylodes japonica
RhizomeDiabetes, rheumatism, gastrointestinal diseases, influenza, night blindness, diuretic, stomachicLowers blood glucose levels, reduces insulin resistance, improves glucose uptake[95,96]
22.
Azadirachta indica
LeavesDiabetes, malaria skin diseases, infections, cardiovascular diseases, intestinal wormsLowers blood glucose levels, increases insulin secretion, improves pancreatic β-cell function, inhibits α-amylase and α-glucosidase activity, enhances glucose uptake[56,97,98]
23.
Balanites aegyptiaca
FruitDiabetes, wounds, asthma, malaria, diarrhea, hemorrhoids, fever, infectionsIncreases insulin secretion, improves glucose uptake, inhibits α-glucosidase activity[99,100]
24.
Berberis vulgaris
Root, barkDiabetes, eye infections, piles, wounds, snake bites, hemorrhoids, dysenteryReduces blood glucose levels, increases insulin secretion[101,102]
25.
Bidens pilosa
RootDiabetes, wounds, hepatitis, diarrhea, urinary tract infections, cold, glandular sclerosisIncreases plasma insulin, improves glucose tolerance, protects or prevents islet degeneration[103,104]
26.
Bougainvillea spectabilis
Flowers, leavesDiabetes, inflammation, ulcers, sore throat, infections, contraceptiveRegenerates β-cell function, increases plasma insulin levels, reduces intestinal glucosidase activity[105,106]
27.
Brassica juncea
Leaves, seedsDiabetes, arthritis, rheumatism, back pain, coughs, paralysisIncreases insulin secretion and glucose utilization[16,107]
28.
Bridelia ferruginea
Leaves, stem barkDiabetes, headache, arthritis, fever, inflammationLowers blood glucose levels, inhibits α-amylase and α-glucosidase activity[108,109]
29.
Bunium persicum
Seeds Diabetes, diarrhea, gastrointestinal disorders, inflammation, obesity, asthmaLowers blood glucose levels, improves glucose uptake and utilization[56,110,111]
30.
Caesalpinia decapetala
Leaves Diabetes, indigestion, flatulence, stomach aches, constipation, feverLowers blood glucose levels, protects pancreatic beta cells, decreases oxidative stress[112,113]
31.
Calendula officinalis
Leaves, barkDiabetes, fever, infections, wounds, menstrual irregularity, poor eyesight, inflammation, ulcersLowers blood glucose levels, increases plasma insulin levels[114,115]
32.
Camellia sinensis
LeavesDiabetes, heart diseases, diuretic, astringent, stimulant, flatulenceIncreases insulin secretion and action, inhibit insulin glycation, DPP-IV enzyme, and α-amylase activity, improves glucose tolerance [116,117]
33.
Capsicum frutescens
Whole plantDiabetes, gastrointestinal disorders, toothache, pain, muscle spasms, fever, infectionsIncreases insulin secretion and insulin sensitivity, improves glucose uptake[118,119]
34.
Carica papaya
Fruit, leavesDiabetes, gastrointestinal disorders, dengue, malaria, nerve pains, insomnia, constipationLowers blood glucose levels, increases insulin secretion, suppresses glucagon secretion[120,121]
35.
Cassia alata
Leaves, seedsDiabetes, skin diseases, rheumatism, constipation, ringworm, infections, inflammationLowers blood glucose levels, inhibits α-glucosidase activity [122,123]
36.
Cassia fistula
Stalk Diabetes, wounds, constipation, piles, skin diseases, asthma, liver diseases, rheumatism, leprosyLowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization[56,124,125,126,127]
37.
Catharanthus roseus
Leaves, rootsDiabetes, hypertension, menstrual irregularity, cancer, wounds, muscle painLowers blood glucose levels, increases insulin sensitivity, improves glucose uptake and utilization[128,129,130]
38.
Cecropia obtusifolia
Root barkDiabetes, asthma, bronchitis, heart diseases, inflammation, wounds, hypertensionLowers blood glucose levels, decreases glycosylated hemoglobin levels[78,131]
39.
Cichorium intybus
Bark, leavesDiabetes, constipation, wounds, liver diseasesIncreases insulin secretion and insulin sensitivity, improves glucose uptake [78,132]
40.
Cinnamomum zeylanicum
BarkDiabetes, common cold, flu, gastrointestinal disorders, bacterial infections, headache, stomach painIncreases plasma insulin levels, increases insulin sensitivity, inhibits α-amylase activity[133,134]
41.
Citrus limon
FruitDiabetes, hypertension, infections, scurvy, sore throat, rheumatismLowers plasma glucose levels, inhibits α-amylase activity[135,136]
42.
Citrus x aurantium
FruitDiabetes, insomnia, indigestion, constipation, heartburn, nausea, cardiovascular diseasesLowers blood glucose levels, increases insulin secretion[137,138]
43.
Cola nitida
SeedsDiabetes, dysentery, fatigue, CNS stimulant, morning sickness, migraine, indigestion, woundsLowers blood glucose levels, increases serum insulin levels[139,140]
44.
Coptis chinensis
RhizomeDiabetes, sore throat, whooping cough, dysentery, neurodegenerative diseasesLowers blood glucose levels, increases insulin sensitivity, improves glucose uptake[141,142]
45.
Cornus officinalis
Fruit, seedsDiabetes, pain, inflammation, cardiovascular diseases, liver, and kidney diseasesLowers blood glucose levels, increases insulin secretion, inhibits α-glucosidase activity, increases GLUT-4 expression[143,144]
46.
Curcuma longa
RhizomeDiabetes, gastric, inflammation, infections, cough, pain, liver diseasesLowers blood glucose levels, inhibits α-amylase and α-glucosidase activity, increases insulin secretion, improves peripheral glucose uptake, reduces insulin resistance[78,145,146]
47.
Cudrania cochinchinensis
Bark, rootsDiabetes, hepatitis, scabies, bruises, gonorrhea, jaundice, rheumatismLowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization, inhibits DPP-IV enzyme and α-glucosidase activity[56,147,148]
48.
Cyamopsis tetragonoloba
Fruit Diabetes, night blindness, arthritis, sprains, constipation, asthma, liver diseases, obesityIncreases insulin secretion, protects pancreatic beta cells, decreases glycosylated hemoglobin levels[149,150]
49.
Dalbergia sissoo
Bark Diabetes, stomach disorders, dysentery, skin diseases, syphilis, nausea, gonorrheaLowers blood glucose levels, reduces serum triglyceride and cholesterol levels[56,151,152]
50.
Eriobotrya japonica
Leaves, seedsDiabetes, bronchitis, inflammation, coughLowers blood glucose levels, reduces insulin resistance, improves glucose tolerance[153,154]
51.
Eucalyptus citriodora
LeavesDiabetes, fever, pain, sinusitis, bronchitis, asthma, chronic rhinitis, Increases insulin secretion, improves glucose uptake, inhibits insulin glycation and DPP-IV enzyme activity, decreases starch digestion[155,156]
52.
Eucalyptus globulus
LeavesDiabetes, cough, cold, wounds, fungal infections, fever, sore throat, painIncreases insulin secretion, improves glucose uptake[157,158]
53.
Euclea undulata
Root, barkDiabetes, cough, chest pain, diarrhea, headache, toothacheLowers blood glucose levels, inhibits α-glucosidase activity[78,159]
54.
Eugenia jambolana
SeedsDiabetes, skin ulcers, gastritis, constipation, sore throat, liver, and kidney diseasesLowers blood glucose levels, improves pancreatic β-cell function, increases insulin secretion, inhibits sucrase and maltase activity, improves glucose uptake and metabolism[56,160,161]
55.
Euphorbia hirta
LeavesDiabetes, respiratory diseases, diarrhea, jaundice, tumors, gonorrheaIncreases insulin release from beta cells, inhibits α-glucosidase activity[162,163]
56.
Ficus benghalensis
Bark, leavesDiabetes, hypertension, dysentery, diarrhea, pain, ulcers, asthmaDecrease carbohydrate digestion and absorption, lowers blood glucose levels[164,165]
57.
Garcinia kola
SeedsDiabetes, diarrhea, food poisoning, bacterial infections, cough, liver diseasesInhibits α-amylase activity, decreases glycosylated hemoglobin levels[166,167]
58.
Glycine max
SeedsDiabetes, cardiovascular diseases, obesity, cancerReduces insulin resistance, improves glucose tolerance[168,169]
59.
Glycyrrhiza glabra
RootsDiabetes, epilepsy, respiratory diseases, paralysis, jaundice, rheumatismLowers blood glucose levels, increases insulin secretion[56,170]
60.
Gymnema sylvestre
LeavesDiabetes, asthma, bronchitis, constipation, jaundice, dyspepsia, hemorrhoids, obesityLowers blood glucose levels, regenerates beta cells, increases insulin secretion, improves glucose tolerance[171,172]
61.
Harungana madagascariensis
LeavesDiabetes, cancer, hernia, hypertension, jaundice, malaria, yellow feverLowers blood glucose levels, inhibits α-amylase activity[16,173]
62.
Helicteres isora
Roots Diabetes, diarrhea, snake bites, gastrointestinal disorders, spasmsLowers blood glucose levels, improves glucose uptake[174,175]
63.
Heritiera fomes
Bark Diabetes, diarrhea, constipation, dysentery, dermatitis, scabies, goiterDecreases carbohydrate digestion and glucose absorption, lowers blood glucose levels, increases insulin secretion, improves glucose tolerance, inhibits DPP-IV enzyme activity[26,51,176]
64.
Hibiscus esculentus
Roots, seedsDiabetes, gastric irritations, inflammatory diseases, wounds, and boilsLowers blood glucose levels, improves β-cell function, increases insulin secretion[177,178]
65.
Hibiscus rosa-sinensis
LeavesDiabetes, cough, diarrhea, dysentery, pain, contraceptiveReduces glucose absorption, lowers blood glucose levels, increases insulin secretion and hepatic glucose utilization, improves glucose tolerance, inhibits DPP-IV activity[179,180]
66.
Jatropha curcas
Leaves Diabetes, fever, bacterial and fungal infections, jaundice, muscle painLowers fasting blood glucose levels, improves glucose uptake and utilization[181,182]
67.
Lantana camara
LeavesDiabetes, asthma, malaria, chicken pox, hypertension, measlesLowers elevated blood glucose levels, improves glucose tolerance[183,184]
68.
Linum usitatissimum
Seeds Diabetes, diarrhea, gastrointestinal infections, asthma, bronchitis, atherosclerosisLowers blood glucose levels, increases insulin secretion, improves glucose uptake and metabolism[56,185]
69.
Mangifera indica
Leaves, seedsDiabetes, constipation, piles, dysentery, asthma, anemia, hypertension, hemorrhage, Lowers blood glucose levels, increases insulin secretion, improves glucose uptake, inhibits α-glucosidase and DPP-IV activity[56,186,187]
70.
Momordica charantia
Leaves, seedsDiabetes, malaria, hypertension, scabies, liver diseases, obesity, ulcers, measlesLowers blood glucose levels, increases insulin secretion and glucose uptake, improves glucose tolerance, decreases gluconeogenesis, inhibits α-glucosidase activity[56,134,188]
71.
Moringa oleifera
LeavesDiabetes, asthma, enlarged liver, bacterial infections, eye problems, piles, influenza, diureticReduces glucose absorption, lowers blood glucose levels, improves glucose uptake, inhibits α-amylase activity[189,190]
72.
Murraya koenigii
LeavesDiabetes, piles, dysentery, itching, bruises, inflammationLowers blood glucose levels, inhibits α-amylase and α-glucosidase activity[78,191]
73.
Musa sapientum
Flowers Diabetes, dysentery, ulcers, hypertension, pain, inflammation, snake bites Lowers blood glucose levels, increases insulin secretion, decreases glucosylated hemoglobin levels[192,193]
74.
Nigella sativa
Seeds Diabetes, hypertension, gastrointestinal disorders, back pain, paralysis, heart diseases, bacterial infections, malariaDecreases carbohydrate digestion and absorption, lowers blood glucose levels, increases insulin secretion and sensitivity, improves glucose uptake and utilization[194,195]
75.
Ocimum basicllicum
LeavesDiabetes, headaches, constipation, coughs, kidney diseases, wartsInhibits α-amylase and α-glucosidase activity, reduces oxidative stress, inhibits glycogenolysis[196,197,198]
76.
Ocimum sanctum
Leaves Diabetes, ringworm, skin diseases, dysentery, dyspepsia, bronchitis, asthmaIncreases insulin secretion, improves glucose uptake and utilization[149,199]
77.
Olea europaea
LeavesDiabetes, constipation, urinary tract infections, asthma, hypertension, intestinal diseasesLowers blood glucose levels, increases antioxidant activity[200,201]
78.
Panax ginseng
RootsDiabetes, insomnia, anorexia, confusion, hemorrhage Improves peripheral insulin action, increases insulin sensitivity, decreases carbohydrate absorption[202,203]
79.
Panda oleosa
Stem barkDiabetes, HIV/AIDS, wounds, rheumatism, intestinal parasitesLowers blood glucose levels, improves glucose tolerance[16,204]
80.
Phaseolus vulgaris
SeedsDiabetes, hypertension, obesity, blood cancerReduces insulin resistance, inhibits α-amylase and DPP-IV enzyme activity[149,205]
81.
Phyllanthus amarus
LeavesDiabetes, spleen, liver and kidney diseases, gonorrhea, stomach problemsLowers blood glucose levels, increases insulin secretion, improves insulin sensitivity[206,207]
82.
Plantago ovata
HuskDiabetes, constipation, diarrhea, hypercholesterolemia, hypertension, hemorrhoids Improves glucose tolerance, decreases carbohydrate digestion and glucose absorption [208,209]
83.
Pterocarpus marsupium
Bark Diabetes, dysentery, cough, diarrhea, skin diseases, wounds, ulcerImproves pancreatic β-cell function, increases insulin secretion, improves glucose uptake[149,210,211]
84.
Punica granatum
FlowersDiabetes, urinary tract infections, arthritis, sore throat, skin diseases, anemiaImproves β-cell function, increases insulin secretion[210,212,213]
85.
Rehmannia glutinosa
RootsDiabetes, anemia, obesity, kidney diseases, osteoporosisImproves pancreatic β-cell function, increases insulin secretion, improves glucose uptake, decreases oxidative stress[214,215]
86.
Santalum album
Bark Diabetes, jaundice, diarrhea, dysentery, liver tonic, inflammation, hypertensionLowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization [56,216]
87.
Selaginella bryopteris
Leaves Diabetes, fever, epilepsy, constipation, colitis, cancer, urinary tract infectionsLowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization [56,217]
88.
Sesamum indicum
SeedsDiabetes, constipation, hypertension, high cholesterol, athlete’s footInhibits α-amylase and α-glucosidase activity, exerts antioxidant activity[56,218,219]
89.
Solanum nigrum
LeavesDiabetes, pneumonia, toothache, stomach ache, fever, tumor, tonsilitisLowers blood glucose levels, increases insulin secretion, decreases gluconeogenesis, increases glycogenesis [220,221]
90.
Spirulina platensis
Whole plantDiabetes, hypercholesterolemia, atherosclerosis, obesityLowers blood glucose levels, increases insulin secretion, improves glucose tolerance, inhibits DPP-IV activity[222,223]
91.
Swertia chirayita
Bark, leavesDiabetes, malaria, hypertension, epilepsy, liver diseases, weight lossLowers blood glucose levels, increases insulin secretion, improves glucose uptake and metabolism, inhibits α-amylase and α-glucosidase[56,224]
92.
Tamarindus indica
Seeds Diabetes, diarrhea, dysentery, constipation, abdominal pain, wounds, malariaLowers blood glucose levels, increases insulin secretion[56,225]
93.
Terminalia arjuna
Bark Diabetes, cardiotonic, anemia, viral infections, venereal diseases, ulcersLowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization[56,226]
94.
Terminalia chebula
FruitDiabetes, fever, astringent, constipation, dementiaImproves β-cell function, increases insulin secretion, reduces glycosylated hemoglobin levels[227,228]
95.
Tinospora cordifolia
Leaves, roots, stemDiabetes, dysentery, diarrhea, snake bites, asthma, fever, jaundiceIncreases insulin secretion, inhibits gluconeogenesis, increases insulin sensitivity[149,229]
96.
Trigonella foenum-graecum
SeedsDiabetes, bronchitis, pneumonia, indigestion, dysentery, high cholesterolLowers blood glucose levels, increases insulin secretion, improves glucose uptake and utilization[56,134,230,231]
97.
Urtica dioica
LeavesDiabetes, cardiovascular diseases, anemia, rhinitis, arthritis, gout, woundsIncreases insulin sensitivity, improves glucose tolerance[232,233]
98.
Vernonia amygdalina
LeavesDiabetes, gastrointestinal disorders, amoebic dysentery, malaria, helminth infectionsLowers elevated blood glucose levels, inhibits gluconeogenesis and glycogenolysis[234,235]
99.
Withania coagulans
Fruit Diabetes, insomnia, impotence, nervous exhaustion, asthma, liver diseasesLowers blood glucose levels, improves glucose tolerance[56,236]
100.
Zingiber officinale
RhizomeDiabetes, nausea, high cholesterol, heartburn, indigestion, diarrhea, asthmaLowers fasting blood glucose levels, increases insulin secretion[119,237]
Table 2. Phytoconstituents of antidiabetic medicinal plants and their pharmacological effects.
Table 2. Phytoconstituents of antidiabetic medicinal plants and their pharmacological effects.
Medicinal PlantsPartsPhytoconstituentsPharmacological EffectsReferences
  • Abrus precatorius
Leaves, seedsLuteolin, lupenone, 24-methylene cycloartenolMaintains blood glucose levels, promotes insulin secretion, prevents oxidative stress, inhibits inflammation in pancreatic tissues[16,242,243]
2.
Acacia arabica
Bark, rootsQuercetin, kaempferol, catechinLowers blood glucose levels, increases insulin secretion, reduces insulin resistance, improves glucose tolerance, reduces oxidative stress[24,244]
3.
Acacia catechu
BarkCatechin, epicatechin, catechu tannic acid, gallocatechin, kaempferolLowers blood glucose levels, increases plasma insulin levels, reduces insulin resistance, and improves glucose uptake, inhibits α-amylase and α-glucosidase activity[24,244,245,246,247]
4.
Aegle marmelos
LeavesRutin, β-sitosterol, aegelinosides A and B, aegeline, marmelosinLowers plasma glucose levels, reduces insulin resistance, decreases glycosylated hemoglobin levels, inhibits α-glucosidase activity, improves β-cell function[248,249,250,251,252]
5.
Aframomum melegueta
Fruit, leaves6-paradol, 6-shogaol, 6-gingerol, oleanolic acidDecreases blood glucose and cholesterol levels, improve glucose tolerance and utilization, inhibits lipid synthesis by adipocytes[16,253,254,255]
6.
Ageratum conyzoides
LeavesKaempferol, precocene IILowers blood glucose levels, increases plasma insulin levels, improves glucose uptake[16,256]
7.
Albizia lebbeck
Bark, podsLupeol, oleanolic acid, docosanoic acid, β-sitosterol, catechin, friedelinDecreases blood glucose and glycosylated hemoglobin levels, reduces nitric oxide, increases insulin levels, activates GLUT2 and GLUT4[244,250,255,257,258,259]
8.
Albizia adianthifolia
Bark, leavesβ-caryophyllene, viridiflorolLowers blood glucose levels, increases insulin secretion and sensitivity, reduces glucose absorption, triglyceride, and cholesterol levels [67,260]
9.
Allium cepa
BulbAlliin, quercetin, S-methyl cysteine sulfoxideReduces fasting glucose levels, increases insulin secretion and sensitivity, decreases triglyceride levels[16,261,262]
10.
Allium sativum
BulbAllicin, alliin, diallyl disulfide, quercetin, allyl propyl disulfideLowers blood glucose levels, increases insulin secretion and sensitivity, decreases cholesterol and triglyceride levels[71,261,262,263]
11.
Aloe vera
Leaves Lophenol, aloin, aloetic acid, emodin, glucomannanLowers blood glucose levels, increases insulin secretion, improves glucose tolerance, prevents oxidative stress[16,264,265,266]
12.
Anacradium occidentale
Leaves, stem bark Anacardic acid, lectinDelays glucose absorption, reduces oxidative stress, inhibits α-glucosidase activity[16,267]
13.
Anemarrhena asphodeloides
Rhizome Mangiferin, neomangiferin, sarsasapogeninReduces fasting blood glucose levels, improves glucose tolerance, reduces cholesterol and triglyceride levels, improves diabetic complications[78,268,269,270]
14.
Annona salzmannii
Leaves, barkα-copaene, β-caryophyllene, δ-cadineneLowers blood glucose levels, increases insulin secretion, improves glucose uptake, reduces glucose absorption, cholesterol, and triglyceride levels[80,260]
15.
Annona squamosa
LeavesRutin, quercetin, isoquercetinLowers blood glucose levels, increases insulin secretion, improves glucose tolerance, reduces glycosylated hemoglobin levels[10,249,262,271]
16.
Anogeissus latifolia
BarkEllagic acid, β-sitosterol, 3,4,3-tri-O-methylellagic acidLowers plasma glucose and glycosylated hemoglobin levels, increases insulin levels, improves β-cell function[250,272,273]
17.
Arachis hypogaea
Seeds Resveratrol, catechin, rutin, quercetinLowers blood glucose levels, increases insulin secretion and glucose uptake, reduces oxidative stress, inhibits α-amylase and α-glucosidase activity[244,249,262,274]
18.
Artemisia absinthium
Rhizomeα and β thujones, thujyl alcohol, azulene, cadineneLowers blood glucose levels, activates adenosine monophosphate-activated protein kinase, increases insulin sensitivity[16,275,276]
19.
Artocarpus heterophyllus
Leaves, rhizomeChrysin, silymarin, isoquercetinLowers blood glucose levels, improves β-cell function and glucose tolerance, increases insulin sensitivity, inhibits Pro-inflammatory cytokines[78,271,277,278]
20.
Asparagus racemosus
Roots Asparagamine, asparagine, kaempferol, quercetinLowers blood glucose levels, increases insulin secretion, improves glucose uptake and tolerance [93,256,262]
21.
Atractylodes japonica
RhizomeAtractans A, B, C, atractylenolide IIILowers blood glucose levels, decreases insulin resistance [95,96,279]
22.
Azadirachta indica
LeavesAzadirachtin, nimbin, rutin, quercetin, campestrolLowers blood glucose levels, improves β-cell function, increases insulin secretion, reduces cholesterol and triglyceride levels[97,98,249,280]
23.
Balanites aegyptiaca
Fruit, seedsBalantin 1, 2, diosgenin, 3,4,6-tri-O-methyl-D-glucose, triethylphosphineIncreases serum insulin and c-peptide levels, increases glucose metabolism, decreases gluconeogenesis [16,281]
24.
Berberis vulgaris
Root barkBerberine, berbamineIncreases insulin secretion, improves insulin sensitivity, inhibits α-glucosidase and aldose reductase activity[102,282,283]
25.
Bidens pilosa
RootsCytopiloyne, apigenin, luteolin, kaempferol, quercetinLowers blood glucose and glycosylated hemoglobin levels, increases insulin expression and secretion from beta cells, stimulates glucose metabolism, increases insulin sensitivity to cells[16,242,284,285,286]
26.
Bougainvillea spectabilis
Flowers, leavesPinitol, quercetin, β-sitosterolLowers fasting blood glucose and glycosylated hemoglobin levels, increases insulin secretion, improves insulin sensitivity[16,250,262,287]
27.
Brassica juncea
Leaves, seedsCinnamic acid, kaempferol, anilineLowers blood glucose levels, increases insulin secretion and glucose uptake, improves glucose tolerance [16,256,288]
28.
Bridelia ferruginea
Leaves, stem barkEpigallocatechin, epigallocatechin gallateLowers blood glucose levels, improves glucose tolerance, enhances insulin secretion, decreases gluconeogenesis[16,289,290]
29.
Bunium persicum
Seeds Linoleic acid, palmitic acid, kaempferol, camphene, linaloolLowers blood glucose levels, increases insulin levels in blood, improves insulin sensitivity, enhances glucose uptake and tolerance[256,291,292,293,294]
30.
Caesalpinia decapetala
Leaves Quercitrin, kaempferol, astragalin, apigenin-7-rhamnosideDecreases fasting blood glucose levels, increases insulin levels in blood, enhances antioxidant activity, improves glucose uptake, decreases nitric oxide[16,256,295,296]
31.
Calendula officinalis
Leaves, barkCaffeic acid, quercetin, esculetinLowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, reduces diabetic oxidative stress, increases GLUT4 expression in adipocytes, improves glucose utilization[16,262,297,298]
32.
Camellia sinensis
LeavesRutin, quercitrinLowers blood glucose levels, improves β-cell function, increases insulin secretion, improves glucose tolerance[117,249,295]
33.
Capsicum frutescens
Whole plantCapsaicin, β-caroteneLowers blood glucose levels, increases insulin levels, improves glucose tolerance, inhibits pro-inflammatory cytokines[119,299,300]
34.
Carica papaya
Fruit, leavesChlorogenic acid, coumarin compoundsLowers blood glucose levels, stimulates insulin secretion, increases insulin sensitivity, inhibits α-amylase, α-glucosidase, glucose-6-phosphatase, and aldose reductase activity[16,301,302]
35.
Cassia alata
Leaves, seedsEmodin, kaempferol, β-sitosterolLowers blood glucose levels, increases insulin secretion, enhances insulin sensitivity, inhibits phosphoenolpyruvate, carboxykinase, glucose-6-phosphatase activity[16,250,256,266]
36.
Cassia fistula
Stalk Lupeol, kaempferol, catechin, epicatechinLowers blood glucose and glycosylated hemoglobin levels, increases insulin levels, reduces nitric oxide, improves glucose tolerance[244,246,257,303]
37.
Catharanthus roseus
Leaves, rootsGallic acid, chlorogenic acid, vindoline ILowers blood glucose levels, stimulates insulin secretion, improves glucose tolerance, decreases pro-inflammatory cytokines[16,301,304,305]
38.
Cecropia obtusifolia
Root, barkIsoorientin, stigmast-4-en-3-one, chlorogenic acid, β-sitosterolReduces blood glucose levels, improves insulin sensitivity, enhances glucose uptake, decreases cholesterol and triglyceride levels, inhibits glucose-6-phosphatase and hepatic glucose, improves glucose tolerance[78,306,307]
39.
Cichorium intybus
Bark, leavesChlorogenic acid, chicoric acid, gallic acid, kaempferol, quercetin, β-sitosterolLowers blood glucose levels, stimulates insulin release, improves insulin sensitivity, inhibits α-amylase, α-glucosidase, glucose-6-phosphatase activity, prevents oxidative stress[22,78,132,301,308]
40.
Cinnamomum zeylanicum
BarkCinnamaldehyde, eugenolDecreases blood glucose levels, reduces insulin resistance, inhibits α-glucosidase activity and formation of advanced glycated end products, inhibits sugar binding to albumin[134,309,310]
41.
Citrus limon
FruitDiosmin, hesperetinLowers blood glucose levels, increases insulin secretion, enhances glucose utilization, stimulates β-endorphine secretion from adrenal glands, inhibits gluconeogenesis[16,311,312]
42.
Citrus x aurantium
FruitNaringin, naringenin, epigallocatechin-3-gallateDecreases blood glucose levels, increases insulin secretion, improves glucose tolerance, increases GLUT4 translocation in skeletal muscles, decreases gluconeogenesis[16,289,290,313]
43.
Cola nitida
SeedsD-catechin, L-epicatechin, naringenin, apigeninLowers blood glucose levels, increases insulin sensitivity, decreases oxidative stress, inhibits α-amylase and α-glucosidase activity[16,244,246]
44.
Coptis chinensis
RhizomeBerberine, jatrorrhizineLowers blood glucose levels, enhances aerobic glycolysis, inhibits gluconeogenesis, increases insulin secretion and insulin sensitivity[33,282,314]
45.
Cornus officinalis
Fruit, seedsGymnemagenin, gymnemic acid, ursolic acidLowers fasting blood glucose levels, increases insulin secretion, improves glucose uptake and tolerance, inhibits protein glycation[143,279,315,316]
46.
Curcuma longa
RhizomeCurcumin, turmerinDecreases fasting blood glucose, glycosylated hemoglobin, triglyceride, and cholesterol levels, inhibits α-amylase, α-glucosidase activity, and diabetic inflammatory processes [78,317,318]
47.
Cudrania cochinchinensis
Bark, rootsKaempferol, vanillin, β-sitosterolLowers blood glucose levels, increases insulin levels, decreases serum advanced glycation end products, improves glucose uptake, reduces insulin resistance[250,256,319,320]
48.
Cyamopsis tetragonoloba
Fruit Quercetin, kaempferol, gallic acidLowers plasma glucose levels, increases insulin secretion, improves glucose tolerance, decreases triglyceride levels[16,256,262,304]
49.
Dalbergia sissoo
Bark Biochanin A, tectorigenin, rhamnoglucoside, dalbergin, dalbergichromeneLowers blood glucose levels, improves insulin sensitivity and glucose tolerance, reduces insulin resistance[321,322,323]
50.
Eriobotrya japonica
Leaves, seedsCinchonain-Ib, timosaponin, chlorogenic acid, epicatechinLowers blood glucose, total cholesterol, and triglyceride levels, enhances insulin secretion and sensitivity, improves glucose tolerance[246,279,301,324,325]
51.
Eucalyptus citriodora
LeavesBetulinic acid, gallic acid, quercitrin, isoquercitrin, rhodomyrtosone ELowers blood glucose levels, increases insulin secretion and sensitivity, improves glucose tolerance and antioxidant activity, decreases triglyceride levels, [155,295,304,326]
52.
Eucalyptus globulus
LeavesEucalyptol, rutin, sesquiterpeneLowers blood glucose levels, improves β-cell function, increases insulin secretion, reduces oxidative stress[157,249,327]
53.
Euclea undulata
RootbarkBotulin, lupeol, epicatechinDecreases serum glucose, increases insulin levels, improves insulin sensitivity, decreases glycosylated hemoglobin levels [78,246,257]
54.
Eugenia jambolana
SeedsEllagic acid, gallic acid, chlorogenic acidLowers blood glucose levels, increases insulin sensitivity, improves β-cell function, improves glucose tolerance, inhibits α-amylase, α-glucosidase, and glucose-6-phosphatase activity[11,272,301,304]
55.
Euphorbia hirta
LeavesQuercetin, kaempferol, gallic acidLowers blood glucose levels, increases insulin secretion, improves glucose tolerance, decreases triglyceride levels, enhances glucose uptake[162,256,262,304]
56.
Ficus benghalensis
Bark, leavesRutin, gallic acid, leucopelargonidin-3-O-α-rhamnopyranoside, lupeol, α-amyrin acetateDecreases blood glucose levels, improve glucose tolerance and β-cell function, increases insulin secretion, [249,328,329,330]
57.
Garcinia kola
SeedsKolaviron, ascorbic acidDecreases blood glucose level, stimulates insulin secretion, improves glucose utilization, inhibits glucose-6-phosphatase, exhibits free radical scavenging activity[16,331,332]
58.
Glycine max
SeedsKaempferol, soyasaponin, genistein, β-sitosterolLowers blood glucose and glycosylated hemoglobin levels, increases insulin levels in blood, decreases insulin resistance, improves glucose uptake, inhibits glucose absorption[16,250,256]
59.
Glycyrrhiza glabra
RootsGlycyrrhizin, glycyrrhetinic acid, isoliquiritinLowers postprandial rise in blood glucose levels, decreases glycosylated hemoglobin levels[333,334,335]
60.
Gymnema sylvestre
LeavesGymnemoside A,B,C,D,E,F, quercitol, lupeol, gymnemic acidLowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, inhibits glucose absorption in the small intestine[149,257,315,336]
61.
Harungana madagascariensis
LeavesHarunganin, lupeol, betulinic acid, quercetin, β-sitosterolLowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, decreases insulin resistance, prevents diabetic nephropathy[16,250,257,262,337,338]
62.
Helicteres isora
Roots Gallic acid, vanillin, p-coumaric acidLowers blood glucose levels, increases insulin levels in blood, decreases triglyceride levels, reduces serum advanced glycation end products concentration, improves glucose tolerance[175,304,319,339]
63.
Heritiera fomes
Bark Stigmasterol, β-sitosterol, epicatechin, procyanidins, proanthocyanidins, quercitrinDecreases blood glucose and glycosylated hemoglobin levels, increases insulin levels, reduces insulin resistance, improves glucose uptake[26,176,250,340]
64.
Hibiscus esculentus
Roots, seedsIsoquercitrin, quercetin-3-O-gentiobiosideDecreases serum glucose levels, increases insulin secretion, improves glucose tolerance[16,341]
65.
Hibiscus rosa-sinensis
LeavesQuercetin, cyanidin, thiamine, ascorbic acid, niacinDecreases blood glucose concentration, increases insulin synthesis and secretion, reduces oxidative stress, improves endothelial functions, and reduces complications of type 2 diabetes mellitus[179,262,342,343]
66.
Jatropha curcas
Leaves Rhoifolin, isoorientin, isoquercitrinDecreases plasma glucose, cholesterol, and triglyceride levels, stimulates glucose uptake, inhibits DPP-IV activity[241,306]
67.
Lantana camara
LeavesLantanoside, ferulic acid, oleanolic acid, caffeic acidLowers blood glucose levels, increases insulin secretion, improves glucose utilization, reduces oxidative stress[255,297,344]
68.
Linum usitatissimum
Seeds Caffeic acid, p-coumaric acid, ferulic acidLowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, reduces diabetic oxidative stress, enhances antioxidant activity[297,339,344,345]
69.
Mangifera indica
Leaves, seedsMangiferin, gallic acid, kaempferol, curcuminLowers fasting blood glucose levels, improves glucose tolerance, increases insulin secretion, reduces triglyceride and cholesterol levels, inhibits oxidative stress and diabetic inflammatory processes[16,256,269,304,317]
70.
Momordica charantia
Leaves, seedsCharantin, vicine, momordicine II, oleanolic acidLowers blood glucose levels, stimulates insulin release, inhibits glucose-6-phosphatase and glucose transport in intestines[22,134,255,336]
71.
Moringa oleifera
LeavesQuercetin, kaempferol, vanillin, chlorogenic acidLowers plasma glucose levels, increases insulin secretion, improves glucose tolerance, decreases the concentration of serum advanced glycation end products[16,22,189,256,319]
72.
Murraya koenigii
LeavesMahanimbine, isomahanine, ascorbic acid, kaempferol, quercetinLowers blood glucose levels, reduces triglyceride levels, inhibits α-amylase and α-glucosidase activity, increases insulin secretion, improves glucose tolerance[78,191,346]
73.
Musa sapientum
Flowers Rutin, delphinidin, syringinLowers blood glucose levels, increases insulin secretion, reduces reactive oxygen species generation, prevents high glucose-induced cell proliferation [16,249,347]
74.
Nigella sativa
Seeds Thymoquinone, thymol, α-pinene, oleic acid, linoleic acid Lowers blood glucose, glycosylated hemoglobin, total cholesterol, and triglyceride levels, promotes insulin secretion, reduces insulin resistance, decreases oxidative stress[291,348,349,350]
75.
Ocimum basicllicum
LeavesLinalool, linolen, eugenol, geraniolLowers blood glucose levels, improves glucose uptake, inhibits advanced glycation end products generation and α-glucosidase activity[196,197,310,351]
76.
Ocimum sanctum
Leaves Eugenol, carvacrol, β-sitosterol, linaloolLowers blood glucose levels, increases insulin secretion, decreases carbohydrate digestion and absorption, inhibits α-glucosidase activity, reduces insulin resistance[149,248,250,310]
77.
Olea europaea
LeavesOleuropein, oleanolic acid, luteolinMaintains blood glucose levels, promotes insulin secretion, improves insulin sensitivity, reduces oxidative stress, inhibits gluconeogenesis[16,242,255,352]
78.
Panax ginseng
RootsGinsenoside Rb2, Rg2Regenerates pancreatic beta cells, increases glucose uptake, reduces insulin resistance, and improves insulin sensitivity[248,279,353]
79.
Panda oleosa
Stem barkGinsenoside Rb2, protapananadiol/triolIncreases glucose uptake, reduces insulin resistance, and improves insulin sensitivity [204,353]
80.
Phaseolus vulgaris
SeedsHydroxycinnamic acid, rutin, quercetin, orientin, petunidin, catechinLowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, improves glucose tolerance, reduces oxidative stress[16,149,244,249,262]
81.
Phyllanthus amarus
LeavesOleanolic acid, ursolic acidLowers blood glucose levels, increases insulin secretion, improves glucose tolerance, inhibits oxidative stress-induced hepatic insulin resistance, inhibits gluconeogenesis[16,255,316]
82.
Plantago ovata
HuskKaempferol, catechin, myricetin, pinocembrinLowers blood glucose levels, increases insulin secretion, reduces insulin resistance, inhibits α-amylase and α-glucosidase activity[208,244,256,354]
83.
Pterocarpus marsupium
Bark Epicatechin, marsupin, carsupin, marsupolLowers blood glucose levels, improves insulin sensitivity, enhances insulin release, improves glucose uptake [149,246]
84.
Punica granatum
FlowersGallic acid, rutin, nictoflorinLowers blood glucose levels, improves β-cell function, increases insulin secretion, improves glucose tolerance, decreases triglyceride levels[16,249,304]
85.
Rehmannia glutinosa
RootsCatalpol, rehmanniosideLowers blood glucose levels, prevents diabetic complications, promotes glucose utilization and glycogen synthesis, reduces oxidative stress[214,279]
86.
Santalum album
Bark Spirosantalol, α-santalene, α-santalol, β-santalol, α-bergamotolLowers blood glucose and glycosylated hemoglobin levels, decreases total cholesterol and triglyceride levels[355]
87.
Selaginella bryopteris
Leaves Gallic acid, rutinDecreases plasma glucose and glycosylated hemoglobin levels, improves glucose tolerance, decreases triglyceride levels, inhibits inflammatory cytokines[249,304,356]
88.
Sesamum indicum
SeedsPinoresinol, sesamin, sesaminolLowers fasting blood glucose and glycosylated hemoglobin levels, inhibits α-glucosidase activity[16,357,358]
89.
Solanum nigrum
LeavesGallic acid, catechin, epicatechin, rutin, naringeninLowers blood glucose levels, improves β-cell function and glucose tolerance, increases insulin secretion, reduces insulin resistance, inhibits α-amylase and α-glucosidase activity [220,244,246,249,304,313]
90.
Spirulina platensis
Whole plantp-coumaric acid, catechin, β-caroteneLowers blood glucose levels, increases insulin levels, reduces insulin resistance, inhibits α-amylase and α-glucosidase activity, reduces oxidative stress and pro-inflammatory biomarkers[222,244,300,339]
91.
Swertia chirayita
Bark, leavesSwerchirin, mangiferin, swertiamarin, amarogentinLowers blood glucose levels, promotes insulin release, inhibits glucosidase and glucuronidase activity[30,268,269,336]
92.
Tamarindus indica
Seeds Apigenin, naringenin, catechin, epictaechin, taxifolinLowers blood glucose levels, increases insulin secretion, inhibits α-amylase and α-glucosidase activity, improves glucose tolerance, increases insulin sensitivity[244,246,313,359]
93.
Terminalia arjuna
Bark Arjungenin, arjunolone, ellagic acid, derivatives of arjunic acidLowers blood glucose levels, increases insulin sensitivity, decreases free radical damage[29,360]
94.
Terminalia chebula
FruitChebulagic acid, gallic acid, ellagic acid, tannic acidLowers blood glucose levels, improve glucose tolerance and lipid metabolism, stimulates glucose transport, decreases triglyceride levels[245,304,360,361,362]
95.
Tinospora cordifolia
Leaves, roots, stemTinosporaside, berberine, syringinLowers plasma glucose levels, stimulates insulin synthesis and secretion, decreases triglyceride levels, improves insulin sensitivity, inhibits gluconeogenesis[149,282,363]
96.
Trigonella foenum-graecum
SeedsGalactomannan, diosgenin, coumarinDecreases blood glucose levels, stimulates insulin release, inhibits α-glucosidase and aldose reductase activity, increases insulin sensitivity[16,302,364,365]
97.
Urtica dioica
LeavesQuercetin, quercitrin, rutinLowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, reduces insulin resistance, improves antioxidant activity[16,249,262,295]
98.
Vernonia amygdalina
LeavesSobrerol, vernoamyoside E, luteolin, vitamin ELowers blood glucose and glycosylated hemoglobin levels, increases insulin secretion, enhances insulin sensitivity, reduces oxidative stress [16,235,242,366,367]
99.
Withania coagulans
Fruit Withanolides, withacoagulin, withanosides, withaferin ALowers blood glucose levels, exhibits free radical scavenging activity, inhibits DPP-IV activity[368,369]
100.
Zingiber officinale
RhizomeGingerol, 6-paradol, 6-shogaol, campheneLowers blood glucose levels, increases insulin levels, improves glucose tolerance and utilization, decreases cholesterol levels[16,253,254,293]
Table 3. Antidiabetic phytoconstituents of medicinal plants and their chemical structures.
Table 3. Antidiabetic phytoconstituents of medicinal plants and their chemical structures.
Medicinal PlantsPhytoconstituents Chemical Structure
  • Abrus precatorius
Lupenone Molecules 27 04278 i001
2.
Acacia arabica
Quercetin Molecules 27 04278 i002
3.
Acacia catechu
Gallocatechin Molecules 27 04278 i003
4.
Aegle marmelos
Marmelosin Molecules 27 04278 i004
5.
Aframomum melegueta
6-paradol Molecules 27 04278 i005
6.
Ageratum conyzoides
Kaempferol Molecules 27 04278 i006
7.
Albizia lebbeck
Friedelin Molecules 27 04278 i007
8.
Albizia adianthifolia
Viridiflorol Molecules 27 04278 i008
9.
Allium cepa
Alliin Molecules 27 04278 i009
10.
Allium sativum
Allicin Molecules 27 04278 i010
11.
Aloe vera
Aloin Molecules 27 04278 i011
12.
Anacradium occidentale
Anacardic acid Molecules 27 04278 i012
13.
Anemarrhena asphodeloides
Sarsasapogenin Molecules 27 04278 i013
14.
Annona salzmannii
β-caryophyllene Molecules 27 04278 i014
15.
Annona squamosa
Rutin Molecules 27 04278 i015
16.
Anogeissus latifolia
β-sitosterol Molecules 27 04278 i016
17.
Arachis hypogaea
Resveratrol Molecules 27 04278 i017
18.
Artemisia absinthium
Azulene Molecules 27 04278 i018
19.
Artocarpus heterophyllus
Chrysin Molecules 27 04278 i019
20.
Asparagus racemosus
Asparagine Molecules 27 04278 i020
21.
Atractylodes japonica
Atractylenolide III Molecules 27 04278 i021
22.
Azadirachta indica
Nimbin Molecules 27 04278 i022
23.
Balanites aegyptiaca
Diosgenin Molecules 27 04278 i023
24.
Berberis vulgaris
Berberine Molecules 27 04278 i024
25.
Bidens pilosa
Luteolin Molecules 27 04278 i025
26.
Bougainvillea spectabilis
Pinitol Molecules 27 04278 i026
27.
Brassica juncea
Cinnamic acid Molecules 27 04278 i027
28.
Bridelia ferruginea
Epigallocatechin gallate Molecules 27 04278 i028
29.
Bunium persicum
Palmitic acid Molecules 27 04278 i029
30.
Caesalpinia decapetala
Astragalin Molecules 27 04278 i030
31.
Calendula officinalis
Esculetin Molecules 27 04278 i031
32.
Camellia sinensis
Quercitrin Molecules 27 04278 i032
33.
Capsicum frutescens
Capsaicin Molecules 27 04278 i033
34.
Carica papaya
Coumarin Molecules 27 04278 i034
35.
Cassia alata
Emodin Molecules 27 04278 i035
36.
Cassia fistula
Lupeol Molecules 27 04278 i036
37.
Catharanthus roseus
Vindoline Molecules 27 04278 i037
38.
Cecropia obtusifolia
Isoorientin Molecules 27 04278 i038
39.
Cichorium intybus
Chlorogenic acid Molecules 27 04278 i039
40.
Cinnamomum zeylanicum
Cinnamaldehyde Molecules 27 04278 i040
41.
Citrus limon
Hesperetin Molecules 27 04278 i041
42.
Citrus x aurantium
Naringin Molecules 27 04278 i042
43.
Cola nitida
Apigenin Molecules 27 04278 i043
44.
Coptis chinensis
Jatrorrhizine Molecules 27 04278 i044
45.
Cornus officinalis
Gymnemic acid Molecules 27 04278 i045
46.
Curcuma longa
Curcumin Molecules 27 04278 i046
47.
Cudrania cochinchinensis
Vanillin Molecules 27 04278 i047
48.
Cyamopsis tetragonoloba
Quercetin Molecules 27 04278 i048
49.
Dalbergia sissoo
Biochanin A Molecules 27 04278 i049
50.
Eriobotrya japonica
Cinchonain ib Molecules 27 04278 i050
51.
Eucalyptus citriodora
Rhodomyrtosone E Molecules 27 04278 i051
52.
Eucalyptus globulus
Eucalyptol Molecules 27 04278 i052
53.
Euclea undulata
Epicatechin Molecules 27 04278 i053
54.
Eugenia jambolana
Ellagic acid Molecules 27 04278 i054
55.
Euphorbia hirta
Gallic acid Molecules 27 04278 i055
56.
Ficus benghalensis
α-amyrin acetate Molecules 27 04278 i056
57.
Garcinia kola
Kolaviron Molecules 27 04278 i057
58.
Glycine max
Genistein Molecules 27 04278 i058
59.
Glycyrrhiza glabra
Glycyrrhizin Molecules 27 04278 i059
60.
Gymnema sylvestre
Gymnemic acid Molecules 27 04278 i060
61.
Harungana madagascariensis
Harunganin Molecules 27 04278 i061
62.
Helicteres isora
p-coumaric acid Molecules 27 04278 i062
63.
Heritiera fomes
Stigmasterol Molecules 27 04278 i063
64.
Hibiscus esculentus
Quercetin-3-O-gentiobioside Molecules 27 04278 i064
65.
Hibiscus rosa-sinensis
Ascorbic acid Molecules 27 04278 i065
66.
Jatropha curcas
Isoorientin Molecules 27 04278 i066
67.
Lantana camara
Caffeic acid Molecules 27 04278 i067
68.
Linum usitatissimum
Ferulic acid Molecules 27 04278 i068
69.
Mangifera indica
Mangiferin Molecules 27 04278 i069
70.
Momordica charantia
Vicine Molecules 27 04278 i070
71.
Moringa oleifera
Kaempferol Molecules 27 04278 i071
72.
Murraya koenigii
Mahanimbine Molecules 27 04278 i072
73.
Musa sapientum
Delphinidin Molecules 27 04278 i073
74.
Nigella sativa
Thymoquinone Molecules 27 04278 i074
75.
Ocimum basicllicum
Linalool Molecules 27 04278 i075
76.
Ocimum sanctum
Eugenol Molecules 27 04278 i076
77.
Olea europaea
Oleanolic acid Molecules 27 04278 i077
78.
Panax ginseng
Ginsenoside Rg2 Molecules 27 04278 i078
79.
Panda oleosa
Ginsenoside Rb2 Molecules 27 04278 i079
80.
Phaseolus vulgaris
Orientin Molecules 27 04278 i080
81.
Phyllanthus amarus
Ursolic acid Molecules 27 04278 i081
82.
Plantago ovata
Myricetin Molecules 27 04278 i082
83.
Pterocarpus marsupium
Marsupin Molecules 27 04278 i083
84.
Punica granatum
Nictoflorin Molecules 27 04278 i084
85.
Rehmannia glutinosa
Catalpol Molecules 27 04278 i085
86.
Santalum album
β-santalol Molecules 27 04278 i086
87.
Selaginella bryopteris
Gallic acid Molecules 27 04278 i087
88.
Sesamum indicum
Pinoresinol Molecules 27 04278 i088
89.
Solanum nigrum
Naringenin Molecules 27 04278 i089
90.
Spirulina platensis
β-carotene Molecules 27 04278 i090
91.
Swertia chirayita
Swerchirin Molecules 27 04278 i091
92.
Tamarindus indica
Taxifolin Molecules 27 04278 i092
93.
Terminalia arjuna
Arjungenin Molecules 27 04278 i093
94.
Terminalia chebula
Tannic acid Molecules 27 04278 i094
95.
Tinospora cordifolia
Syringin Molecules 27 04278 i095
96.
Trigonella foenum-graecum
Galactomannan Molecules 27 04278 i096
97.
Urtica dioica
Quercitrin Molecules 27 04278 i097
98.
Vernonia amygdalina
Sobrerol Molecules 27 04278 i098
99.
Withania coagulans
Withaferin A Molecules 27 04278 i099
100.
Zingiber officinale
Gingerol Molecules 27 04278 i100
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Ansari, P.; Akther, S.; Hannan, J.M.A.; Seidel, V.; Nujat, N.J.; Abdel-Wahab, Y.H.A. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules 2022, 27, 4278. https://doi.org/10.3390/molecules27134278

AMA Style

Ansari P, Akther S, Hannan JMA, Seidel V, Nujat NJ, Abdel-Wahab YHA. Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus. Molecules. 2022; 27(13):4278. https://doi.org/10.3390/molecules27134278

Chicago/Turabian Style

Ansari, Prawej, Samia Akther, J. M. A. Hannan, Veronique Seidel, Nusrat Jahan Nujat, and Yasser H. A. Abdel-Wahab. 2022. "Pharmacologically Active Phytomolecules Isolated from Traditional Antidiabetic Plants and Their Therapeutic Role for the Management of Diabetes Mellitus" Molecules 27, no. 13: 4278. https://doi.org/10.3390/molecules27134278

Article Metrics

Back to TopTop