Next Article in Journal
Preparation, Characterization, and In Vitro Release of Curcumin-Loaded IRMOF-10 Nanoparticles and Investigation of Their Pro-Apoptotic Effects on Human Hepatoma HepG2 Cells
Next Article in Special Issue
Chemical Synthesis and Biological Activities of Amaryllidaceae Alkaloid Norbelladine Derivatives and Precursors
Previous Article in Journal
Facile Synthesis of Porous Ag Crystals as SERS Sensor for Detection of Five Methamphetamine Analogs
Previous Article in Special Issue
Polycyclic Phenol Derivatives from the Leaves of Spermacoce latifolia and Their Antibacterial and α-Glucosidase Inhibitory Activity
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

Biological Activities of Organic Extracts of the Genus Aristolochia: A Review from 2005 to 2021

Martín A. Lerma-Herrera
Lidia Beiza-Granados
Alejandra Ochoa-Zarzosa
Joel E. López-Meza
Pedro Navarro-Santos
Rafael Herrera-Bucio
Judit Aviña-Verduzco
1 and
Hugo A. García-Gutiérrez
Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico
Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro 58893, Michoacán, Mexico
CONACYT—Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, Morelia 58030, Michoacán, Mexico
Authors to whom correspondence should be addressed.
Molecules 2022, 27(12), 3937;
Submission received: 21 May 2022 / Revised: 11 June 2022 / Accepted: 12 June 2022 / Published: 20 June 2022


Different ethnomedicinal studies have investigated the relationship between various phytochemicals as well as organic extracts and their bioactive aspects. Studies on biological effects are attributed to secondary metabolites such as alkaloids, phenolic compounds, and terpenes. Since there have been no reviews in the literature on the traditional, phytochemical, and ethnomedicinal uses of the genus Aristolochia so far, this article systematically reviews 141 published studies that analyze the associations between secondary metabolites present in organic extracts and their beneficial effects. Most studies found associations between individual secondary metabolites and beneficial effects such as anticancer activity, antibacterial, antioxidant activity, snake anti-venom and anti-inflammatory activity. The aim of this review was to analyze studies carried out in the period 2005–2021 to update the existing knowledge on different species of the genus Aristolochia for ethnomedicinal uses, as well as pharmacological aspects and therapeutic uses.

1. Introduction

The Aristolochiaceae family is represented by seven genera: Asarum, Saruma, Lactoris, Hydnora, Prosopanche, Thottea, and Aristolochia [1]. About 550 species are known, distributed in the tropics and temperate zones of America, Asia, and Australia [2]. Traditionally, the Aristolochiaceae family was located in the Aristolochiales order by Cronquist (1981) and Takhtajan (1997). Recent studies indicate that it belongs to the Piperales order [3]. The genus Aristolochia is the most abundant of the Aristolochiaceae family and has been widely used in traditional Chinese medicine mainly [4], the genus is integrated by 550 species, making it the most important genus of the family [5]. Most of the species of this genus are perennial, herbaceous, distributed in bushes, in coiled or liana form, showy flowers, prostrate or tuberous rhizomes, as well as leaves with the presence of essential oils [6]. In the last two decades, the genus Aristolochia has generated great interest due to the abundance of mainly secondary metabolites, terpenes, and alkaloids [7,8,9].
Aristolochias species exist in various parts of the world; however, some species have been identified in Mexico: A. buntingii Pfeifer, A. tresmariae Ferris, A. pacifica Santana Mich. & Paizanni, A. savannoidea Paizanni & M. Ramírez, A. tuitensis Santana Mich. & Paizanni, A. manantlanensis Santana Mich., A. malacophylla Standl., A. odoratissima L., A. styloglossa Pfeifer, A. foetida Kunth, A. tequilana S. Watson, A. luzmariana Santana Mich. and A. emiliae Santana Mich. & Solís for which there are no phytochemical or biological studies showing the presence of active compounds [10,11,12]. Other species such as A. cardiantha Pfeifer, A. flexuosa Duch., A. glossa Pfeifer, A. malacophylla Standl., A. mutabilis Pfeifer, A. mycteria Pfeifer, and A. tentaculata O. C. Schmidt, have also been identified in the state of Michoacán, in localities near the Bajío area, in Mexico [13,14,15].
Some of the species of the genus Aristolochia are characterized by having compounds such as aristolochic acids that are attributed to adverse health effects. However, these compounds can be related to other lower-risk applications. Otherwise, there are also phenolic and terpene compounds that show beneficial effects in different biological aspects, which is why it is important to know which ones are related to the different species for subsequent studies. Therefore, this systematic review examined the published pharmacological and ethnomedicinal literature of different Aristolochias species for possible studies associated with phytochemicals from organic extracts and beneficial effects.

2. Beneficial Effects of Aristolochia Genus

The secondary metabolites responsible for the biological effects of the species of the Aristolochia genus generally are usually aristolochic acids and their derivatives, as well as monoterpenes such as thujene, camphene, and carene, kaurene-type diterpenes, triterpenes such as lupeol, among others. Likewise, alkaloid metabolites derived from aristolactams and phenolic compounds of the lignan type are involved in these functions [9,16,17,18].
Aristolochia is the most abundant genus in the Aristolochiaceae family. The species of this genus are used ornamentally and in traditional medicine as a source of abortifacients, emmenagogues, sedatives, analgesics, anti-cancers, anti-inflammatories, muscle relaxants, antihistamines, antiparasitics, to treat cholera, abdominal pain, rheumatism, antimalarial, skin problems, and different types of bites and stings from animals and insects [9].
The use of plant extracts in traditional medicine is profitable because no elaborate procedures are required to obtain them, production costs are low, and the materials to obtain them are accessible [19,20]. For these reasons, several studies have used extracts of different solvents to obtain metabolites using different parts of the plant. The extracts as well as the active compounds that comprise the Aristolochia species have been used in pharmacological aspects and in traditional medicine frequently in recent years.

2.1. Ethnomedicinal Use

A variety of traditional uses for species of the genus Aristolochia were found in the literature. Of the traditional uses cited, the most common uses are anticancer (33 articles) [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53], antibacterial (31 articles) [23,25,29,30,38,39,45,49,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76], antioxidants (18 articles) [22,25,29,33,34,46,55,60,61,70,73,74,77,78,79,80,81,82], snake anti-venom (13 articles) [21,22,39,40,76,83,84,85,86,87,88,89,90], anti-inflammatory (11 articles) [22,40,46,47,74,86,91,92,93,94,95], abdominal pain (11 articles) [17,21,22,23,39,40,48,76,96,97,98], antiparasitic (7 articles) [18,39,75,83,99,100,101], insecticide an predator protection (7 articles) [40,102,103,104,105,106,107], anti-malarial (5 articles) [21,40,48,108,109], skin diseases (5 articles) [22,23,40,76,86], fever (4 articles) [7,21,22,48], headache (4 articles) [21,22,48,85]. Other beneficial effects such as, antifungal activities [45,62,110], antinociceptive [94,111,112], changes in the estrous cycle [113,114], antifibrosis [115,116], hepatoprotection, nephroprotection [117], neuroprotective effect [118], antiurcer [119], antiallergic [120], immune effect [121], angiogenic [122], osteogenic differentiation of gingival mesenchymal stem cells [123], antidiabetic [22,124,125], control of melanogenesis [126], antihemorrhagic [127], antispasmodic [97], antitoxin [128], liver protector [100], bronchitis, constipation, rheumatism and bladder diseases [129], heart protector [130], antidyslipidemic [82], healing of wounds [98], acaricide [131], expectorant, antitussive, antihistamine and pain reliever [89].
Also, traditional uses include mainly the root of the plant (42 articles), the leaves (31 articles), the stems (17 articles), aerial parts (15 articles), and the whole plant (15 articles). Some forms of use of Aristolochia plants for ethnomedicinal use in snakebites are drinking whole plant juice and leaves, aqueous extract (AE) orally and applying a root paste to the wound and giving a root paste orally. In skin diseases, the shade-dried root powder is taken orally for 48 days. In fever, the leaves are chewed during the illness. The headache is treated with the formation of a paste placed on the forehead. In abdominal pain, the use of a decoction of the roots is used. In the treatment of malaria, the plant is used in decoction [21,22,108].

2.2. Phytochemical Studies

The review of the literature allowed knowing phytochemicals that have a higher prevalence such as phenanthrene derivatives, phenolic compounds, fatty acids, and isoprenoid derivatives. Extracted and polar roots showed a higher prevalence of phenanthrene derivatives and phenolic compounds. The roots and aerial parts of the medium and low-polarity extracts showed a higher presence of fatty acids and derived isoprenoids. The most prominent phytochemicals are shown in Table 1.

2.3. Pharmacological Activity

Pharmacological studies have been carried out using crude extracts and bioactive compounds from different species of Aristolochia. The beneficial effects that most prevailed in this review were: anticancer activity, antibacterial, antiparasitic and antiviral activity, antiplatelet activity, antioxidant activity, neuroprotective activity, changes in the estrous cycle, antidiabetic potential, anti-inflammatory activity, and antifibrotic activity. Table 2 shows the common beneficial and ethnomedicinal effects of Aristolochia species in traditional medicine.

2.3.1. Anticancer Activity

In aerial parts of A. longa L., a greater in vitro cytotoxic effect was determined on RD (embryonal rhabdomyosarcoma cells) (IC50 = 0.015 mg/mL) of a dichloromethane extract (DCME), followed by the hexane extract (HXE) on BSR (kidney adenocarcinoma of hamster cells) (IC50 = 0.018 mg/mL). The least cytotoxic effect was shown in the HXE and DCME analyzed in Vero (monkey kidney cancer cells) cells (IC50 = 0.250 mg/mL) as well as in the methanolic extract (ME) of RD (IC50 = 0.200 mg/mL) and BSR (IC50 = 0.350 mg/mL). The compounds implicated in this beneficial activity are attributed to linoleic acid chloride, oleic acid, and limonene-6-ol, pivalate [23]. The possible mechanisms of cytotoxicity of the compounds characterized in the HXE and DCME could be related to the cleavage of the plasma membrane and the release of its content into the extracellular medium [24]. A. longa L. exhibited an in vitro cytotoxic effect of HXE of the root on RD cells (IC50 = 0.0151 mg/mL) showing a relationship of its activity to flavonoids (76.41 ± 8.74 mg GAE/g), while the HXE the cytotoxicity in healthy PBMC (human peripheral blood mononuclear) cells was lower (IC50 = 0.0625 mg/mL) [25]. The chloroform extract (CE) from the roots of A. baetica L. showed cytotoxic activity (IC50 = 0.2160 mg/mL) in vitro against MCF-7 (breast cancer cells) by means of the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric assay. Aristolochic acid I was identified and contributed to the cytotoxicity of the extract [26].
A study of the CE of leaves of A. indica L. was carried out and cytotoxicity was obtained with the MTT assay at 48 h after treatment in MCF-7 cells (IC50 = 0.347 mg/mL) using Taxol™ (IC50 = 1.17 × 10−8 M) as a standard control. The compounds identified in the CE of the leaves were flavonoids, tannins, glycosides, phenols, saponins, terpenoids, and amino acids [27].
Compounds such as alkaloids, flavonoids, steroids, and anthraquinones from the aerial parts of the CE of A. ringens Vahl. caused a cytotoxic effect against HepG-2 (human liver cancer cells) (IC50 = 0.0164 mg/mL) and on MCF-7 cells (IC50 = 0.0816 mg/mL) [28].
In DCME collected in 2018 from A. foetida Kunth, IC50 values were determined for leaves of 0.0473 mg/mL and for stems with IC50 values of 0.0459 mg/mL in MCF-7 cells. Components in the extracts can cause late apoptotic cell death through the intrinsic pathway in the cancer cell line. The main compounds identified were methyl hexadecanoate; hexadecanoic acid; 2-butoxyethyl dodecanoate; ethyl hexadecanoate; methyl octadeca-9,12,15-trienoate; and (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid that allow cytotoxic activity [24].
Essential oils from the aerial parts of A. fordiana Hemsl. were evaluated against HepG-2 cells (IC50 = 0.69 mg/mL) and the MCF-7 cell line (IC50 = 0.22 mg/mL) for 72 h attributing its effect to the compounds β-caryophyllene, limonene, and linalool. Doxorubicin was used as a positive control in HepG-2 (IC50 = 0.00049 mg/mL) and MCF-7 (IC50 = 0.00022 mg/mL) [29]. The sesquiterpene 2,2,7,7-tetramethyltricyclo[,6)]undec-4-en-3-one has been identified and characterized as the main compound in essential oils of A. mollissima Hance. Essential oils from rhizomes showed cytotoxic activity in ACHN (kidney adenocarcinoma cells) (IC50 = 0.0223 mg/mL), MCF-7 (IC50 = 0.0206 mg/mL), Bel-7402 (human liver carcinoma cells) (IC50 = 0.0331 mg/mL), HepG-2 (IC50 = 0.0332 mg/mL), and HeLa (human cervix carcinoma cells) (IC50 = 0.0386 mg/mL) compared to aerial parts with the exception of MDA-MB-435S (melanoma cells) (IC50 = 0.0203 mg/mL) [30].
The cytotoxic effect of an AE of the root of A. longa L. on breast cancer cell lines was evaluated in vitro by means of the MTT assay, whose activity may be related to flavonols, flavones, and/or flavonoid glycosides [50]. On the other hand, tests were carried out on human red blood cells with an AE of aerial parts of A. longa L. collected in Algeria in March 2018. The AE did not show high percentages of hemolysis (68.75 ± 6.11%; 200 mg/mL). The concentration of polyphenols [283.68 ± 0.60 mg GAE (gallic acid equivalent)/g] and flavonoids (10.50 ± 0.03 mg QE (quercetin equivalent)/g) could influence hemolysis, which is important to consider the dose of the AE in traditional cancer medicine [51].
Ethanol extract (EE) and DCME:ME from A. ringens Vahl. roots were evaluated in vitro and in vivo and compared with 5-fluorouracil. However, the study lacked the characterization of the bioactive compounds to corroborate their anticancer therapeutic approach [31]. Likewise, in the ME of leaves of the species A. macroura Gomes., the active components were not specifically mentioned and their cytotoxic activity against HepG-2 cells (IC50 = 0.513 mg/mL) was higher compared to other species such as Schinus molle L. (IC50 = 0.050 mg/mL) [32].
In a chemical and biological study of A. maurorum L., the main components of roots and aerial parts of ME were aristolochic acid I, II, and IIIa. However, the compound that showed the greatest cytotoxic effect was aristolochic acid I (IC50 = 1.43 × 10−8 M, in Artemia salina); it is worth mentioning that the biological evaluation of the cytotoxic activity was not carried out in cancer cells [53]. The ME of the roots of A. baetica L. demonstrated antiproliferative effect against T-24 (human bladder cancer cells) IC50 = 0.048 mg/mL and HT-29 (human colon cancer cells) IC50 = 0.100 mg/mL relative to HepG-2 (IC50 = 0.380 mg/mL). The antiproliferative effect can be attributed to phytochemicals identified mostly as polyphenols, alkaloids, flavonoids, saponins, and tannins and their possible mechanism of action against cancer cells via intrinsic apoptosis [33]. The polar extracts such as the ME ones mentioned above, as well as the EE one from the roots of A. bracteolata Lam. have shown highly effective cytotoxic activity against MCF-7 cells (IC50 = 0.0191 mg/mL), where saponins, alkaloids, flavonoids, sterols, and carbohydrates were identified as major components [34]. The mechanism of cell death against cancer cells that phenolic compounds can present involves the inhibition of enzymes compromising the cell cycle [132]. The ME of stems and leaves of A. tadungensis T. V. Do & Luu. was evaluated in HeLa (IC50 = 0.0083 mg/mL), PANC-1 (human pancreas cell line) IC50 = 0.0826 mg/mL, and A-549 (human lung cell line) IC50 = 0.0755 mg/mL. The aristolochiaside compounds with cytotoxic effect on HeLa (IC50 = 7.59 × 10−6 M) and on PANC-1 (IC50 = 5.47 × 10−5 M) were characterized and identified. Only in the PANC-1 cell line the IC50 values were > 2.5 × 10−5 M [133]. Aristolactam AIIIa showed cytotoxicity against A-549 cells (IC50 = 2.40 × 10−5 M). Camptothecin (1.35 × 10−6 M) was used as a control [35]. Aristolactam AIIIa can induce apoptosis and cell cycle arrest in the G2/M phase in cancer cells [134]. In particular, in the EE of the rhizomes of A. championii Merr. & Chun. The aristolochic acid derivative aristchamic-A showed higher cytotoxic activity against HCT-116 (human colon cancer cells) IC50 = 5.00 × 10−7 M, HepG-2 (IC50 = 7.37 × 10−6 M), BGC-823 (human gastric carcinoma cells) IC50 = 2.66 × 10−6 M and NCI-H1650 (human lung cancer cell line) IC50 = 7.50 × 10−7 M. The activity of aristolochic acid derivatives could be associated with the 9,10-dihydroaristolochic acid skeleton [36]. From an EE of roots, aristolochic acid I was identified in A. indica L., which showed antitumor action in adenocarcinoma 755 in mice at a dose of 2 mg/kg [22]. At low doses, aristolochic acids can arrest the G2/M phase of the cell cycle and cause DNA damage by increasing reactive oxygen species (4.0 × 10−6 M) as well as activating apoptosis in higher doses (4.0 × 10−5 M) [135]. Despite the controversy over the nephrotoxicity and carcinogenic effects of aristolochic acids and their derivatives, they can be focused on cytotoxic treatments [136].
The cytotoxic effect on MG-63 (human osteosarcoma cells) was determined with eupomatenoid-7 (IC50 = 1.19 × 10−5 M) and HepG-2 with eupomatenoid-5 (IC50 = 9.15 × 10−6 M) isolated from the EE of aerial parts of A. fordiana Hemsl. Cisplatin was used as a positive control against MG-63 (IC50 = 5.31 × 10−6 M) and HepG-2 (IC50 = 5.21 × 10−6 M) [37].
On the other hand, in the species A. galeata Mart., a cytotoxic effect was found against HeLa cells of the ethanolic extract (IC50 = 0.369 mg/mL) and by partitioning the dichloromethane fraction (IC50 = 0.09 mg/mL) was obtained whose cytotoxic effect was greater with respect to the fractions of hexane, ethyl acetate, and hydroethanolic. The secondary metabolites determined in the EE and the dichloromethane fraction were flavonoids, steroids, and triterpenes [38].
In HK-2 (renal cells), 28 ME from different species of the genus Aristolochia were tested, so that aristolactam BI, aristolochic acid D, and aristolactam IIIa may be responsible for the genotoxic and cytotoxic activity. The possible mechanism of action of aristolochic acids and their derivatives causes apoptosis and arrest of the G2/M phase of the cell cycle [137]. Of the 68 extracts tested on cancer cells, 31 extracts had an IC50 < 0.1 mg/mL [133]. Table 3 shows different cancer cell lines against organic extracts of different species of the genus Aristolochia.

2.3.2. Antibacterial, Antiparasitic and Antiviral Activity

Mohanraj et al. (2009) identified from essential oils of leaves of A. elegans Mast. sesquiterpenes β-caryophyllene and iso-caryophyllene with antibacterial activity against Klebsiella pneumoniae, Vibrio cholerae, Salmonella typhi, and S. paratyphi A. The aforementioned compounds, as well as bicyclogermacrene, are attributed to antiviral activity against the HIV-1 antigen p24 with an inhibition of 35.6–14.9% [54]. Phenolic compounds such as fargesin, (8R,8′R,9R)-cubebin and eupomatenoid-1 were identified in HXE from the rhizomes of A. elegans Mast. which favored the inhibition of M. tuberculosis at a minimum inhibitory concentration (MIC) of 50 µg/mL. Eupomatenoid-1 showed antiparasitic activity (IC50 < 1.93 × 10−9 M) against E. histolytica and G. lamblia [39]. Navarro-García et al. (2011) determined that in the DCME from A. brevipes Benth. roots collected in Mexico, the aristolactam I presented greater antibacterial activity against Mycobacterium tuberculosis H37Rv with an MIC between 8.52 × 10−8 and 4.26 × 10−8 M [76]. Likewise, in A. taliscana Hook. & Arn., the rhizome HXE exhibited antibacterial activity (MIC = 0.7 mg/mL) as well as the isolated compound eupomatenoid-7 (MIC = 2.15 × 10−6 M) inhibiting the growth of Escherichia coli, Pseudomona fluorescens, and Listeria monocytogenesis [55]. In the research carried out by León-Díaz et al. (2013), the HXE root of A. taliscana Hook. & Arn. (−)-licarin-A was isolated whose concentration of 5 mg/kg reduced pneumonia in mice infected with M. tuberculosis [56]. The linoleic acid chloride, oleic acid, and limonene-6-ol, pivalate were isolated from DCME from the tubers of the A. longa L. species, the present activity was evident against Rhodococcus sp: R. equi, GK1, and GK3 (with an inhibition zone of 30 mm at 50 mg/mL) [23]. The HXE of A. longa L. exhibited antibacterial activity (10 mg/mL) against Staphylococcus aureus, determining a total inhibitory effect with a zone of inhibition of 8.5 mm. The antibacterial activity may be related to the amount of polyphenols and flavonoids in the organic extract of A. longa L. [25]. Essential oils promote the loss of the integrity of the cell membrane by releasing the cell material to the external environment, in addition to the inhibition of proteins and biofilms [138]. It is worth mentioning that the extracts of A. longa L. mentioned above exceed 0.1 mg/mL, so they would not be suitable for use as antibacterials [133].

2.3.3. Antiplatelet Activity

In A. maurorum L., the main components of the roots and aerial parts of the ME were aristolochic acid I (1.17 × 10−6 M), II (1.28 × 10−6 M), and IIIa (1.22 × 10−6 M). These components showed an antiplatelet activity of 100% and the assay was compared with the standard acetylsalicylic acid (3.05 × 10−5 M) showing an inhibition of platelet aggregation of 100%. Compounds were evaluated using an automatic platelet aggregometer and coagulation tracer [53].

2.3.4. Antioxidant Activity

In A. taliscana Hook. & Arn. in HXE of rhizomes, the ABTS assay (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) was performed to measure the ability of the compounds to trap the ABTS•+ radical. The results obtained were expressed as antioxidant activity of eupomatenoid-7 (151.2 mg GAE/g) and (±)-licarin-A (143.4 mg GAE/g) and were the most active at both points of the determination (minute 1 and 7 of the reaction) [55]. The antioxidant activity is dependent on hydroxyl groups, to which its antioxidant effect is attributed, which is why licarin-B and eupomatenoid-1 did not present this condition.
A. bracteolata Lam. showed activity to chelate iron with an antioxidant capacity of 44 ± 0.01%, whose activity is attributed to phenolic compounds [34]. In the ME of A. longa L., it was determined that it has a high amount of polyphenols and flavonoids, and it showed a remarkable antioxidant activity. The total content of phenolic compounds of A. longa L. showed that the ME of roots presented the concentrations of polyphenols and flavonoids with 101.4 mg of GAE/g and 54.21 mg of QE/g of extract, respectively [25].

2.3.5. Neuroprotective Activity

Dihydrobenzofuran neolignans, 2-aryldihydrobenzofurans, 8-O-4′-neolignan, and analogs (3.0 × 10−5 M) as well as the EE of the stem (0.01 mg/mL) of A. fordiana Hemsl. exhibited a neuroprotective effect that prevents cell death in hippocampal cells (HT-22) [118].

2.4. In Vivo Studies on Extracts of the Genus Aristolochia

2.4.1. Changes in the Estrous Cycle

In tubers of the EE of the species A. indica L., an application has been found regarding changes in the estrous cycle in vivo with a dose of 150 mg/kg of extract [113]. The compounds involved in the effect of the extract were not shown.

2.4.2. Antidiabetic Potential

From the EE of roots of A. ringens Vahl., aristolone was identified and it was shown to have an antidiabetic potential in rats at concentrations of 300–75 mg/kg, so this part of the plant could be used in decoctions for the treatment of diabetes with the approval of more relevant studies [125].

2.4.3. Antifibrotic Activity

The compounds (+)-iso-bicyclogermacrenal and spatulenol (3.0 × 10−5 M) present in the ethyl acetate extract (EAE) of A. yunnanensis Franch. stems were responsible for promoting antifibrotic concentration effects in vivo [116]. However, the concentrations in which the pure compound was handled under in vivo conditions turned out to be high for antifibrotic activity. The genus Aristolochia has extensive traditional and pharmacological uses in various pathological conditions. Therefore, it is an attractive subject for future clinical and experimental research.

2.4.4. Anti-Inflammatory Activity

In particular, in A. krisagathra Sivar. & Pradeep., studies of EE of the whole plant have been carried out. An anti-inflammatory activity of 87.1% was obtained with a dose of 400 mg/kg in rats. The compounds that could act in biological activity are alkaloid, anthraquinone, coumarin, flavonoid, phenol, quinone, saponin, steroid, tannin, terpenoid, sugar, glycoside, and xanthoprotein [95].
The anti-inflammatory activity of (−)-hinokinin in tumor necrosis factor-α (TNF-α) IC50 = 0.0775 M and interleukin-6 (IL-6) IC50 = 0.0205 M and aristolactam I (TNF-α; IC50 = 0.1168 M, IL-6; IC50 = 0.0520 M) of A. indica L. in aerial parts of the DCME and EAE, respectively [22]. In in vivo and in vitro studies, doses greater than 200 mg/kg are not usually recommended, as well as values in pure compounds > 2.5 × 10−5 M [133,139].

2.4.5. Snake Anti-Venom Activity

The hexanic extract from the roots of A. elegans Mast. was subjected to an inhibition assay of smooth muscle contraction induced by scorpion venom (Centruroides limpidus limpidus) in an isolated guinea pig ileum model with an inhibition of 41.66% (0.4 mg/mL), whose effects are related to neolignan-type compounds [84]. On the other hand, in vivo studies in albino mice using a ME from the whole plant of the species A. indica L. demonstrated neutralization against Daboia russelli venom at a dose of 0.14 mg. However, no mention is made of the metabolites responsible for the activity [90].
Compounds obtained from polar extracts, especially aristolochic acids, as mentioned above, are not considered safe compounds according to the International Agency for Research on Cancer (WHO), due to their carcinogenic effects. Despite developing these problems, they can be oriented towards their possible use as antivenoms. Likewise, the presence of aristolochic acids, aristolactams, and their derivatives can be used as chemotaxonomic markers in species of the genus Aristolochia [22,136,140].

2.4.6. Cancer Treatment

The AE of A. longa L. roots (5000 mg/kg) did not show hepatic and renal toxicity in a preclinical assay by oral administration in rats. More studies are warranted on its possible use in breast cancer therapy. The possible compounds responsible for the beneficial activity could be the flavonols, flavones, and/or flavonoid glycosides identified in the extract [50]. In addition to the bioactive compounds mentioned above, the amount of lectin in A. longa L. extracts was not favorable for potential cancer treatment in an in vitro immunological activity assay [141]. The use of AE of A. longa L. rhizomes as in vivo anticancer treatment in gingival tumorigenesis caused tissue damage as well as pulmonary and toxicity problems. This could be due to the presence of aristolochic acids in the extract [52]. In a preclinical assay against S-180 solid tumors from BALB/c mice, A. ringens Vahl. roots from extracts of EE (120 mg/kg) and DCME:ME (110 mg/kg) produced a significant value (p < 0.05) in tumor growth over a period of 9–13 days compared to control models. However, the characterization of the polar and moderately polar extracts lacked phytochemical information [31].

3. Materials and Methods

A total of 141 publications were included in this review. SciFinder and EBSCO were used to search for articles that analyzed the beneficial effects of Aristolochia in the period from 2005 to 2021. Eighty-eight different species of Aristolochia were considered and reviewed by International Plant Names Index and World Flora Online. The inclusion criteria that were retained included: phytochemicals, Aristolochia, beneficial effects, extract, pharmacology, and ethnomedicinal. Articles were excluded based on the following criteria: articles that did not address the intervention, articles without adequate Aristolochia species theoretical foundations, and articles that did not include Aristolochia species.

4. Conclusions

The review in the literature about biological activities allowed identifying studies of different species of the genus Aristolochia highlighting phytochemical and pharmacological aspects, and their possible clinical applications. In the roots and leaves, a greater number of beneficial effects were found. From this review, it is concluded that the information detailed the relevant species of the genus Aristolochia as promising candidates for natural uses in human health of greater relevance in extracts and pure compounds in anticancer activities. More selective studies are suggested in terms of concentration parameters as well as clinical studies for higher quality.

Author Contributions

Conceptualization, M.A.L.-H., L.B.-G. and H.A.G.-G.; writing—original draft preparation, M.A.L.-H. and H.A.G.-G.; writing—review and editing, L.B.-G., A.O.-Z., J.E.L.-M., P.N.-S., R.H.-B. and J.A.-V. All authors have read and agreed to the published version of the manuscript.


This research was funded by CIC-UMSNH and CONACYT-México (Grant Nos. A1-S-47352 and 287210).


We thank CIC-UMSNH and CONACYT-México (Grant Nos. A1-S-47352 and 287210) for partial financial support. M.A.L.-H. is grateful to CONACYT-México for the scholarship (722997). We are grateful to Bryan L. Fourman, for revision of manuscript.

Conflicts of Interest

The authors declare that there are no conflict of interest.


  1. Wagner, S.T.; Hesse, L.; Isnard, S.; Samain, M.-S.; Bolin, J.; Maass, E.; Neinhuis, C.; Rowe, N.P.; Wanke, S. Major trends in stem anatomy and growth forms in the perianth-bearing piperales, with special focus on Aristolochia. Ann. Bot. 2014, 113, 1139–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Xin-Xin, Z.; Guo-Bin, J.; Xin-Xin, Z.; Zi-Yue, L.; Yi, H.; Gang-Tao, W.; Rui-Jiang, W. Isotrema plagiostomum (Aristolochiaceae), a new species from Guangdong, South China. Phytotaxa 2019, 405, 221. [Google Scholar] [CrossRef]
  3. Jun-Ho, S.; Yang, S.; Choi, G. Taxonomic implications of leaf micromorphology using microscopic analysis: A tool for identification and authentication of korean piperales. Plants 2020, 9, 566. [Google Scholar] [CrossRef]
  4. Zhou, J.; Chen, X.; Cui, Y.; Sun, W.; Li, Y.; Wang, Y.; Song, J.; Yao, H. Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species. Int. J. Mol. Sci. 2017, 18, 1839. [Google Scholar] [CrossRef] [PubMed]
  5. Gonzalez, F.; Pabón Mora, N. Sinopsis actualizada de Aristolochia (Aristolochiaceae, Piperales) en Panamá. Acta Bot Mex. 2018, 122, 109–140. [Google Scholar] [CrossRef] [Green Version]
  6. Ping-Chung, K.; Yue-Chiun, L.; Tian-Shung, W. Chemical constituents and pharmacology of the Aristolochia (馬兜鈴 Mădōu Ling) species. J. Tradit. Complement. Med. 2012, 2, 249–266. [Google Scholar] [CrossRef] [Green Version]
  7. Heinrich, M.; Chan, J.; Wanke, S.; Neinhuis, C.; Simmonds, M.S.J. Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2—A global assessment based on bibliographic sources. J. Ethnopharmacol. 2009, 125, 108–144. [Google Scholar] [CrossRef]
  8. Jeude, S.E.; Fordyce, J.A. The effects of qualitative and quantitative variation of aristolochic acids on preference and performance of a generalist herbivore. Entomol. Exp. Appl. 2014, 150, 232–239. [Google Scholar] [CrossRef]
  9. Pacheco, A.G.; Machado de Oliveira, P.; Piló-Veloso, D.; Flávio de Carvalho Alcântara, A. 13C-NMR data of diterpenes isolated from Aristolochia species. Molecules 2009, 14, 1245–1262. [Google Scholar] [CrossRef]
  10. Santana-Michel, F.J. Una especie nueva de Aristolochia L., subsección Pentandrae (Aristolochiaceae) de la reserva de la biosfera sierra de Manantlán, Jalisco, México. Acta Bot. Mex. 2007, 79, 81–87. [Google Scholar] [CrossRef] [Green Version]
  11. Santana-Michel, F.J.; Solís-Magallanes, J.A. Aristolochia emiliae (Aristolochiaceae: Subsección Pentandrae), Una especie nueva de la costa de Jalisco, México. Acta Bot. Mex. 2008, 82, 7–13. [Google Scholar] [CrossRef] [Green Version]
  12. Paizanni-Guillén, A.; Michel, F.J.S.; Amezcua, J.M.R.; Wagner, S.T.; Müller, S.; Castro, J.C.M.; Wanke, S.; Samain, M.-S. Four new species of Aristolochia subsection Pentandrae from Western Mexico. Syst. Bot. 2016, 41, 128–141. [Google Scholar] [CrossRef]
  13. Santana-Michel, F.J. Aristolochia rzedowskiana (Aristolochiaceae), una especie nueva para la subsección Pentandrae del estado de Jalisco, México. Acta Bot. Mex. 2014, 106, 1–7. [Google Scholar] [CrossRef] [Green Version]
  14. Santana-Michel, F.J.; Cuevas-Guzmán, R.; Sánchez-Rodríguez, E.V.; Morales-Arias, J.G. Aristolochia purhepecha (Aristolochiaceae: Subsección Pentandrae) una especie nueva de Michoacán, México. Rev. Mex. Biodivers. 2017, 88, 519–523. [Google Scholar] [CrossRef]
  15. Paizanni-Guillén, A.; Santana-Michel, F.J. Familia Aristolochiaceae; Flora Del Bajío y de Regiones Adyacentes: Pátzcuaro, Michoacán, México, 2018. [Google Scholar] [CrossRef]
  16. Al-Barham, M.B.; Al-Jaber, H.I.; Al-Qudah, M.A.; Abu Zarga, M.H. New aristolochic acid and other chemical constituents of Aristolochia maurorum growing wild in Jordan. Nat. Prod. Res. 2017, 31, 245–252. [Google Scholar] [CrossRef] [PubMed]
  17. Dharmalingam, S.; Madhappan, R.; Ramamurthy, S.; Chidambaram, K.; Srikanth, M.; Shanmugham, S.; Kumar, S. Investigation on antidiarrhoeal activity of Aristolochia indica Linn. root extracts in mice. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 292. [Google Scholar] [CrossRef] [Green Version]
  18. Sartorelli, P.; Salomone Carvalho, C.; Quero Reimão, J.; Lorenzi, H.; Tempone, A. Antitrypanosomal activity of a diterpene and lignans isolated from Aristolochia cymbifera. Planta Med. 2010, 76, 1454–1456. [Google Scholar] [CrossRef] [Green Version]
  19. Dias, D.A.; Urban, S.; Roessner, U. A historical overview of natural products in drug discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [Green Version]
  20. Fregene, A.; Newman, L.A. Breast cancer in sub-Saharan Africa: How does it relate to breast cancer in African-American women? Cancer 2005, 103, 1540–1550. [Google Scholar] [CrossRef]
  21. Mathew, L.S.; Mtewa, A.G.; Ajayi, C.O.; Deyno, S.; Weisheit, A.; Tolo, C.U.; Deng, A.L.; Engeu Ogwang, P. Ethnopharmacology, pharmacology and phytochemistry of Aristolochia bracteolata Lam: A review of an antimalarial plant. East Afr. Sci. 2020, 2, 22–28. [Google Scholar] [CrossRef]
  22. Padhy, G.K. A review of Aristolochia indica: Ethnomedicinal uses, phytochemistry, pharmacological and toxicological effects. Curr. Tradit. Med. 2021, 7, 372–386. [Google Scholar] [CrossRef]
  23. Aneb, M.; Talbaoui, A.; Bouyahya, A.; Boury, H.; Amzazi, S.; Benjouad, A.; Dakka, N.; Bakri, Y. In vitro cytotoxic effects and antibacterial activity of Moroccan medicinal plants Aristolochia longa and Lavandula multifida. Eur. J. Med. Plants 2016, 16, 1–13. [Google Scholar] [CrossRef]
  24. Lerma-Herrera, M.A.; Beiza-Granados, L.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Hernández-Hernández, J.D.; Aviña-Verduzco, J.; García-Gutiérrez, H.A. In vitro cytotoxic potential of extracts from Aristolochia foetida Kunth against MCF-7 and bMECs cell lines. Saudi J. Biol. Sci. 2021, 28, 7082–7089. [Google Scholar] [CrossRef] [PubMed]
  25. Idrissi, A.Y.; Khouchlaa, A.; Bouyahya, A.; Bakri, Y.; Tijane, Y.B.M. Phytochemical characterization, in vitro antioxidant, cytotoxic, and antibacterial effects of Aristolochia longa L. Biointerface Res. Appl. Chem. 2020, 11, 8129–8140. [Google Scholar] [CrossRef]
  26. Chaouki, W.; Leger, D.Y.; Eljastimi, J.; Beneytout, J.-L.; Hmamouchi, M. Antiproliferative effect of extracts from Aristolochia baetica and Origanum compactum on human breast cancer cell line MCF-7. Pharm. Biol. 2010, 48, 269–274. [Google Scholar] [CrossRef]
  27. Subramaniyan, V.; Saravanan, R.; Baskaran, D.; Ramalalingam, S. In vitro free radical scavenging and anticancer potential of Aristolochia indica L. against MCF-7 cell line. Int. J. Pharm. 2015, 7, 392–396. [Google Scholar]
  28. Owolabi, M.S.; Omowonuola, A.; Lawal, O.A.; Dosoky, N.S.; Collins, J.T.; Ogungbe, I.V.; Setzer, W.N. Phytochemical and bioactivity screening of six Nigerian medicinal plants. Int. J. Pharmacogn. Phytochem. 2017, 6, 1430–1437. [Google Scholar]
  29. Xiao-dan, S.; Yang, G.; Ying-Xin, X.; Peng-Xiang, L.; Xiang, X. Chemical composition and biological activities of the essential oil from Aristolochia fordiana Hemsl. Rec. Nat. Prod. 2019, 13, 346–354. [Google Scholar] [CrossRef]
  30. Yu, J.Q.; Liao, Z.X.; Cai, X.Q.; Lei, J.C.; Zou, G.L. Composition, antimicrobial activity and cytotoxicity of essential oils from Aristolochia mollissima. Environ. Toxicol. Pharmacol. 2007, 23, 162–167. [Google Scholar] [CrossRef]
  31. Akindele, A.J.; Wani, Z.; Mahajan, G.; Sharma, S.; Aigbe, F.R.; Satti, N.; Adeyemi, O.O.; Mondhe, D.M. Anticancer activity of Aristolochia ringens Vahl. (Aristolochiaceae). J. Tradit. Complement. Med. 2015, 5, 35–41. [Google Scholar] [CrossRef] [Green Version]
  32. Abd El-Hafeez, A.A.; Khalifa, H.O.; Elgawish, R.A.; Shouman, S.A.; Abd El-Twab, M.H.; Kawamoto, S. Melilotus indicus extract induces apoptosis in hepatocellular carcinoma cells via a mechanism involving mitochondria-mediated pathways. Cytotechnology 2018, 70, 831–842. [Google Scholar] [CrossRef] [PubMed]
  33. Bourhia, M.; Laasri, F.E.; Moussa, S.I.; Ullah, R.; Bari, A.; Saeed Ali, S.; Kaoutar, A.; Haj Said, A.A.; El Mzibri, M.; Said, G.; et al. Phytochemistry, antioxidant activity, antiproliferative effect, and acute toxicity testing of two Moroccan Aristolochia Species. Evid. Based Complement. Altern. Med. 2019, 2019, 9710876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  34. Taha, M.; Parveen, B.; Osman, B.; Abdoon, I.H.; Mohamed, M.S.; Osman, W.J.A.; Ahmad, S. In vitro profiling of plants used in sudanese traditional medicine for antioxidant and anti-breast cancer activities. Ann. Phytomed. Int. J. 2019, 8, 119–126. [Google Scholar] [CrossRef]
  35. Truong, L.H.; Cuong, N.H.; Dang, T.H.; Hanh, N.T.M.; Thi, V.L.; Tran Thi Hong, H.; Tran Hong, Q.; Nguyen, H.D.; Nguyen Xuan, C.; Nguyen Hoai, N.; et al. Cytotoxic Constituents from Isotrema tadungense. J. Asian Nat. Prod. Res. 2020, 23, 491–497. [Google Scholar] [CrossRef] [PubMed]
  36. Xin, W.; Guo-Ru, S.; Yan-Fei, L.; Li, L.; Ruo-Yun, C.; De-Quan, Y. Aristolochic acid derivatives from the rhizome of Arisolochia championii. Fitoterapia 2017, 118, 63–68. [Google Scholar] [CrossRef]
  37. Zhong-bo, Z.; Jian-guang, L.; Ke, P.; Si-ming, S.; Wei, Z.; Ling-yi, K. Bioactive benzofuran neolignans from Aristolochia fordiana. Planta Med. 2013, 79, 1730–1735. [Google Scholar] [CrossRef]
  38. Aleixo, Á.A.; Vidyleison, N.C.; dos Santos Pereira Andrade, A.C.; Marjorie, K.; Herrera, S.; Iara, R.; Ribeiro, M.; Magalhães Rodrigues, L.A.; Ferreira, J.M. Antibacterial and cytotoxic antibacterial potential of ethanol extract and fractions from Aristolochia galeata Mart. Ex Zucc. J. Med. Plants Res. 2014, 8, 326–330. [Google Scholar] [CrossRef] [Green Version]
  39. Jiménez-Arellanes, A.; León-Díaz, R.; Meckes, M.; Tapia, A.; Molina-Salinas, G.M.; Luna-Herrera, J.; Yépez-Mulia, L. Antiprotozoal and antimycobacterial activities of pure compounds from Aristolochia elegans rhizomes. Evid.-Based Complement. Altern. Med. 2012, 2012, 593403. [Google Scholar] [CrossRef] [Green Version]
  40. Borah, P.J.; Borah, D.; Das, U.; Das, T.J.; Sarma, R. A review on ethnopharmacological utility, traditional knowledge and phytochemistry of Aristolochia species in Assam, India. Not. Sci. Biol. 2021, 13, 11027. [Google Scholar] [CrossRef]
  41. Chunmei, L.; Myeong-Hyeon, W. Aristolochia debilis Sieb. et Zucc. induces apoptosis and reactive oxygen species in the HT-29 human colon cancer cell line. Cancer Biother. Radiopharm. 2013, 28, 717–724. [Google Scholar] [CrossRef]
  42. Cai, Y.; Cai, T.-G. Two new aristolochic acid derivatives from the roots of Aristolochia fangchi and their cytotoxicities. Chem. Pharm. Bull. 2010, 58, 1093–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Kangralkar, V.A.; Kulkami, A.R. In vitro cytotoxic activity of alcoholic extract of Aristolochia indica. Res. J. Pharm. Technol. 2013, 6, 1240–1241. [Google Scholar]
  44. Yu, Y.; Bo, Z.; Chao, H.; Minghua, Z. A study on the anticancer activity of ethanol extract of Aristolochia mollissima hance on osteosarcoma HOS cells. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Mazadu, E.A.; Misau, M.S.; Gwallameji, L.B. Phytochemical screening and antimicrobial activity of some medicinal trees grown in Bauchi state, north eastern, Nigeria. Int. J. Pharmacogn. Phytochem. 2018, 7, 3503–3507. [Google Scholar]
  46. Hadem, K.H.; Sharan, R.; Kma, L. Phytochemicals of Aristolochia tagala and Curcuma caesia exert anticancer effect by tumor necrosis factor-α-mediated decrease in nuclear factor kappaB binding activity. J. Basic Clin. Pharm. 2016, 7, 1. [Google Scholar] [CrossRef] [Green Version]
  47. Hynniewta-Hadem, K.L.; Sharan, R.N.; Kma, L. Inhibitory potential of methanolic extracts of Aristolochia tagala and Curcuma caesia on hepatocellular carcinoma induced by diethylnitrosamine in BALB/c mice. J. Carcinog. 2014, 30, 13–17. [Google Scholar] [CrossRef]
  48. Rajani, M.B.; Raviraja, S.G.; Pooja, D.A. A review on medicinal uses, pharmacology and phytochemistry of Aristolochia tagala Cham. An endangered medicinal plant. J. Pharmacogn. Phytochem. 2020, 9, 580–583. [Google Scholar]
  49. Oliveira, S.Q.; Kratz, J.M.; Chaves, V.C.; Guimarães, T.R.; Costa, D.T.M.; Dimitrakoudi, S.; Vontzalidou, A.; Bordignon, S.A.L.; Simionato, C.P.; Steindel, M.; et al. Chemical constituents and pharmacology properties of Aristolochia triangularis: A south Brazilian highly-consumed botanical with multiple bioactivities. An. Acad. Bras. Ciênc. 2019, 91, e20180621. [Google Scholar] [CrossRef] [Green Version]
  50. Benarba, B.; Pandiella, A.; Elmallah, A. Anticancer activity, phytochemical screening and acute toxicity evaluation of an aqueous extract of Aristolochia longa L. Int. J. Pharm. Phytopharm. Res. 2017, 6, 20. [Google Scholar] [CrossRef]
  51. Gadouche, L.; Zidane, A.; Zerrouki, K.; Azouni, K.; Bouinoune, S. Cytotoxic Effect of Myrtus communis, Aristolochia longa, and Calycotome spinosa on human erythrocyte cells. Foods Raw Mater. 2021, 9, 379–386. [Google Scholar] [CrossRef]
  52. Benzakour, G.; Amrani, M.; Oudghiri, M. A histopathological analyses of in vivo anti-tumor effect of an aqueous extract of Aristolochia longa used in cancer treatment in traditional medicine in Morocco. Int. J. Plant Res. 2012, 2, 31–35. [Google Scholar] [CrossRef]
  53. Alali, F.Q.; Tawaha, K.; Shehadeh, M.B.; Telfah, S. Phytochemical and biological investigation of Aristolochia maurorum L. Z. Nat. C 2006, 61, 685–691. [Google Scholar] [CrossRef]
  54. Mohanraj, R.; Patil, A.; Rathore, M.; Nobre, M. Anti HIV-1 and anti-bacterial activities of the leaf extracts of Aristolochia elegans. J. Trop. Med. Plants 2009, 10, 9–12. [Google Scholar]
  55. Arellanes, M.A.J.; Cortés, N.R.R.; García, I. Antioxidant and antimicrobial activities of hexane extracts and pure compounds from Aristolochia taliscana rhizome. Rev. Mex. Cienc. Farm. 2011, 42, 35–41. [Google Scholar]
  56. León-Díaz, R.; Meckes-Fischer, M.; Valdovinos-Martínez, L.; Campos, M.G.; Hernández-Pando, R.; Jiménez-Arellanes, M.A. Antitubercular activity and the subacute toxicity of (−)-Licarin A in BALB/c mice: A neolignan isolated from Aristolochia taliscana. Arch. Med. Res. 2013, 44, 99–104. [Google Scholar] [CrossRef] [PubMed]
  57. Salinas Ibáñez, A.G.; Arismendi Sosa, A.C.; Ferramola, F.F.; Paredes, J.; Wendel, G.; Maria, A.O.; Vega, A.E. Inhibition of Helicobacter pylori and its associated urease by two regional plants of San Luis Argentina. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2097–2106. [Google Scholar] [CrossRef] [Green Version]
  58. França, V.C.; Vieira, K.V.M.; Lima, E.O.; Barbosa-Filho, J.M.; da-Cunha, E.V.L.; Silva, M.S. da Estudo fitoquímico das partes aéreas de Aristolochia birostris Ducht. (Aristolochiaceae). Rev. Bras. Farmacogn. 2005, 15, 326–330. [Google Scholar] [CrossRef]
  59. Angalaparameswari, S.; Saleem, T.S.M.; Alagusundaram, M.; Ramkanth, S.; Thiruvengadarajan, V.S.; Gnanaprakash, K.; Chetty, C.M.; Pratheesh, G. Anti-microbial activity of aristolochic acid from root of Aristolochia bracteata Retz. Int. J. Med. Med. Health Sci. 2011, 5, 462–464. [Google Scholar]
  60. Gómez-Cansino, R.; Guzmán-Gutiérrez, S.L.; Campos-Lara, M.G.; Espitia-Pinzón, C.I.; Reyes-Chilpa, R. Natural compounds from Mexican medicinal plants as potential drug leads for anti-tuberculosis drugs. An. Acad. Bras. Ciênc. 2017, 89, 31–43. [Google Scholar] [CrossRef] [Green Version]
  61. Ozen, T.; Bora, N.; Yenigun, S.; Korkmaz, H. An investigation of chemical content, enzyme inhibitory propert, antioxidant and antibacterial activity of Aristolochia bodamae Dingler (Develiotu) (Aristolochiaceae) root extracts from Samsun, Turkey. Flavour Fragr. J. 2020, 35, 270–283. [Google Scholar] [CrossRef]
  62. Abbouyi, A.E.; Maliki, S.E.; Filali-Ansari, N.; Khyari, S.E. Antibacterial and antifungal activities of rhizomes extract from Aristolochia clematitis. Int. J. Pharm. Chem. Biol. Sci. 2016, 6, 72–75. [Google Scholar]
  63. Zhi-Jian, L.; Guy, S.S.N.; Wen-Jia, H.; Hong-Xia, Z.; Jian-Long, G.; Shan-Na, C.; Zhi-Zhi, D. Chemical composition and antimicrobial activity of the essential oil from the edible aromatic plant Aristolochia delavayi. Chem. Biodivers. 2013, 10, 2032–2041. [Google Scholar] [CrossRef]
  64. Pacheco, A.G.; Silva, T.M.; Manfrini, R.M.; Sallum, W.S.T.; Duarte, L.P.; Piló-Veloso, D.; Alcântara, A.F.C.; Knupp, V.F. Estudo químico e atividade antibacteriana do caule de Aristolochia esperanzae Kuntze (Aristolochiaceae). Quím. Nova. 2010, 33, 1649–1652. [Google Scholar] [CrossRef] [Green Version]
  65. Botelho-Filho, C.R.; Izumi, G.K.; Vieira, J.C.; Palva-Bertoil, F.M.; Ricomini-Filho, A.P.; Maranho, L.T.; Baratto-Filho, F.; Leão-Gabardo, M.C. Anatomical description and in vitro evaluation of the antibacterial potential of Aristolochia esperanzae Kuntze (Aristolochiaceae) extract on oral micro-organisms. Phcog. Res. 2020, 12, 424. [Google Scholar] [CrossRef]
  66. Pugazharasi, G.; Christy, R.; Jaganathan, J.; Shree Devi, M.S.; Karthik, L. A novel approach on herbal water to reduce water contaminant Salmonella typhi—An in vitro study. Malaya J. Biosci. 2015, 2, 166–176. [Google Scholar]
  67. Murugan, M.; Mohan, V.R. Efficacy of different solvent extracts of Vitex trifolia L. and Aristolochia indica L. for potential antibacterial activity. Sci. Res. Rep. 2012, 2, 110–114. [Google Scholar]
  68. Venkatadri, B.; Arunagirinathan, N.; Rameshkumar, M.R.; Ramesh, L.; Dhanasezhian, A.; Agastian, P. In vitro antibacterial activity of aqueous and ethanol extracts of Aristolochia indica and Toddalia asiatica against multidrug-resistant bacteria. Indian J. Pharm. Sci. 2015, 77, 788–791. [Google Scholar] [CrossRef] [Green Version]
  69. Dhouioui, M.; Boulila, A.; Jemli, M.; Schiets, F.; Casabianca, H.; Zina, M.S. Fatty acids composition and antibacterial activity of Aristolochia longa L. and Bryonia dioïca Jacq. growing wild in Tunisia. J. Oleo Sci. 2016, 65, 655–661. [Google Scholar] [CrossRef] [Green Version]
  70. Merouani, N.; Belhattab, R.; Sahli, F. Evaluation of the biological activity of Aristolochia longa L. extracts. Int. J. Pharm. Sci. 2017, 8, 15. [Google Scholar]
  71. Zazharskyi, V.V.; Davydenko, P.O.; Kulishenko, O.M.; Borovik, I.V.; Zazharska, N.M.; Brygadyrenko, V.V. Antibacterial and fungicidal activities of ethanol extracts of 38 species of plants. Biosyst. Divers. 2020, 28, 281–289. [Google Scholar] [CrossRef]
  72. Rios, M.Y.; Navarro, V.; Ramírez-Cisneros, M.Á.; Salazar-Rios, E. Sulfur-containing aristoloxazines and other constituents of the roots of Aristolochia orbicularis. J. Nat. Prod. 2017, 80, 3112–3119. [Google Scholar] [CrossRef] [PubMed]
  73. Eltayeb, I.M.; Nari, F.H.M. Phytochemical screening, antioxidant and antimicrobial activities of some sudanese medicinal plants against standard and isolated microorganisms. Int. J. Pharmacogn. Phytochem. 2017, 6, 97–100. [Google Scholar]
  74. Hoi, T.M.; Dai, D.N.; Ha, C.T.T.; Anh, H.V.; Ogunwande, I.A. Essential oil constituents from the leaves of Anoectochilus setaceus, Codonopsis javanica and Aristolochia kwangsiensis from Vietnam. Rec. Nat. Prod. 2019, 13, 281–286. [Google Scholar] [CrossRef]
  75. Vahekeni, N.; Neto, P.M.; Kayimbo, M.K.; Mäser, P.; Josenando, T.; da Costa, E.; Falquet, J.; van Eeuwijk, P. Use of herbal remedies in the management of sleeping sickness in four northern provinces of Angola. J. Ethnopharmacol. 2020, 256, 112382. [Google Scholar] [CrossRef]
  76. Navarro-García, V.M.; Luna-Herrera, J.; Rojas-Bribiesca, M.G.; Álvarez-Fitz, P.; Ríos, M.Y. Antibacterial activity of Aristolochia brevipes against multidrug-resistant Mycobacterium tuberculosis. Molecules 2011, 16, 7357–7364. [Google Scholar] [CrossRef]
  77. Borneo, R.; León, A.E.; Aguirre, A.; Ribotta, P.; Cantero, J.J. Antioxidant capacity of medicinal plants from the province of Córdoba (Argentina) and their in vitro testing in a model food system. Food Chem. 2009, 112, 664–670. [Google Scholar] [CrossRef]
  78. Jegadeeswari, P.; Daffodil, E.; Mohan, V.R. Quantification of total phenolics, flavonoid and in vitro antioxidant activity of Aristolochia bracteata Retz. Int. J. Pharm. Pharm. 2014, 6, 747–752. [Google Scholar]
  79. Papuc, C.; Crivineanu, M.; Goran, G.; Nicorescu, V.; Durdun, N. Free radicals scavenging and antioxidant activity of european mistletoe (Viscum Album) and European birthwort (Aristolochia clematitis). Rev. Chim. 2010, 61, 619–622. [Google Scholar]
  80. El Omari, N.; Sayah, K.; Fettach, S.; El Blidi, O.; Bouyahya, A.; Faouzi, M.E.A.; Kamal, R.; Barkiyou, M. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evid. Based Complement. Altern. Med. 2019, 2019, 7384735. [Google Scholar] [CrossRef] [Green Version]
  81. Dade, M.M.; Fioravanti, D.E.; Schinella, G.R.; Tournier, H.A. Total antioxidant capacity and polyphenol content of 21 aqueous extracts obtained from native plants of Traslasierra valley (Argentina). Boletín Latinoam. Caribe Plantas Med. Aromát. 2009, 8, 529–539. [Google Scholar]
  82. Sulyman, A.O.; Akolade, J.O.; Aladodo, R.A.; Ibrahim, R.B.; Na’Allah, A.; Abdulazeez, A.T. Aristolochia ringens extract ameliorates oxidative stress and dyslipidaemia associated with streptozotocin-induced hyperglycaemia in rats. J. Ethnopharmacol. 2018, 182, 122–128. [Google Scholar] [CrossRef] [PubMed]
  83. Usman, H.S.; Sallau, A.B.; Salihu, A.; Nok, A.J. Larvicidal assessment of fractions of Aristolochia albida rhizome on culex quinquefasciatus. Trop. J. Nat. Prod. Res. 2018, 2, 227–234. [Google Scholar] [CrossRef]
  84. Zamilpa, A.; Abarca-Vargas, R.; Ventura-Zapata, E.; Osuna-Torres, L.; Zavala, M.A.; Herrera-Ruiz, M.; Jiménez-Ferrer, E.; González-Cortazar, M. Neolignans from Aristolochia elegans as antagonists of the neurotropic effect of scorpion venom. J. Ethnopharmacol. 2014, 157, 156–160. [Google Scholar] [CrossRef] [PubMed]
  85. Alonso-Castro, A.J.; Domínguez, F.; Ruiz-Padilla, A.J.; Campos-Xolalpa, N.; Zapata-Morales, J.R.; Carranza-Alvarez, C.; Maldonado-Miranda, J.J. Medicinal plants from North and Central America and the Caribbean considered toxic for humans: The other side of the coin. Evid.-Based Complment. Altern. Med. 2017, 2017, 9439868. [Google Scholar] [CrossRef] [Green Version]
  86. Naz, R.; Ayub, H.; Nawaz, S.; Islam, Z.U.; Yasmin, T.; Bano, A.; Wakeel, A.; Zia, S.; Roberts, T.H. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement. Altern. Med. 2017, 17, 302. [Google Scholar] [CrossRef] [Green Version]
  87. Samy, R.P.; Thwin, M.M.; Gopalakrishnakone, P.; Ignacimuthu, S. Ethnobotanical survey of folk plants for the treatment of snakebites in southern part of Tamilnadu, India. J. Ethnopharmacol. 2008, 115, 302–312. [Google Scholar] [CrossRef]
  88. Usubillaga, A.; Khouri, N.; Cedillo-Vaz, S.; Yibirin, E. Anti-snake venom effect of Aristolochia odoratissima L. aqueous extract on mice. Acta Hortic. 2005, 3, 85–89. [Google Scholar] [CrossRef] [Green Version]
  89. Wu, T.-S.; Damu, A.G.; Kuo, P.-C. Chemical constituents and pharmacology of Aristolochia species. Stud. Nat. Prod. Chem. 2005, 32, 855–1018. [Google Scholar] [CrossRef]
  90. Meenatchisundaram, S.; Parameswari, G.; Michael, A. Studies on antivenom activity of Andrographis paniculata and Aristolochia indica plant extracts against Daboia russelli venom by in vivo and in vitro methods. Indian J. Sci. Technol. 2009, 2, 76–79. [Google Scholar] [CrossRef]
  91. Girija, D.M.; Kalachaveedu, M.; Subbarayan, R.; Jenifer, P.; Rao, S.R. Aristolochia bracteolata enhances wound healing in vitro through anti-inflammatory and proliferative effect on human dermal fibroblasts and keratinocytes. Pharmacogn. J. 2017, 9, s129–s136. [Google Scholar] [CrossRef] [Green Version]
  92. Wang, X.; Jin, M.; Jin, C.; Sun, J.; Zhou, W.; Li, G. A new sesquiterpene, a new monoterpene and other constituents with anti-inflammatory activities from the roots of Aristolochia debilis. Nat. Prod. Res. 2020, 34, 351–358. [Google Scholar] [CrossRef] [PubMed]
  93. Chung, Y.-M.; Chang, F.-R.; Tseng, T.-F.; Hwang, T.-L.; Chen, L.-C.; Wu, S.-F.; Lee, C.-L.; Lin, Z.-Y.; Chuang, L.-Y.; Su, J.-H.; et al. A novel alkaloid, aristopyridinone A and anti-inflammatory phenanthrenes isolated from Aristolochia manshuriensis. Bioorg. Med. Chem. Lett. 2011, 21, 1792–1794. [Google Scholar] [CrossRef] [PubMed]
  94. Salomé, D.C.; Cordeiro, N.; Valério, T.S.; Santos, D.; Alves, P.B.; Alviano, C.S.; Moreno, D.S.A.; Fernandes, P.D. Aristolochia trilobata: Identification of the anti-inflammatory and antinociceptive effects. Biomedicines 2020, 8, 111. [Google Scholar] [CrossRef] [PubMed]
  95. Paulpriya, K.; Tresina, P.S.; Mohan, V.R. Investigation of anti-inflammatory activity of Aristolochia krisagathra Sivarajan and Pradeep. Int. J. Pharm. 2016, 5, 132–135. [Google Scholar]
  96. Bamisaye, F.A.; Sulyman, A.O.; Ibrahim, R.B.; Yusuf, B.L. Antidiarrhoeal activities of ethanolic extract of Aristolochia ringens stem bark in castor oil-induced diarrhoeal albino rats. Fountain J. Nat. Appl. Sci. 2018, 7, 20–28. [Google Scholar]
  97. Zhang, G.; Shimokawa, S.; Mochizuki, M.; Kumamoto, T.; Nakanishi, W.; Watanabe, T.; Ishikawa, T.; Matsumoto, K.; Tashima, K.; Horie, S.; et al. Chemical constituents of Aristolochia constricta: Antispasmodic effects of its constituents in guinea-pig ileum and isolation of a diterpeno−lignan hybrid. J. Nat. Prod. 2008, 71, 1167–1172. [Google Scholar] [CrossRef]
  98. Bolla, S.R.; Mohammed Al-Subaie, A.; Yousuf Al-Jindan, R.; Papayya Balakrishna, J.; Kanchi Ravi, P.; Veeraraghavan, V.P.; Arumugam Pillai, A.; Gollapalli, S.S.R.; Palpath Joseph, J.; Surapaneni, K.M. In vitro wound healing potency of methanolic leaf extract of Aristolochia saccata is possibly mediated by its stimulatory effect on collagen-1 expression. Heliyon 2019, 5, e01648. [Google Scholar] [CrossRef] [Green Version]
  99. Pereira, M.; da Silva, T.; Aguiar, A.; Oliva, G.; Guido, R.; Yokoyama-Yasunaka, J.; Uliana, S.; Lopes, L. Chemical composition, antiprotozoal and cytotoxic activities of indole alkaloids and benzofuran neolignan of Aristolochia cordigera. Planta Med. 2017, 83, 912–920. [Google Scholar] [CrossRef]
  100. Koriem, K.M.M.; Shahabudin, R.E.; Jamaludin, R.Z. Aristolochia gehrtii inhibits liver toxicity and apoptosis in Schistosoma malayensis infection. Asian Pac. J. Trop. Med. 2014, 7, 685–692. [Google Scholar] [CrossRef] [Green Version]
  101. Miao-Miao, B.; De-Jian, H.; Cun-Zhu, D. Nematicidal activity of chemical compositions from Aristolochia tuberosa fruits against root-knot nematode. Redai Yaredai Zhiwu Xuebao 2018, 26, 197–201. [Google Scholar]
  102. Morais, A.B.B.; Brown, K.S.; Stanton, M.A.; Massuda, K.F.; Trigo, J.R. Are aristolochic acids responsible for the chemical defence of aposematic larvae of Battus polydamas (L.) (Lepidoptera: Papilionidae)? Neotrop. Entomol. 2013, 42, 558–564. [Google Scholar] [CrossRef] [PubMed]
  103. Defagó, M.T.; Nolli, L.; Díaz Napal, G.; Palacios, S.M. Can the extract of Aristolochia argentina Griseb. affect the foraging decisions of the leaf cutting ant Acromyrmex lundi (Guérin)? Preliminary assays. Int. J. Pest Manag. 2017, 63, 207–212. [Google Scholar] [CrossRef]
  104. Elamin, M.M.; Satti, A.A. Insecticidal and repellent effects of Aristolochia bracteolata Lam. against Trogoderma granarium Everts. Int. J. Sci. Innov. Discov. 2012, 2, 9. [Google Scholar]
  105. Messiano, G.B.; Vieira, L.; Machado, M.B.; Lopes, L.M.X.; de Bortoli, S.A.; Zukerman-Schpector, J. Evaluation of insecticidal activity of diterpenes and lignans from Aristolochia malmeana against Anticarsia gemmatalis. J. Agric. Food Chem. 2008, 56, 2655–2659. [Google Scholar] [CrossRef] [PubMed]
  106. De Pascoli, I.; Nascimento, I.; Lopes, L. Configurational analysis of cubebins and bicubebin from Aristolochia lagesiana and Aristolochia pubescens. Phytochemistry 2006, 67, 735–742. [Google Scholar] [CrossRef] [PubMed]
  107. Baskar, K.; Sasikumar, S.; Muthu, C.; Kingsley, S.; Ignacimuthu, S. Bioefficacy of Aristolochia tagala Cham. against Spodoptera litura Fab. (Lepidoptera: Noctuidae). Saudi J. Biol. Sci. 2011, 18, 23–27. [Google Scholar] [CrossRef] [Green Version]
  108. Das, N.G.; Rabha, B.; Talukdar, P.K.; Goswami, D.; Dhiman, S. Preliminary in vitro antiplasmodial activity of Aristolochia griffithii and Thalictrum foliolosum DC extracts against malaria parasite Plasmodium falciparum. BMC Res. Notes 2016, 9, 51. [Google Scholar] [CrossRef] [Green Version]
  109. Kazembe, T.; Munyarari, E. Effect of Aristolochia petersiana on the efficacy of fansidar. Cent. Afr. J. Med. 2006, 52, 11–16. [Google Scholar]
  110. Meela, M.M.; Mdee, L.K.; Masoko, P.; Eloff, J.N. Acetone leaf extracts of seven invasive weeds have promising activity against eight important plant fungal pathogens. S. Afr. J. Bot. 2019, 121, 442–446. [Google Scholar] [CrossRef]
  111. Montiel-Ruiz, R.M.; Córdova-de la Cruz, M.; González-Cortázar, M.; Zamilpa, A.; Gómez-Rivera, A.; López-Rodríguez, R.; Lobato-García, C.E.; Blé-González, E.A. Antinociceptive effect of hinokinin and kaurenoic acid isolated from Aristolochia odoratissima L. Molecules 2020, 25, 1454. [Google Scholar] [CrossRef] [Green Version]
  112. Quintans, J.S.S.; Alves, R.S.; Santos, D.A.; Serafini, M.R.; Alves, P.B.; Costa, E.V.; Zengin, G.; Quintans-Júnior, L.J.; Guimarães, A.G. Antinociceptive effect of Aristolochia trilobata stem essential oil and 6-methyl-5-hepten-2yl acetate, its main compound, in rodents. Z. Nat. C 2017, 72, 93–97. [Google Scholar] [CrossRef] [PubMed]
  113. Dar, N.A.; Mittal, D.K. Effect of Ethanolic extract of Aristolochia indica on the oestrous cycle of adult rats. Int. J. Pharm. Sci. Rev. Res. 2019, 57, 105–107. [Google Scholar]
  114. Abhijit, D.; Jitendra, N.D. Aristolochia indica L.: A review. Asian J. Plant Sci. 2011, 10, 108–116. [Google Scholar] [CrossRef] [Green Version]
  115. Shao, W.; Li, D.; Peng, J.; Chen, S.; Zhou, C.; Cheng, Z.; Yu, Y.; Li, H.; Li, C.; You, Y.; et al. Inhibitory effect of ethyl acetate extract of Aristolochia yunnanensis on cardiac fibrosis through extracellular signal-regulated kinases 1/2 and transforming growth factor β/small mother against decapentaplegic signaling pathways. Transl. Res. 2014, 163, 160–170. [Google Scholar] [CrossRef] [PubMed]
  116. Lan-Lan, L.; Wei, L.; Bin-Hua, Z.; Li, C.; Han-Zhuang, W.; Yin-Hong, Z.; Gui-Hua, T.; Xian-Zhang, B.; Sheng, Y. (+)-Isobicyclogermacrenal and spathulenol from Aristolochia yunnanensis alleviate cardiac fibrosis by inhibiting transforming growth factor β/small mother against decapentaplegic signaling pathway: Anti-cardiac fibrosis sesquiterpenoids from Aristolochia yunnanensis. Phytother. Res. 2019, 33, 214–223. [Google Scholar] [CrossRef] [Green Version]
  117. Guinnin, F.D.F.; Sangare, M.M.; Ategbo, J.M.; Sacramento, I.T.; Issotina, Z.A.; Klotoe, J.R.; Attakpa, E. Dramane Evaluation of hepatoprotective and nephroprotective activities of ethanolic extract leaves of Aristolochia albida Duch. against CCl4-induced hepatic and renal dysfunction. J. Pharm. Biomed. Sci. 2017, 7, 264–269. [Google Scholar] [CrossRef]
  118. Gui-Hua, T.; Zi-Wei, C.; Ting-Ting, L.; Min, T.; Xiao-Yun, G.; Jing-Mei, B.; Zhong-Bin, C.; Zhang-Hua, S.; Gang, H.; Sheng, Y. Neolignans from Aristolochia fordiana prevent oxidative stress-induced neuronal death through maintaining the Nrf2/HO-1 pathway in HT22 cells. J. Nat. Prod. 2015, 78, 1894–1903. [Google Scholar] [CrossRef]
  119. Tresina, P.S.; Paulpriya, K.; Mohan, V.R. Evaluation of antiulcer activity of ethanol extracts of Aristolochia krisagathra Sivarajan and Pradeep and Aristolochia bracteata Retz. whole plants in experimental rats. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1165–1170. [Google Scholar]
  120. Chitme, H.R.; Malipatil, M.; Chandrashekhar, V.M.; Prashant, P.M. Antiallergic activity of Aristolochia bracteolata Lank in animal model. Indian J. Exp. Biol. 2010, 48, 46–52. [Google Scholar]
  121. Gupta, A.; Prakash, J.; Shinde, B. Immunopharmacological activity of medicinal plants against Aristolochia bracteolate and Phallus impudicus. J. Biomed. Pharm. Res. 2016, 5, 9–15. [Google Scholar]
  122. Jenifer, P.; Kalachaveedu, M.; Dinesh, G. Wound healing mechanism by the standardized extracts of Acalypha indica and Aristolochia bracteolata on human cell lines. Int. J. Pharm. Biol. Sci. 2019, 9, 450–458. [Google Scholar]
  123. Murugan Girija, D.; Ranga Rao, S.Y.; Kalachaveedu, M.; Subbarayan, R. Osteogenic differentiation of human gingival mesenchymal stem cells by Aristolochia bracteolata supplementation through enhanced Runx2 expression. J. Cell. Physiol. 2017, 232, 1591–1595. [Google Scholar] [CrossRef] [PubMed]
  124. Sivakkumar, S.; Iyswarya, S.; Juliet, L.; Ganapathy, G. A review on ingredients of anti-diabetic siddha preparation Naaval Kottai Mathirai. Int. J. Pharm. Sci. Rev. Res. 2019, 55, 69–76. [Google Scholar]
  125. Sulyman, A.O.; Akolade, J.O.; Sabiu, S.A.; Aladodo, R.A.; Muritala, H.F. Antidiabetic potentials of ethanolic extract of Aristolochia ringens (Vahl.) roots. J. Ethnopharmacol. 2016, 182, 122–128. [Google Scholar] [CrossRef] [PubMed]
  126. Yamauchi, K.; Mitsunaga, T.; Muddathir, A.M. Screening for melanogenesis-controlled agents using sudanese medicinal plants and identification of active compounds in the methanol extract of Terminalia brownii Bark. J. Wood Sci. 2016, 62, 285–293. [Google Scholar] [CrossRef] [Green Version]
  127. Urzúa, A.; Espinoza, J.; Olguín, Á.; Santander, R. Phenolic aristolactams from leaves and stems of Aristolochia chilensis. Boletín Latinoam. Caribe Plantas Med. Aromát. 2013, 12, 537–542. [Google Scholar]
  128. Jiménez-Ferrer, J.E.; Pérez-Terán, Y.Y.; Román-Ramos, R.; Tortoriello, J. Antitoxin activity of plants used in Mexican traditional medicine against scorpion poisoning. Phytomedicine 2005, 12, 116–122. [Google Scholar] [CrossRef]
  129. Daoudi, A.; Aarab, L.; Abdel-Sattar, E. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol. Ind. Health. 2013, 29, 245–253. [Google Scholar] [CrossRef]
  130. Derouiche, S.; Khaoula, Z.; Safa, G.; Khelef, Y. Beneficial effects of Aristolochia longa and Aquilaria malaccensis on lead-induced hematological alterations and heart oxidative stress in rats. J. Chem. Pharm. Res. 2018, 10, 8–15. [Google Scholar]
  131. Melo, J.P.R.; da Carmara, C.A.G.; Lima, G.S.; Moraes, M.M.; Alves, P.B. Acaricidal properties of the essential oil from Aristolochia trilobata and its major constituents against the twospotted spider mite (Tetranychus urticae). Can. J. Plant Sci. 2018, 98, 1342–1348. [Google Scholar] [CrossRef]
  132. Sylvie, D.D.; Anatole, P.C.; Cabral, B.P.; Veronique, P.B. Comparison of in vitro antioxidant properties of extracts from three plants used for medical purpose in Cameroon: Acalypha racemosa, Garcinia lucida and Hymenocardia lyrata. Asian Pac. J. Trop. Biomed. 2014, 4, S625–S632. [Google Scholar] [CrossRef] [Green Version]
  133. Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
  134. Li, L.; Wang, X.; Chen, J.; Ding, H.; Zhang, Y.; Hu, T.; Hu, L.; Jiang, H.; Shen, X. The natural product aristolactam AIIIa as a new ligand targeting the polo-box domain of polo-like kinase 1 potently inhibits cancer cell proliferation. Acta Pharmacol. Sin. 2009, 30, 1443–1453. [Google Scholar] [CrossRef]
  135. Romanov, V.; Whyard, T.C.; Waltzer, W.C.; Grollman, A.P.; Rosenquist, T. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch. Toxicol. 2015, 89, 47–56. [Google Scholar] [CrossRef]
  136. Zhou, Q.; Pei, J.; Poon, J.; Lau, A.Y.; Zhang, L.; Wang, Y.; Liu, C.; Huang, L. Worldwide research trends on aristolochic acids (1957–2017): Suggestions for researchers. PLoS ONE 2019, 14, e0216135. [Google Scholar] [CrossRef]
  137. Michl, J.; Kite, G.C.; Wanke, S.; Zierau, O.; Vollmer, G.; Neinhuis, C.; Simmonds, M.S.J.; Heinrich, M. LC-MS- and 1H NMR-based metabolomic analysis and in vitro toxicological assessment of 43 Aristolochia species. J. Nat. Prod. 2016, 79, 30–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Tang, C.; Chen, J.; Zhang, L.; Zhang, R.; Zhang, S.; Ye, S.; Zhao, Z.; Yang, D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus. Int. J. Med. Microbiol. 2020, 310, 151435. [Google Scholar] [CrossRef]
  139. Gertsch, J. How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. J. Ethnopharmacol. 2009, 122, 177–183. [Google Scholar] [CrossRef]
  140. Rui, L.; Hong-Chi, Z. Chemical constituents from Aristolochia tagala and their chemotaxonomic significance. Biochem. Syst. Ecol. 2020, 90, 104037. [Google Scholar] [CrossRef]
  141. Daoudi, A.; Abdel-Satter, E.; Aarab, L. The relationship between lectin compounds and immunomodulatory activities of protein extracted from plants. J. Plant Stud. 2013, 3, 56. [Google Scholar] [CrossRef] [Green Version]
Table 1. Main phytochemicals of species of the genus Aristolochia, using different solvents.
Table 1. Main phytochemicals of species of the genus Aristolochia, using different solvents.
PhytochemicalsSpeciesPlant Part 1Extract/SolventReferences
Polyphenols, alkaloids, flavonoids, saponins, tanninsA. baetica L.RTME[33]
Aristolochic acid IA. baetica L.RTCE[26]
Saponins, alkaloids, flavonoids, sterols, carbohydratesA. bracteolata Lam.RTEE[34]
Aristolactam IA. brevipes Benth.RTDCME[76]
Aristchamic-AA. championii Merr. & Chun.RZEE[36]
β-caryophyllene, iso-caryophyllene, BicyclogermacreneA. elegans Mast.LVN/A[54]
Fargesin, (8R,8′R,9R)-cubebin, eupomatenoid-1A. elegans Mast.RZHXE[39]
Methylhexadecanoate; hexadecanoic acid; 2-butoxyethyl dodecanoate; ethylhexadecanoate; methyl octadeca-9,12,15-trienoate, (9Z,12Z,15Z)-octadeca-9,12,15-trienoic acidA. foetida Kunth.LV, SDCME[24]
β-caryophyllene, limonene, linaloolA. fordiana Hemsl.APEt2O[29]
Benzofuranneolignans, (−)-licarin-B,
parakmerin A, perseal G, (+)-conocarpan, (7R,8R)-3,4-methylenedioxy-4′,7-epoxy-8,3′-neolignan-7′-
[E]-ene, (+)-trans-dehydrodiisoeugenol, decurrenal, (2R,3R)-2,3-dihydro-2-(4-hydroxyphenyl)-7-
methoxy-3-methyl-5-(E)-propenylbenzofuran, eupomatenoid-13, eupomatenoid-7, eupomatenoid-6, eupomatenoid-5
A. fordiana Hemsl.APEE[37]
Dihydrobenzofuran neolignans, 2-aryldihydrobenzofurans, 8-O-4′-neolignan and analogsA. fordiana Hemsl.SEE[118]
Flavonoids, steroids, and triterpenesA. galeata Mart.RZEE[38]
Aristolic acidA. indica L.RTCE[22]
Aristolochic acid IA. indica L.RTEE
Aristolochicacid IIA. indica L.LVME
Aristolochicacid DA. indica L.RTME
Aristololactam-I N-β-D-glucosideA. indica L.RTEt2O
(12S)-7,12-secoishwaran-12-olA. indica L.RTEt2O
β-sitosterolA. indica L.RTEE
(−)-hinokininA. indica L.APDCME
Aristolactam IA. indica L.APEAE
β-caryophyllene and α-humuleneA. indica L.APN/A[114]
Flavonoids, tannins, glycosides, phenol, saponins, terpenoids, amino acidA. indica L.LVCE[27]
Alkaloid, anthraquinone, coumarin, flavonoid, phenol, quinone, saponin, steroid, tannin, terpenoid, sugar, glycoside, xanthoproteinA. krisagathra Sivar. & Pradeep.WPEE[95]
Linoleic acid chlorideA. longa L.APHXE[23]
Oleic acidA. longa L.APHXE
Limonene-6-ol, pivalateA. longa L.APHXE
Starch, tanninsA. longa L.RTH2O[25]
Tannins, flavonoids, coumarins, anthocyansA. longa L.RTME
Polyphenols, flavonoidsA. longa L.RTHXE
Flavonols, flavones, and/or flavonoid glycosidesA. longa L.RTH2O[50]
Polyphenols, flavonoidsA. longa L.RTH2O[51]
Aristolochic acid IA. maurorum L.RTME[53]
Aristolochic acid IIA. maurorum L.RTME
Aristolochic acid IIIaA. maurorum L.RTME
2,2,7,7-tetramethyltricyclo [,6)]undec-4-en-3-one, (E)-β-santalolacetate, camphene, spathulenol, β-caryophyllene, α-humuleneA. mollissima Hance.RZN/A[30]
Alkaloids, flavonoids, steroids, anthraquinonesA. ringens Vahl.APCE[28]
Aristolochiaside, aristolactam AIIIaA. tadungensis T. V. Do & Luu.S, LVME[35]
(±)-licarin-A and -B, eupomatenoid-1 and -7A. taliscana Hook. & Arn.RZHXE[55]
(−)-licarin-AA. taliscana Hook. & Arn.RTHXE[56]
(+)-iso-bicyclogermacrenalA. yunnanensis Franch.SEAE[116]
SpatulenolA. yunnanensis Franch.SEAE
1 AP = aerial parts, LV = leaves, RT = roots, RZ = rhizomes, S = stems, WP = whole plant. N/A = not applicable. CE = chloroformic extract, DCME = dichloromethane extract, EAE = ethyl acetate extract, EE = ethanol extract, HXE = hexanic extract, ME = methanol extract, Et2O = ether.
Table 2. Ethnomedicinal uses and biological activities of Aristolochia species.
Table 2. Ethnomedicinal uses and biological activities of Aristolochia species.
SpeciesPlant Part 1Beneficial EffectsReferences
A. acuminata Lam.FT, LV, RT, and SAbdominal pain,
abortifacient, analeptic,
antipyretic, anti-inflammatory,
bone fracture, bilious disorders,
carminative, diarrhea, dysentery,
emmenagogue, health tonic, loss
of appetite, antimalarial, muscle
rheumatism, regulate menstrual
disorders, snake bite,
stomachache, swollen limbs,
stimulate uterine flow, snake and
scorpion poison,
tumor, venereal disease
A. albida Duch.RTLarvicide, antiparasitic, snake antivenom[83]
A. arcuata Mast.LVHepatoprotection, nephroprotection[117]
LVProtection against insects[102]
A. argentina Griseb.WPAntimicrobial[57]
WPAntiseptic, diuretic, emmenagogue, antioxidant[77]
A. baetica L.RTAntioxidant, antiproliferative[33]
RT and LVAntiproliferative[26]
A. birostris Duch.APAntimicrobial[58]
A. bracteata Retz.RTAntimicrobial[59]
WP and RTAntioxidant[60,78]
A. bracteolata Lam.WPAntiallergic[120]
FT, LV and RTInsecticide[104]
WPAntioxidant, antimicrobial[73]
LVImmune effect[121]
APOsteogenic differentiation of gingival mesenchymal stem cells[123]
RTCytotoxic, antioxidant[34]
APControl of melanogenesis[126]
WP, RT and LVGastric stimulant treatment, cancer treatment, lungs inflammation dysentery, and snake bite, treatment of malaria, convulsions, abdominal pain, scorpion stings, flu, vomiting, pneumonia, polymenorrhea and edema, fever, headache, general body pain, stomachache, diarrhea, and flu[21]
A. brevipes Benth.RZAntimycobacterial, antidiarrheal, arthritis, wound cleaner, and snake antivenom[76]
A. bodamae Dingler.RTAntibacterial, antioxidant[61]
A. cathcartii Hook.LV, RZ, RT, and SFood poisoning, insect repellent,
liver disorders, promotes flow of
urine, stomach ailments
A. championii Merr. & Chun.RZCytotoxic[36]
A. chilensis Bridges ex Lindl.S and LVAntihemorrhagic[127]
A. clematitis L.RZAntibacterial, antifungal[62]
A. constricta Griseb.APAntispasmodic[97]
A. cordigera Willd. Ex Klotzsch.S, LV, and RTAntiprotozoal[99]
A. cymbifera Mart.LV, RTAntitrypanosomal, antischistosomal[18]
A. debilis Siebold & Zucc.RTAnti-inflammatory[92]
A. delavayi Franch.APAntibacterial[63]
A. elegans Mast.RZAntiparasitic and antimycobacterial, antibacterial, antitumor, antidiarrheal, antipyretic, snake bites[39]
LVAntiviral, antibacterial[54]
RTScorpion antivenom[84]
A. esperanzae Kuntze.RTAntibacterial[64,65]
A. fangchi Y. C. Wu ex L. D. Chou & S. M. Hwang.RTCytotoxic[42]
A. foetida Kunth.WPSnake bite, headache[85]
RTFever, colds, chills, asthma treatment[7]
LV and SCytotoxic[24]
A. fordiana Hemsl.WPCytotoxic[37]
WPAntibacterial, cytotoxic and antioxidant[29]
SNeuroprotective effect[118]
A. galeata Mart.RZAntibacterial and cytotoxic[38]
A. gehrtii Hoehne.LVLiver protector and antiparasitic[100]
A. griffithii Hook.f. & Thomson ex Duch.RTAntimalarial[108]
A. gigantea Mart.RTAntitrypanosomal[75]
A. indica L.RTFertility regulator[114]
S and LVAntibacterial[67]
LVAnti-inflammatory, poisonous bites, gastric stimulator, skin problems, antidiarrheal, antipyretic, antitussive[86]
LVSnake bites[87]
WP, RT, L, FRAntidote for snake bite, scorpion bite, bee bite, spider bite, blood clotting, leukoderma, skin infection, emollient, headache, leucorrhoea, dandruff, fever, constipation and abdominal colic, abortifacient, blood purifier, cholera, dryness of tongue, dysmenorrhea, watering of eye, gangrene, swelling in leg, stomach burning, pulmonary problems, arthritis, mastitis in animals, hemiplegia, anti-inflammatory, anti-oxidant, antidiabetic, larvicidal, antitumor[22]
A. krisagathra Sivar. & Pradeep.WPAnti-inflammatory[95]
A. kwangsiensis Chun & F. C. How ex C. F. Liang.LVAntimicrobial, antioxidant, anti-inflammatory[74]
A. longa L.TAntibacterial, cytotoxic, skin problems, gastrointestinal disorders[23]
SBronchitis, constipation, rheumatism, bladder diseases[129]
RTHeart protector[130]
RT and APAntibacterial[69]
RT and APAntibacterial, antioxidant[70]
RTAntioxidant, antibacterial, cytotoxic[25]
A. macroura Gomes.LVCytotoxic[32]
A. malmeana Hoehne.RT and LVInsecticide[105]
A. maurorum L.RT and APAntiplatelet[53]
A. mollissima Hance.RZ and APAntibacterial, [30]
A. manshuriensis Kom.SAnti-inflammatory[93]
A. paucinervis Pomel.RTAntiproliferative[33]
A. petersiana Klotzsch.RTAntimalarial[109]
A. pubescens Will. ex Duch.RT and SInsecticide[106]
A. odoratissima L.LVSnake antivenom[88]
A. orbicularis Duch.RTAntibacterial[72]
A. ringens Vahl.RTCytotoxic[31]
APAntibacterial, antifungal, cytotoxic[28,45]
RTAntioxidant, antidyslipidemic[82]
A. saccata Wall.LV, RT, S, and THealing of wounds, body pain, diarrhea, dysentery,
hemorrhage, jaundice,
A. tadungensis T. V. Do & Luu.S and LVCytotoxic[35]
A. tagala Cham.RT and LVInsecticide[107]
RTAntioxidant, anti-inflammatory, anti-cancer[46]
RTAnti-inflammatory, anti-cancer[47]
RT, LV, and WPStomach pain, chest pain, fever, poultice in abdomen, skin disease, snake bite, antimalarial, dyspepsia, flatulent, diarrhea, vomiting, headache, gynecological disorders, stimulate the menstrual flow, bone fracture, treatment of cancer[48]
A. taliscana Hook. & Arn.RZAntioxidant, antimicrobial[52,55]
A. triangularis Cham.SAntiproliferative, antibacterial[49]
A. trilobata L.LVAcaricide[131]
SAntinociceptive, anti-inflammatory[94]
A. tuberosa C. F. Liang & S. M. Hwang.FTAntinematode[101]
A. yunnanensis Franch.SAntifibrosis[115,116]
A. zollingeriana Miq.FT and RTExpectorant, antitussive, antihistamine, pain reliever, treatment of snake bites[89]
1 AP = aerial parts, FT = fruits, LV = leaves, FR = fresh root, RT = roots, RZ = rhizomes, S = stems, SB = stem bark, T = tuber, WP = whole plant.
Table 3. IC50 values of crude extracts of the genus Aristolochia.
Table 3. IC50 values of crude extracts of the genus Aristolochia.
Cell LineIC50 (mg/mL)SpeciesPlant Part 1Extract/Solvent 2Reference
A4310.0280A. ringens Vahl.RTDCME:ME[31]
A-5490.0200A. ringens Vahl.RTEE[31]
0.0260A. ringens Vahl.RTDCME:ME
0.0755A. tadungensis T. V. Do & Luu.S and LVME[35]
BSR0.0600A. longa L.APDCM[23]
0.0180A. longa L.APHXE
0.3500 A. longa L.APME
HBL-1000.0400A. longa L.RTH2O[50]
HCT-1160.0220A. ringens Vahl.RTEE[31]
0.0195A. ringens Vahl.RTDCME:ME
HeLa0.369 A. galeata Mart.RZEE[38]
0.0300A. ringens Vahl.RTDCME:ME[31]
0.0083A. tadungensis T. V. Do & Luu.S and LVME[35]
Hep G-20.3800 A. baetica L.RTME[33]
0.0164A. ringens Vahl.APCE[28]
0.5130 A. macroura Gomes.LVME[32]
HK-20.1826 A. acumiata Lam.RTME[137]
>0.2000 A. acuminata Lam.F
0.1574 A. argentina Griseb.S
>0.2000 A. baetica L.LV
>0.2000 A. californica Torr.S
>0.2000 A. chamissonis Duch.LV
0.0478A. clematitis L.SD
0.1633 A. clematitis L.RT
>0.2000 A. cymbifera Mart.S
>0.2000 A. debilis Siebold & Zucc.S
>0.2000 A. elegans Mast.LV
0.0911A. elegans Mast.RT
0.1881 A. fangchi Y.C. Wu ex L.D. Chow & S.M. Hwang.S
0.1272 A. grandiflora Sw.LV
>0.2000 A. guentheri O.C. Schmidt.LV
0.0854A. guentheri O.C. Schmidt.S
0.1197 A. labiata Willd.LV
>0.2000 A. manshuriensis Kom.S
>0.2000 A. maurorum L.LV
>0.2000 A. maxima Jacq.RT
>0.2000 A. odoratissima L.LV
>0.2000 A. paucinervis Pomel.SD
0.1060 A. ringens Vahl.RT
>0.2000 A. rotunda L.RT
>0.2000 A. tomentosa Sims.S
>0.2000 A. trilobata L.LV
0.1424 A. westlandii Hemsl.S
>0.2000 A. zollingeriana Miq.LV
HT-290.1000 A. baetica L.RTME[33]
MCF-70.2160 A. baetica L.RTCE[26]
0.0191A. bracteolata Lam.RTEE[34]
0.3470 A. indica L.LVCE[27]
0.0816A. ringens Vahl.APCE[28]
0.0473A. foetida KunthLVDCME[24]
0.0459A. foetida KunthSDCME
MDA-MB-2310.0970A. longa L.RTH2O[50]
PANC-10.0826A. tadungensis T. V. Do & Luu.S and LVME[35]
PC-30.0030A. ringens Vahl.RTEE[31]
0.0120A. ringens Vahl.RTDCME:ME
RD0.1254 A. longa L.RTDCME[25]
0.0625A. longa L.RTME
0.0151A. longa L.RTHXE
0.0150A. longa L.APDCME[23]
0.2000 A. longa L.APME
T-240.0480A. baetica L.RTME[33]
THP-10.0240A. ringens Vahl.RTEE[31]
0.0220A. ringens Vahl.RTDCME:ME
Vero0.2500 A. longa L.APDCME[23]
0.2500 A. longa L.APHXE
0.0151A. longa L.RTHXE[25]
0.0312A. longa L.RTDCME
0.1253 A. longa L.RTME
1 AP = aerial parts, F = flower, LV = leaves, RT = roots, RZ = rhizomes, S = stems. 2 CE = chloroformic extract, DCME = dichloromethane extract, EE = ethanol extract, HXE = hexanic extract, ME = methanol extract. Shows concentrations > 0.1 mg/mL.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Lerma-Herrera, M.A.; Beiza-Granados, L.; Ochoa-Zarzosa, A.; López-Meza, J.E.; Navarro-Santos, P.; Herrera-Bucio, R.; Aviña-Verduzco, J.; García-Gutiérrez, H.A. Biological Activities of Organic Extracts of the Genus Aristolochia: A Review from 2005 to 2021. Molecules 2022, 27, 3937.

AMA Style

Lerma-Herrera MA, Beiza-Granados L, Ochoa-Zarzosa A, López-Meza JE, Navarro-Santos P, Herrera-Bucio R, Aviña-Verduzco J, García-Gutiérrez HA. Biological Activities of Organic Extracts of the Genus Aristolochia: A Review from 2005 to 2021. Molecules. 2022; 27(12):3937.

Chicago/Turabian Style

Lerma-Herrera, Martín A., Lidia Beiza-Granados, Alejandra Ochoa-Zarzosa, Joel E. López-Meza, Pedro Navarro-Santos, Rafael Herrera-Bucio, Judit Aviña-Verduzco, and Hugo A. García-Gutiérrez. 2022. "Biological Activities of Organic Extracts of the Genus Aristolochia: A Review from 2005 to 2021" Molecules 27, no. 12: 3937.

Article Metrics

Back to TopTop