Urban Stormwater Harvesting, and Wastewater Treatment and Reuse

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Urban Water Management".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 765

Special Issue Editor


E-Mail Website
Guest Editor
Sustainability Engineering, School of Engineering, Western Sydney University, Penrith, Australia
Interests: treatment and reuse of domestic wastewater; sustainable water management for improved liveability within urban centres and rural communities; increasing agricultural farm productivity through water and nutrient recovery and recycling; groundwater recharge
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The world population is expected to reach about 10 billion by 2050, 70% of which is expected to live in urban areas. This further exacerbates already dire water availability issues in urban areas. In this context, the treatment and recycling of wastewater and stormwater treatment and harvesting play a critical role in providing water security to urban areas. In Australia, only about 15% of wastewater is recycled. Similar levels of recycling are currently being practiced around the world. To achieve the Sustainable Development Goals set out by the UN, particularly with respect to UN SDG 1, 2, 3, 6, 11, 12 and 13, these recycling rates need to be significantly increased. In light of this need for increased recycling of water and stormwater harvesting, this Special Issue is seeking submissions from leading researchers around the world who are working on innovative solutions for increasing the recycling of wastewater and stormwater harvesting. In this Special Issue, a special emphasis will be placed on urban water balance studies.

Dr. Dharma Hagare
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • stormwater
  • wastewater
  • harvesting
  • treatment
  • reuse
  • nutrients
  • circular economy
  • recycle
  • economics
  • policy
  • urban
  • water balance

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 8777 KiB  
Article
Economic Feasibility of Rainwater Harvesting and Greywater Reuse in a Multifamily Building
by Enedir Ghisi and Douglas Ancelmo Freitas
Water 2024, 16(11), 1580; https://doi.org/10.3390/w16111580 - 31 May 2024
Abstract
This study aimed to evaluate the financial feasibility of rainwater harvesting and greywater reuse in a multifamily building located in Florianópolis, Brazil. A building, consisting of two blocks with 60 flats each, was chosen to obtain data about the number of residents, building [...] Read more.
This study aimed to evaluate the financial feasibility of rainwater harvesting and greywater reuse in a multifamily building located in Florianópolis, Brazil. A building, consisting of two blocks with 60 flats each, was chosen to obtain data about the number of residents, building characteristics, potable water consumption, and rainwater and greywater demands (obtained by means of questionnaires and water measurements). The financial feasibility analyses considered rainwater and greywater systems separately and together. The impact on the urban stormwater drainage system was evaluated through the reduction of stormwater runoff. The energy consumption in the operational phase of each system was estimated through the amount of energy consumed by the motor pumps to supply one cubic meter of water. The potential for potable water savings through the use of rainwater—that supplies water for washing machines—was approximately 6.9%. The potential for potable water savings through the use of greywater—that supplies water to toilets—was approximately 5.7%. Both systems were feasible. The payback period for rainwater harvesting systems ranged from 57 to 76 months. For greywater systems, the payback period ranged from 127 to 159 months. When considering both systems working together, the payback period ranged from 89 to 132 months. The rainwater harvesting system can reduce 11.8% the stormwater volume destined to the urban stormwater drainage system in relation to the current contribution volume. Energy consumption was approximately 0.56 kWh/m3 of treated water for the rainwater harvesting system and 0.89 kWh/m3 of treated water for the greywater system. Rainwater and greywater were considered economically feasible, especially for higher inflation scenarios. Furthermore, such systems are interesting alternatives in terms of impacts considering urban drainage and energy consumption. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 10305 KiB  
Article
Storage Scale Assessment of a Low-Impact Development System in a Sponge City
by Mingkun Xie, Dongxu He, Zengchuan Dong and Yuning Cheng
Water 2024, 16(10), 1427; https://doi.org/10.3390/w16101427 - 17 May 2024
Viewed by 496
Abstract
A sponge city is an established urban stormwater management approach that effectively reduces urban runoff and pollutant discharges. In order to plan and design, estimate costs, and evaluate the performance of urban sponge city systems, it is essential to calculate the storage scale. [...] Read more.
A sponge city is an established urban stormwater management approach that effectively reduces urban runoff and pollutant discharges. In order to plan and design, estimate costs, and evaluate the performance of urban sponge city systems, it is essential to calculate the storage scale. In this context, a sponge city storage scale and calculation method based on a multifactor spatial overlay was designed, utilising the starting area of the Dafeng Hi-tech Development Zone in Yancheng City, China, as an illustrative example. The indicators for assessing the impact of sponge city systems on river plain networks are constructed based on four aspects: land planning, building density, water surface rate and green space rate. The relative importance of each indicator was determined based on the necessity of controlling runoff from land parcels and the appropriateness of facility construction. The annual runoff control rate of the 39 low-impact development control units in the study area was calculated using ArcGIS through multifactor spatial overlay mapping and weighting. The results showed that (1) the Geographic Information System (GIS)overlay technology can effectively assist in the decomposition of LID scales; (2) data can be derived, including the design storage volume and other basic control scale indicators for each unit. The study results are expected to serve as a reference for the preparation of special low-impact development plans in the river plain network area of China and the promotion of the construction of a sustainable blue–green system in the city. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop