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Abstract: In this work, the explicit boundary-condition-enforced immersed boundary method (EIBM)
and the lattice Boltzmann flux solver (LBFS) are integrated into OpenFOAM to efficiently solve incom-
pressible flows with complex geometries and moving boundaries. The EIBM applies the explicit tech-
nique to greatly improve the computational efficiency of the original boundary-condition-enforced
immersed boundary method. In addition, the improved EIBM inherits the accurate interpretation
of the no-slip boundary condition and the simple implementation from the original one. The LBFS
uses the finite volume method to discretize the recovered macroscopic governing equations from
the lattice Boltzmann equation. It enjoys the explicit relationship between the pressure and density,
which avoids solving the pressure Poisson equation and thus saves much computational cost. An-
other attractive feature of the LBFS lies in its simultaneous evaluation of the inviscid and viscous
fluxes. OpenFOAM, as an open-source CFD platform, has drawn increasing attention from the CFD
community and has been proven to be a powerful tool for various problems. Thus, implementing
the EIBM and LBFS into such a popular platform can advance the practical application of these two
methods and may provide an effective alternative for complicated incompressible flow problems.
The performance of the integrated solver in OpenFOAM is comprehensively assessed by comparing
it with the widely used numerical solver in OpenFOAM, namely, the Pressure-Implicit with Splitting
of Operators (PISO) algorithm with the IBM. A series of representative test cases with stationary and
moving boundaries are simulated. Numerical results confirm that the present method does not have
any streamline penetration and achieves the second-order accuracy in space. Therefore, the present
method implemented in the open-source platform OpenFOAM may have good potential and can
serve as a powerful tool for practical engineering problems.

Keywords: immersed boundary method; OpenFOAM; moving boundary; lattice Boltzmann flux solver

1. Introduction

Industries and natural phenomena involve many flow problems with moving bound-
aries and fluid–structure interactions (FSIs) [1–6]. Accurate modelling of such complex
problems enjoys of great importance for investigations of the underlying mechanisms.
Generally, two types of approaches, namely, the boundary-conforming approach and
boundary-non-conforming approach, are applied by the computational fluid dynamics
(CFD) community [7–11]. One popular boundary-non-conforming method is the im-
mersed boundary method (IBM), which was first proposed by Peskin [12]. Instead of
using body-fitted meshing methods to conform to the boundaries or interfaces as with
the boundary-conforming approach, IBM adopts the fixed Eulerian mesh for resolving
the flow field and the discrete Lagrangian points to describe the immersed boundaries.
Conditions on boundaries or interfaces are enforced via the restoring forces exerted on the
discrete Lagrangian points by the boundaries. These forces further correct the flow vari-
ables resolved on the fixed Eulerian mesh as external body forces. In this way, the boundary

Dynamics 2024, 4, 14–39. https://doi.org/10.3390/dynamics4010002 https://www.mdpi.com/journal/dynamics

https://doi.org/10.3390/dynamics4010002
https://doi.org/10.3390/dynamics4010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/dynamics
https://www.mdpi.com
https://orcid.org/0000-0003-1272-1756
https://doi.org/10.3390/dynamics4010002
https://www.mdpi.com/journal/dynamics
https://www.mdpi.com/article/10.3390/dynamics4010002?type=check_update&version=1


Dynamics 2024, 4 15

treatment is decoupled with the mesh generation in IBM, providing great flexibility and
ease in simulating flow problems with complicated boundaries. In addition, avoiding mesh
movement and mesh re-generation for problems with moving boundaries makes IBM more
efficient than the boundary-conforming approach.

Due to the simplicity and flexibility of the IBM, various variants have been proposed
since the original IBM. In fact, the original IBM [12] is categorized as the penalty-forcing
scheme that calculates the restoring force on the Lagrangian points through Hooke’s
law [13–15] with a user-defined stiffness constant. Another category is the feedback-forcing
scheme [16], in which the restoring force is evaluated using control theory. Following these
two types of IBM approaches, the direct forcing scheme [17–19] and momentum exchange
scheme [20] were developed. These two IBM versions eliminate the user-defined parameter
and improve the physical robustness. In this regard, the direct forcing scheme has been
integrated into the open-source CFD toolbox, OpenFOAM [21,22], and applied to solve
many FSI problems.

In the original direct forcing method developed in Refs. [23,24], to satisfy the no-slip
boundary condition, the restoring force term is evaluated by setting the velocity at the
immersed boundary point to the desired velocity in the discrete momentum equation to
avoid feedback adjustments. It is a local solution reconstruction process, and an explicit
forcing term is not required in the momentum equations at all. Following the original
principle of the direct forcing scheme, by incorporating the idea of Peskin’s method, another
type of direct forcing scheme with the Dirac delta function is developed [19,25]. The main
idea is briefly introduced as follows. Firstly, the velocities at the Lagrangian points are
interpolated from the surrounding Eulerian points. Then, the local force is determined by
imposing the no-slip boundary condition at the Lagrangian points. Lastly, these forces are
distributed to the Euler points and substitute them into the momentum equation. Generally,
the types of direct forcing methods calculate the force density at the boundary points via
the momentum equation explicitly. This is the key difference between the direct forcing
method and other IBMs, such as the penalty method [13–15] and the velocity-correction-
based IBM [10,11], which will be discussed later. Nowadays, the direct forcing method has
been incorporated into various numerical frameworks, such as the projection method [26]
and the lattice Boltzmann method (LBM) [27] to tackle complex FSI problems. Nevertheless,
unphysical streamline penetration through the immersed interface or boundary may appear,
which means that the no-slip boundary condition is not exactly satisfied. This may be
caused by the explicit evaluation of the restoring force first at the beginning of each time
step in some direct forcing methods. In particular, the flow field obtained from such an
approximated restoring force may not guarantee the no-slip wall boundary condition.

To tackle the streamline penetration issues, the multi-direct forcing scheme [28,29] is
proposed, and it applies an iterative implementation of the direct forcing IBM for accurate
satisfaction of the no-slip boundary condition. However, the convergence of the iterations
may affect the computational efficiency of this method. Without any iterative process, Shu
and Wu [10,11] developed the boundary-condition-enforced IBM. In this method, the veloc-
ity correction is implicitly resolved based on the no-slip boundary condition, and then it is
used to evaluate the restoring force through Newton’s second law. As a result, the no-slip
boundary condition can be exactly enforced, and no unphysical streamline penetration is
produced. It is noteworthy that in practical implementation of this implicit IBM (IIBM),
calculating the velocity correction involves solving a linear system of equations assembled
according to the information on the Eulerian and Lagrangian meshes. The large-scale prob-
lems will result in a large matrix to be solved. When the moving boundary is considered,
the matrix should be constructed and solved implicitly at each time step. In these cases,
the implicit resolving strategy of IIBM may be inefficient, which limits its widespread
application. Recently, Zhao et al. [30] introduced the explicit technique to improve the
efficiency of the IIBM. Through the accuracy analysis, the terms with higher-than-second-
order accuracy for solving the velocity correction in the IIBM process can be discarded.
Then, the matrix of the linear equation system in IIBM can be simplified to a diagonal
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matrix without affecting the global second-order accuracy in space. Because considering
the high-order terms will cost much time, such a reasonable exclusion of the high-order
terms can reduce the time complexity and improve the efficiency without preserving the
spatial second-order accuracy as the flow field solver. Finally, the velocity correction is
directly obtained in an explicit way. This explicit boundary-condition-enforced IBM (EIBM)
has a computational complexity of O(M), with M being the number of Lagrangian points
on the immersed boundary, which indicates a better efficiency than the IIBM of O(M2).
Its applications to solve flow problems with moving boundaries and FSI problems [30]
confirm the improvement in computational efficiency.

In fact, another important issue in the simulation of incompressible flow problems
with complex boundaries or moving boundaries lies in the incompressible flow solver.
One popular strategy is to incorporate IBMs with the Navier–Stokes (NS) solvers [24,31].
Although there have been many successful applications of immersed boundary–NS (IB-NS)
solvers, the NS solvers are bound to treat the velocity–pressure coupling in incompressible
flow simulations. Normally, a pressure Poisson equation should be solved, which may
degrade the computational efficiency. Another alternative enjoying increasing popularity
is the incorporation of the IBM into the LBM [10,11,20,32]. Owing to the simplicity and effi-
ciency of LBM [33], the combination of the IBM and LBM has been applied to solve various
incompressible flow problems with complicated boundaries or moving boundaries [34,35].
However, it should be noted that LBM has some intrinsic disadvantages [36], such as the
requirement of uniform meshes and the tie-up between the time step and lattice spacing.
Limitations of uniform meshes and relatively small time steps could result in high mem-
ory consumption and poor computational performance of the immersed boundary-lattice
Boltzmann method (IB-LBM), thus hindering its effective simulation of moving boundary
problems or complex FSI problems.

Apart from the IB-NS solvers and IB-LBMs, Wang et al. [37,38] combine the IIBM [10]
with the lattice Boltzmann flux solver [39] (IIB-LBFS) for FSI problems. As a recently
developed flow solver, the LBFS inherits advantages from the NS solver and LBM, thus
overcoming drawbacks of these two types of approaches [40–44]. To be specific, the LBFS
is under the finite volume framework, and the macroscopic flow variables, rather than the
density distribution function, are directly evolved. Inviscid and viscous fluxes at the cell
interface are simultaneously evaluated by the local reconstruction of the standard LBM
solutions. Such a local application of LBM provides the LBFS with the great flexibility
of using non-uniform meshes as well as the independence of the time step on the lattice
spacing [45–47]. Furthermore, the explicit relationship between the density and the pressure
avoids solving the Poisson equation for pressure, like the NS solvers. In the work of Wang
et al. [38], the performance of the IIB-LBFS has been validated and assessed by solving
FSI problems. Nonetheless, as discussed above, the IIBM suffers from the tedious matrix
assembly and inefficient implicit resolving strategy, while the EIBM is simpler and more
efficient. Therefore, there is motivation to combine the EIBM with the LBFS and explore
its capacity for simulating problems with complex boundaries or moving boundaries.
Compared with the work of Zhao et al. [30] where the D1Q4 lattice Boltzmann model [48]
is applied to calculate the inviscid flux and the central difference approximation is used for
the viscous flux evaluation, the LBFS can evaluate the inviscid and viscous fluxes at the
same time. No extra treatment of the viscous flux may save some computational efforts
and make the EIB-LBFS more consistent.

In this work, the EIB-LBFS will be integrated into the open-source CFD toolbox
OpenFOAM. A set of representative flow problems with complex stationary or moving
boundaries will be tested to validate and examine the performance of the EIB-LBFS. The
commonly used direct forcing IBM [21,22] embedded in OpenFOAM will also be used
in these tests for comparison purposes. The rest of this paper is organized as follows. In
Section 2, the EIB-LBFS for incompressible flows with moving boundaries is described.
Section 3 is devoted to clarification of implementing the EIB-LBFS in OpenFOAM. Then,
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a series of benchmark tests are conducted in Section 4 to assess the performance of the
EIB-LBFS. This paper is finalized with some conclusions in Section 5.

2. Explicit Immersed Boundary-Lattice Boltzmann Flux Solver for Incompressible Flows
with Moving Boundaries

The EIB-LBFS decouples the resolving process of flow field variables and the impo-
sition of boundary effects into two fractional steps, namely, the predictor step and the
corrector step. In the predictor step, the intermediate flow field is resolved by applying
the LBFS without considering the boundary effects. The intermediate flow field is then
corrected via employing the EIBM in the corrector step. Details of these two procedures
will be clarified in this section.

2.1. Governing Equations and Finite Volume Discretization

The governing equations for incompressible flows within the low Mach number limit
can be written as follows:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂ρu
∂t

+∇ · (ρuu + pI) = ∇ ·
[
µ
(
∇u + (∇u)T

)]
+ f (2)

where ρ, u = (u, v, w), p, and µ are the density, velocity vector, pressure, and dynamic
viscosity of the fluid flow, respectively. I denotes the unit tensor. f is the restoring force on
the Eulerian mesh points interpreting the boundary effects. Equations (1) and (2) can be
rearranged into the following form:

∂U
∂t

+∇ · F = G (3)

where U, F, and G represent the vector of conservative variables, the flux tensor, and the
body force vector, respectively. After applying the divergence theorem, the integral form of
Equation (3) over a control cell Ωi can be written as

Vi
d
dt

Ui = −
n f

∑
j=1

(F n,k A)j + Gi (4)

where Ui, Vi, nf, Aj, and Gi are the flow variable vector at the cell center of Ωi, the volume
of Ωi, the number of cell interfaces in Ωi, the j-th interface area, and the force vector at
the cell center of Ωi, respectively. Fn = F · n, and n is the outward unit vector normal
to the cell interface. Note that the projection or pressure correction methods are not
used here. As discussed in the Introduction, the LBFS is used to evaluate the fluxes
of weakly compressible NS Equations (1) and (2), which are recovered from the lattice
Boltzmann equation through the Chapman–Enskog expansion analysis. The pressure can
be directly calculated from the density, which avoids solving the pressure Poisson equation.
Additionally, the incompressibility can be effectively guaranteed by the limit of the small
Mach number.

In this work, Equation (4) is solved through the fractional method. In the predictor
step, the restoring forcing f is not considered, and the intermediate flow field is predicted
using the LBFS, i.e.,

U∗
i = −∆t

Vi

n f

∑
j=1

(F n,k A)j + Un
i (5)
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where the superscripts “*” and “n” denote the intermediate time level and the current time
level, respectively. Section 2.2 will detail the flow field prediction. In the corrector step, the
velocity is corrected by applying the EIBM to consider the boundary effects via

ρn+1 un+1 − u∗

∆t
= f (6)

where the superscript “n + 1” is the next time level. Note that ρn+1 is equal to ρ∗, and only
the fluid velocity correction ∆u = un+1 − u∗ on Eulerian mesh points is to be determined
according to the boundary conditions on the immersed boundaries. In practical imple-
mentation, Equation (6) is not solved directly, but the restoring force f is imposed via the
velocity correction ∆u, which will be illustrated in detail in Section 2.3. Once ∆u is available,
the velocity can be updated via un+1 = ∆u + u∗. Because the conventional IBMs, like the
penalty-forcing methods and the direct forcing methods, calculate the restoring force f first
and then un+1 is obtained by solving the momentum equation with f n as the source term
directly, it cannot guarantee that the velocity at the boundary point interpolated from un+1

fulfills the no-slip boundary condition. However, EIBM regards the force f as unknown
and determines the velocity correction first by forcing the velocity at the boundary point
interpolated from u to satisfy the no-slip boundary condition. Finally, the force on the
boundary point is calculated by Equation (6) with the known fluid velocity correction ∆u.
EIBM is an explicit form inherited from implicit boundary-condition-forcing IBM, and it
can accurately satisfy the no-slip boundary condition with a low computational cost.

2.2. Flow Field Prediction through Lattice Boltzmann Flux Solver

Based on multiscale Chapman–Enskog expansion analysis, Equations (1) and (2)
without the forcing term can be recovered [39] by the lattice Boltzmann equation, and the
numerical fluxes at the cell interface can be expressed as follows:

F1 =
Nd
∑

α=0
(eα)1 f eq

α

F2 =
Nd
∑

α=0
(eα)1(eα)1

[
f eq
α +

(
1 − 1

2τν

)
f neq
α

]
F3 =

Nd
∑

α=0
(eα)1(eα)2

[
f eq
α +

(
1 − 1

2τν

)
f neq
α

] (7)

where eα and τν denote the lattice velocity vector and single relaxation parameter, respec-
tively. The subscripts “1” and “2” are the outward normal direction and tangential direction
of the cell interface used in the local coordinate system, respectively. Nd + 1 is the number
of discrete particle velocities in the lattice velocity model and Nd + 1 = 9 here because the
D2Q9 lattice velocity model is employed for the two-dimensional cases. τν in Equation (7)
is obtained from the following relationship:

ν = (τν − 1/2)c2
s δt (8)

where ν is the kinematic viscosity, δt denotes the streaming time step, and cs represents
the sound speed. f eq

α is the equilibrium density distribution function along the α direction
and f neq

α denotes the non-equilibrium one. f eq
α can be computed based on the weights of

the D2Q9 model and the flow variables (density and velocity). Its expression can refer to
Ref. [39]. f neq

α can be approximated based on the equilibrium density distribution functions
at r and its surrounding nodes r − eαδt as

f neq
α (r, t) = −τν

[
f eq
α (r, t)− f eq

α (r − eαδt, t − δt)
]
+ O

(
δ2

t

)
(9)

where r represents the physical location of the cell interface and t denotes the time.
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To calculate f eq
α (r − eαδt, t − δt), the flow variables at the location r − eαδt are interpo-

lated from those at cell centers ri and rj by

U(r − eαδt) =

{
U(ri) +∇U(ri)∆ri, (r − eαδt) ∈ Ωi

U
(
rj
)
+∇U

(
rj
)
∆rj, (r − eαδt) ∈ Ωj

(10)

with
∆rk =

[
(r − eαδt − rk)x, (r − eαδt − rk)y

]T
, k = i or j (11)

where ∇U denotes the gradient of the solution vector. f eq
α (r − eαδt, t − δt) can then be com-

puted based on the definition of the equilibrium distribution function. Furthermore, ρ and u
at the location r and time t are calculated through f eq

α (r − eαδt, t − δt) [39]. Thus, f eq
α (r, t) can

be obtained. After computing f neq
α (r, t) through Equation (9), the fluxes F =

(
F1, F2, F3

)T

can finally be evaluated using Equation (7).
It is noted that the flux F is computed in the local coordinate system by the LBFS. The

following transformation is applied to calculate the flux F n in the global coordinate in
Equation (4):

Fn =
(

F1, F2n1x + F3n2x, F2n1y + F3n2y, F2n1z + F3n2z
)T (12)

where nβ = (nβx, nβy) with β = 1 and 2 denote the unit vectors in directions 1 and 2 of
the local coordinate system at the cell interface, respectively. In this way, the inviscid and
viscous fluxes are simultaneously evaluated. The intermediate flow field is then predicted
by solving Equation (5) with a proper time-marching strategy, like the explicit Euler scheme
or the multi-stage Runge–Kutta scheme. From Equations (9) and (10), it is clear that the
LBFS is second-order accurate in space, which has been proven in Refs. [39–41,43–45].

2.3. Velocity Correction through Explicit Boundary-Condition-Enforced Immersed
Boundary Method

As shown in Equation (6), the velocity correction ∆u is related to the restoring
force f , i.e.,

ρn+1∆u = ∆tf (13)

If f is approximated first, ∆u can be explicitly computed, and thus the flow field un+1

can be obtained. However, as discussed in the Introduction, it cannot ensure that the
velocity at the boundary wall interpolated from un+1 exactly fulfills the no-slip boundary
condition. As a result, the streamlines may penetrate the solid body surface unphysically.
To avoid this problem, Wu et al. [10] proposed an implicit velocity correction technique to
accurately enforce the no-slip boundary condition.

Unlike the explicit calculation, f in Equation (13) is regarded as unknown. The velocity
correction ∆u at the Eulerian mesh is computed first. Specifically, ∆u(xi) at the Eulerian
control cell Ωi can be interpolated from the velocity corrections ∆uB(Xl) at the Lagrangian
points Xl on the immersed boundary as follows:

∆u(xi) =
M

∑
l=1

D(xi − Xl)∆uB(Xl)∆sl (14)

where M denotes the number of Lagrangian points representing the boundary of solid
body and ∆sl is the spatial interval between two adjacent Lagrangian points. D(xi − Xl) is
a discrete delta function [7] given as

D(xi − Xl) =
1
h2 δ
(

xi−Xl
h

)
δ
(

yi−Yl
h

)
δ(r) =


1
8

(
3 − 2|r|+

√
1 + 4|r| − 4r2

)
, |r| < 1

1
8

(
5 − 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2

0, |r| > 2

(15)
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where h is the mesh spacing of the Eulerian grid. The no-slip boundary condition requires
that the velocity at the Lagrangian point un+1

B (Xl) should equal the fluid velocity at the
same position, which means

un+1
B (Xl) = ∑

xi∈S(l)
D(xi − Xl)u

n+1(xi)h2 (16)

Here, S(l) denotes the collection of N neighboring Eulerian cells close to the La-
grangian point l and it is defined as

S(l) =
{

i
∣∣∣∣xi − Xl

h

∣∣∣∣ ≤ 2
}

(17)

Because the fluid velocity un+1(xi) can be computed via

un+1(xi) = ∆u(xi) + u∗(xi) (18)

Equation (16) can be rewritten as

un+1
B (Xl) = ∑

xi∈S(l)
D(xi − Xl)∆u(xi)h2 + ∑

xi∈S(l)
D(xi − Xl)u

∗(xi)h2 (19)

Substituting Equation (14) into Equation (19) gives

un+1
B (Xl) = ∑

xi∈S(l)
D(xi − Xl)

M

∑
l=1

D(xi − Xl)∆uB(Xl)∆slh2 + ∑
xi∈S(l)

D(xi − Xl)u
∗(xi)h2 (20)

Clearly, the only unknown term is ∆uB(Xl)∆sl , which determines ∆u(xi) via Equation
(14). Considering the whole computational domain, the above system of equations can be
further written in the following matrix form:

AY = B (21)

with

A =


D(x1 − X1) D(x2 − X1) · · · D(xN − X1)
D(x1 − X2) D(x2 − X2) · · · D(xN − X2)

...
...

...
...

D(x1 − XM) D(x2 − XM) · · · D(xN − XM)




D(x1 − X1) D(x1 − X2) · · · D(x1 − XM)
D(x2 − X1) D(x2 − X2) · · · D(x2 − XM)

...
...

...
...

D(xN − X1) D(xN − XN) · · · D(xN − XM)

 (22)

B =
1
h2


un+1

B (X1)

un+1
B (X2)

...
un+1

B (XM)

−


D(x1 − X1) D(x2 − X1) · · · D(xN − X1)
D(x1 − X2) D(x2 − X2) · · · D(xN − X2)

...
...

...
...

D(x1 − XM) D(x2 − XM) · · · D(xN − XM)




u∗(x1)
u∗(x1)

...
u∗(xN)

 (23)

Y =


∆uB(X1)∆s1
∆uB(X2)∆s2

...
∆uB(XM)∆sM

 (24)

The above system of equations implies the exact satisfaction of the no-slip bound-
ary condition. By solving it, the unknown ∆uB(Xl)∆sl at all Lagrangian points can be
obtained, and then ∆u(xi) can be computed by Equation (14). Finally, the fluid velocity can
be corrected.

In the IIBM [10,11], the matrix A is constructed, and Equation (21) is solved by com-
puting the inverse matrix A−1 first. Although the computational cost for problems without



Dynamics 2024, 4 21

boundary movement where A−1 can be computed and stored first is acceptable, it could
be time-consuming for cases with moving boundaries where the reassembly of A and the
computation of its inversion are required at each time step. To improve the computational
efficiency, the EIBM simplifies the system of equations based on the error analysis. The
basic idea is to apply the Taylor series expansion to the unknown term ∆uB(Xl) and ∆sl
with the second-order approximation, which gives

∆uB(Xl) = ∆uB(Xi) +
∂(∆uB)

∂X
dXli + O

(
dXli

2
)

(25)

∆sl = ∆si +
∂(∆s)

∂X
dXli + O

(
dXli

2
)

(26)

where
∥dXli∥ = ∥Xl − Xi∥

≤ ∥xm − Xi∥+ ∥xm − Xl∥
≤
∥∥∥(2h, 2h)T

∥∥∥+ ∥∥∥(2h, 2h)T
∥∥∥

∼ O(h)

(27)

This is due to the definition of the discrete delta function in Equation (15) and the
limitation of the supporting region given in Equation (17) [30]. In addition, ∆si ∼ O(h) to
prevent fluid from leaking through the immersed boundary [7]. Based on the relation in
Equation (13), ∆uB should satisfy

∆uB ∼ O(∆t) = O(CFL · h) = O(h) (28)

where CFL denotes the Couran–Friedrichs–Lewy number. Then, ∆uB(Xl)∆sl can be ap-
proximated by

∆uB(Xl)∆sl = ∆uB(Xi)∆si +
∂(∆uB)

∂X dXli∆si + ∆uB(Xi)
∂(∆s)

∂X dXli + O
(
dXli

2)
= ∆uB(Xi)∆si + O

(
h2) (29)

After substituting Equation (29) to Equation (20) and discarding the second-order
terms O

(
h2), we have

∑
l∈{Ail ̸=0}

Ail∆uB(Xi)∆si = ∆uB(Xi)∆si ∑
l∈{Ail ̸=0}

Ail = Bi (30)

In this way, ∆uB(Xl)∆sl can be solved directly without affecting the second-order
accuracy of the whole solver by

Y =


1
d1

0 · · · 0
0 1

d2
· · · 0

...
...

...
...

0 0 · · · 1
dM

B (31)

where 
d1
d2
...

dM

 = DDT


1
1
...
1

 (32)

As for the accuracy and efficiency of EIBM, the following points need to be noted.
In theory, the EIBM can exactly satisfy the no-slip boundary condition, and the overall
accuracy of the EIB-LBFS depends on the manner of resolving the flow filed. In this work,
because the LBFS is applied to solve the flow field variables with the second-order ac-
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curacy, the EIB-LBFS should be second-order accurate in space because of the accuracy
limit. It is noteworthy that in practical implementation, this analytical accuracy may be
degraded when the problems with moving boundaries are considered due to the difficult
interpretation of the interaction between the flow filed and the moving boundaries. In
the work of Zhao et al. [30], the computational complexity of the EIBM has been veri-
fied as O(M), which outperforms the computational complexity of O(M2) of the IIBM.
Here, the EIBM is combined with the LBFS, and this EIB-LBFS solver is embedded in the
OpenFOAM framework.

3. Implementation of the EIB-LBFS Method in OpenFOAM

This section provides the implementation process of the EIB-LBFS algorithm in the
OpenFOAM framework. As the LBFS is essentially a density-based solver, the developed
EIB-LBFS solver mimics the main code structure of the rhoCentralFoam solver in the
original OpenFOAM code.

As shown in the pseudo-code in Listing 1, following the standard operations in
OpenFOAM, the regular time, FvMesh, fields, and flux objects are first created when the
solver is initialized. Then, a new surfaceScalarField named streamingTime is created for
storing the local streaming time δt variable at each interface of the cells in the mesh. An
LBFS object of the user-defined lbfsModule class is further initialized, where the value of
δt is precomputed and the discrete velocity model of the local LBFS is pre-constructed at
each cell interface (according to Section 2.2). In a similar fashion, the IBM object (of the
user-defined ibmModule class) handles the EIBM calculations according to the description
in Section 2.3. In the constructor of the IBM object, the properties of the immersed boundary,
such as the spacing of the Eulerian mesh h, the coordinates of the Lagrangian points, and
the prescribed motion or the kinematic laws of the immersed object (if applicable), are
loaded into the solver.

Up to this point, the solver initialization is finished, and the main loop for marching
the solution in time is started. At the beginning of each time step, the continuity and
momentum fluxes are computed by calling the calcFlux function of the LBFS object (ac-
cording to Equation (7)). Then, the divergence of the fluxes is computed using the built-in
fvc::div method in OpenFOAM, and the intermediate density and momentum fields are
updated from Equation (4). The intermediate velocity filed can be further obtained. A
new vectorField deltaU is created for the velocity correction ∆u, and its value is computed
by calling the getDeltaU member function of the IBM object, which updates the D and B
matrices in Equations (31) and (32) and solves the explicit algebraic equations. After the
velocity field is updated, the new momentum fields can be corrected, which finishes the
computations of one time step. Finally, the above process is repeated until the convergence
conditions are satisfied.

Listing 1. The pseudo-code of the developed EIB-LBFS solver in OpenFOAM.
int main(int argc, char *argv[])
{

// standard operations in OpenFOAM
#include “setRootCase.H”
#include “createTime.H”
#include “createMesh.H”
#include “createFields.H”
#include “createFieldRefs.H”
#include “createFluxes.H”

// initialize streaming time variable for local LBFS reconstruction
surfaceScalarField streamingTime;
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// create LBFS module object for handling interfacial flux calculation according to Section 2.2
lbfsModule LBFS(mesh, streamingTime, rho, U);

// create IBM module object for handling EIBM calculation according to Section 2.3
ibmModule IBM(U, rho);

// start main solution loop
Info<< “\nStarting time loop\n” << endl;
while (runTime.run())
{

runTime++;
Info<< “Time = ” << runTime.timeName() << nl << endl;
// call the member function of the LBFS object to compute the fluxes, where mu, phi and

phiUp denote the dynamic viscosity, mass flux and momentum flux, respectively.
LBFS.calcFlux(mu, phi, phiUp);

volScalarField rhoR = -fvc::div(phi); // rho residual as the divergence of the continuity
flux

volVectorField rhoUR = -fvc::div(phiUp); // rhoU residual as the divergence of the
momentum flux

// solve intermediate continuity and momentum equations according to Equation (4)
solve(fvm::ddt(rho)==rhoR);
solve(fvm::ddt(rhoU)==rhoUR);

// get intermediate velocity field
U.ref() = rhoU.internalField()/rho.internalField();

// call the member function of the IBM object to compute the velocity correction to the
intermediate velocity according to Section 2.3

vectorField deltaU = IBM.getDeltaU();
// correct the velocity in the Eulerian mesh
forAll (mesh.C(), i)

{
U.ref()[i] = U.internalField()[i] + deltaU[i];

}

// update the momentum based on the new velocity field
rhoU = rho*U;

// update boundary conditions at domain boundaries
U.correctBoundaryConditions();
rho.correctBoundaryConditions();
rhoU.ref() = U.internalField()*rho.internalField();
rhoU.boundaryFieldRef() = rho.boundaryField()*U.boundaryField();

// standard operations in OpenFOAM

runTime.write();
}
Info<< “End\n” << endl;
return 0;

}

4. Numerical Results and Discussion

This section tests a series of benchmark cases to assess the performance of the EIB-
LBFS implementation in OpenFOAM. The overall accuracy is first tested by solving the
Taylor–Green decaying vortex problem. The following case is the flow past a stationary
cylinder, and then the flow past a NACA-0012 airfoil, which has a more complicated
geometry, is studied. To further validate the capability of the present solver to resolve
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flow problems with a moving boundary, the flow past an oscillating circular cylinder is
tested. In these three tests, the immersed boundary method, i.e., the direct forcing method,
in FOAM-extend version 4.0 is also applied for comparison. For simplicity, the EIB-LBFS
method is termed the “present” method and the IBM in FOAM-extend version 4.0 is
termed “FoamExtend” in the following comparison. Lastly, the present EIB-LBFS solver is
applied to simulate an FSI problem, namely, the sedimentation of a circular particle in a
rectangular box.

4.1. Accuracy Test According to the Taylor–Green Vortex

The decaying vortex flow problem [11,40], which has an analytic solution, is used to
test the overall accuracy of the EIB-LBFS method numerically. The analytical solution of
the problem satisfying the 2D incompressible N-S equations reads

u(x, y, t) = −U cos(πx/L) sin(πy/L)e−2π2Ut/(ReL)

v(x, y, t) = U sin(πx/L) cos(πy/L)e−2π2Ut/(ReL)

ρ(x, y, t) = ρ0 − ρ0U2

4cs2 [cos(2πx/L) + cos(2πy/L)]e−4π2Ut/(ReL)
(33)

Numerical simulations are conducted on the computational domain of [−L, L] ×
[−L, L] with periodic boundary conditions at a Reynolds number of Re = UL/ν = 10. The
relaxation parameter τ is set as 0.8 and ρ0 is taken as 1. As shown in Figure 1a, a circle with
a diameter of D = 1.0 is immersed in the domain. To test the spatial accuracy of the present
EIBM, the analytical solution is enforced on the cylinder surface. The flow is also initialized
from the analytical solution at t = 0. The solutions on the Eulerian mesh at t = L/U = 1
are computed, and the relative errors of velocity component u are measured using the L∞,
L1, and L2 norms, which are defined as

L∞(u) = max
1≤i≤Ncell

(∣∣∣∣ui − ue
i

U

∣∣∣∣), L1(u) =
1

Ncell

Ncell

∑
i=1

(∣∣∣∣ui − ue
i

U

∣∣∣∣), L2(u) =

(
1

Ncell

Ncell

∑
i=1

(
ui − ue

i
U

)2
) 1

2

(34)

where ui and ue
i represent the numerical result and the exact solution, respectively. Ncell is

the number of the cells.
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Figure 1. Spatial accuracy test of the EIB-LBFS for the Taylor–Green vortex: (a) schematics of the
simulation and (b) convergence history of errors with mesh refinement.

For the convergence study, the regular uniform grids with a spacing of h = 1/8 to
1/128 are used. Relative errors of velocity component u and the rates of convergence are
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shown in Figure 1b. As can be seen in the figure, the EIB-LBFS method can achieve the
second-order accuracy for the problem with the immersed boundaries, which is consistent
with the above theoretical discussion of accuracy.

4.2. Flow Past a Stationary Circular Cylinder

First, the benchmark case of flow past a stationary circular cylinder [37,40,43] is
simulated to examine whether the present solver can exactly satisfy the no-slip boundary
condition. In this case, the incoming viscous fluid with a free-stream velocity U0 flows past
a fixed circular cylinder. The Reynolds number characterizing the flow pattern is given as
Re = U0Dc/ν with the diameter of the circular cylinder Dc. In the simulations, the cases of
Re = 20, 40, 100 and 200 are tested.

The pressure coefficient Cp, lift coefficient Cl , drag coefficient Cd, and Strouhal number
St are used to quantify the numerical results, and they are defined as follows:

Cp =
pw − p0

ρ0U2
0 /2

, Cl =
Fl

ρ0U2
0 /2

, Cd =
Fd

ρ0U2
0 /2

, St =
foL
U0

(35)

where p0 and pw denote the pressure of the free-stream and on the cylinder surface, respec-
tively. Fl and Fd are, respectively, the lift force and the drag force. fo represents the vortex
shedding frequency.

A no-slip boundary condition is applied on the cylinder surface, and the far-field
free-stream condition is enforced on the outer boundary. Figure 2 shows the computational
domain and the hybrid unstructured mesh is used for all four cases, with 59,973 cells in
total. In the region of 0.8 Dc × 1.0 Dc around the circular cylinder, a uniform mesh of
the mesh spacing h = 0.01 Dc is used. The outer computational domain boundaries are
located at 50 Dc away from the cylinder. On the surface of the circular cylinder, there are
314 uniformly distributed Lagrangian points.
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Figure 2. Entire unstructured mesh (left) and close-up view of the uniform mesh around the
cylinder (right) for viscous flow past a circular cylinder. The cylinder boundary is represented by the
green circle.

As shown in Figure 3, the present EIB-LBFS method can obtain the correct flow fields,
which agree well with those in studies [37,40,43,44] for both cases of Re = 20 and 40. In
addition, the streamlines have no unphysical penetration, which verifies the guarantee
of the no-slip boundary condition by the EIB-LBFS method. To compare with the IBM in
FOAM-Extend 4.0, Figure 4 compares the velocity magnitude ∥U∥ versus the azimuth angle
θ on the solid boundary. Clearly, the IBM in FOAM-Extend has one order of magnitude
larger velocity magnitude than the present method on the same mesh. Such an observation
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confirms that the IBM in FOAM-Extend cannot enforce the no-slip boundary condition as
accurately as the present method. This conclusion is further proved by the comparison
of the pressure coefficient Cp in the case of Re = 40 shown in Figure 5, where the surface
pressure distribution computed by the FOAM-Extend 4.0 exhibits spurious oscillations.
The better agreement of the result of the present method with the reference data [49]
validates the more exact satisfaction of the no-slip boundary condition for the present EIB-
LBFS method than the IBM in FOAM-Extend 4.0. For a quantitative comparison, Table 1
tabulates the drag coefficient Cd and the geometrical quantities of the eddies, namely, the
recirculation length Ls and the separation angle θs obtained by both methods with some
reference data [10,39,50–53]. It can be seen that, using the same mesh, the present method
predicts good results within the range of the reference data, while the results from the IBM
in FOAM-Extend have larger deviations due to the inaccurate satisfaction of the no-slip
wall boundary condition.
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Figure 5. Comparison of pressure coefficient on the cylinder wall obtained using the EIB-LBFS
method and the IBM in FOAM-Extend with the reference data from Ma et al. [49] for flow past a
cylinder at Re = 40.

Table 1. Comparison of drag coefficient, recirculation length, and separation angle for steady flow
past a stationary circular cylinder at Re = 20 and 40.

Re References Cd Ls/Dc θs

20

Dennis and Chang [50] 2.05 0.94 43.7
Shukla et al. [51] 2.07 0.92 43.3

Wu and Shu et al. [10] 2.091 0.93 -
EIB-LBFS 2.05 0.92 43.32

FOAM-Extend 2.18 0.97 47.31

40

He and Doolen [52] 1.499 2.245 52.84
Pellerin et al. [53] 1.505 2.259 53.64

Shu et al. [39] 1.53 2.24 52.69
EIB-LBFS 1.531 2.254 52.54

FOAM-Extend 1.633 2.252 54.88

For the cases of Re = 100 and 200, the flow is unsteady, and vortex shedding occurs
in the wake region due to the small physical viscosity. This phenomenon can be seen in
Figure 6. Figure 7 compares the evolution of the drag coefficient Cd and lift coefficient Cl
computed using the two methods. There is an obvious difference between these results, and
the quantitative comparison with the reference data [39,40,54–58] is given in Table 2. The
Strouhal number St is also included to quantify the frequency of the vortex shedding. As
can be seen, the results of the EIB-LBFS method have better agreement with the reference
data than those computed by the IBM in FOAM-Extend 4.0 on the same mesh. This
observation validates the reliability of the present method for solving such an unsteady
problem with curved geometry on hybrid unstructured grids. In addition, it is found
that the present method outperforms the IBM embedded in FOAM-Extend 4.0 in terms
of accuracy.
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Table 2. Comparison of dynamic parameters for unsteady flow past a stationary circular cylinder at
Re = 100 and 200.

Re References Cl Cd St

100

Braza et al. [54] ±0.30 1.28±0.02 0.16
Liu et al. [55] ±0.339 1.350 ± 0.02 0.164
Shu et al. [39] ±0.33 1.334 ± 0.02 0.164
Liu et al. [40] ±0.332 1.337 ± 0.011 0.164

Pellerin et al. [53] ±0.325 1.325 0.164
EIB-LBFS ±0.316 1.341 ± 0.01 0.161

FOAM-Extend ±0.303 1.359 ± 0.02 0.167

200

Posdziech and Grundmann [56] ±0.673 1.325 0.195
Persillon and Braza [57] - 1.321 0.198

Franke et al. [58] ±0.65 1.31 0.194
EIB-LBFS ±0.650 1.335 ± 0.04 0.191

FOAM-Extend ±0.690 1.359 ± 0.05 0.194

4.3. Flow Past a Stationary NACA-0012 Airfoil

To further assess the performance of the present solver for the more complicated con-
figuration, the flow past a stationary NACA-0012 airfoil is simulated. Following the setting
in Ref. [10], the Reynolds number defined as Re = U0L/ν is set as 500, where L denotes
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the chord length of the airfoil. The attack angle of 0◦ is considered. The computational
domain of [−50 L, 50 L] × [−50 L, 50 L] discretized by 63,415 hybrid unstructured cells
is presented in Figure 8, where the uniform mesh of the grid spacing h = 0.005 L is used
in the region of [−0.2 L, 1.4 L] × [−0.15 L, 0.15 L] around the airfoil. The surface of the
airfoil is represented by 412 uniformly distributed Lagrangian points. Figure 9 plots the
pressure contours around the airfoil computed using the EIB-LBFS method and the IBM in
FOAM-Extend 4.0. Both methods can obtain the symmetric flow pattern, but the result of
the FOAM-Extend shows clear staircase patterns adjacent to the airfoil due to the cutout of
the solid cells. Figure 10 further compares the u-velocity contours and streamlines around
the airfoil calculated using these two methods. Although the velocity contours basically
agree, it is obvious that the streamlines of the EIB-LBFS method do not penetrate the solid
boundary, while minor penetrations are detected in the results computed using FOAM-
Extend. The comparison of u-velocity and v-velocity profiles at various cross sections, as
shown in Figure 11, shows good agreement with the reference data [59] for the present
method, which indicates the exact satisfaction of the no-slip boundary condition for the
present method. Furthermore, the computed Cd by the present method is 0.1750, which
agrees with the reference value of 0.1762 [59]. Thus, the capability and accuracy of the
present method are well validated.
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Figure 11. Comparison of u-velocity and v-velocity profiles at (a) x = 0.00, (b) x = 0.25, (c) x = 0.50,
(d) x = 0.75, and (e) x = 1.00 obtained using the EIB-LBFS method with reference data reported by
Imamura et al. [59] for flow past a stationary NACA-0012 airfoil at Re = 500.

4.4. Flow Past an Oscillating Circular Cylinder

After validating the good performance of the present solver for problems with station-
ary boundaries, the assessment of problems with boundary movement is further conducted.
Here, the uniform flow past an oscillating circular cylinder [60] is investigated. Similarly
to the first case in Section 4.2, this problem is characterized by the Reynolds number
Re = U0Dc/ν with the free-stream velocity U0 and the circular cylinder dimeter Dc. In
this case, a transverse oscillation motion is forced, and the instantaneous position of the
cylinder is given as

y(t) = Ae sin(2πt fe) (36)

where Ae denotes the oscillating amplitude and fe is the excitation frequency. In the
simulation, the parameters are set as Re = 185, Ae/Dc = 0.2 and fe/fo = 0.8, 0.9, 1.0, 1.1, and
1.2, where fo denotes the natural vortex shedding frequency of the cylinder at this Reynolds
number. The same mesh as shown in Figure 2 is used for all computations.

To quantify the numerical results of the present EIB-LBFS method, the time-averaged
drag coefficient “cd mean” and the root-mean-square value “cd rms” are compared in
Figure 12. Clearly, they agree well with the data from Refs. [30,37]. Figure 13 displays the
evolutions of the drag coefficient Cd and lift coefficient Cl for different ratios of frequencies.
For the cases of fe/fo = 0.8, 0.9, and 1.0, the evolutions of Cd and Cl are harmonic, and
the amplitude increases while the period decreases as fe/fo becomes larger. Compared
to the results of the present method, both force coefficients obtained using the IBM in
FOAM-Extend 4.0 have clear non-physical oscillations. This observation demonstrates that
the present EIB-LBFS method can satisfy the no-slip boundary conditions more accurately
than the IBM in FOAM-Extend 4.0. When fe/fo is larger than 1.0, i.e., fe/fo = 1.1 and 1.2, the
amplitude modulation for the force coefficients can be seen. In addition, there are many
differences in the phase and amplitude between the results of the two methods.
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Figure 12. Comparison of the computed mean drag coefficient and root-mean-square value of drag
coefficient with the reference data from Wang et al. [37] and Zhao et al. [30] for flow past an oscillating
circular cylinder.
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Figure 13. Comparison of lift and drag coefficients for flow past an oscillating circular cylinder:
(a) fe/fo = 0.8, (b) fe/fo = 0.9, (c) fe/fo = 1.0, (d) fe/fo = 1.1, and (e) fe/fo = 1.2.
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4.5. Sedimentation of a Circular Particle in a Rectangular Box

In this subsection, the present solver is applied to simulate the sedimentation of a
circular particle in a rectangular domain [20,61]. As an FSI problem, the uncertainty of the
body trajectories, the long boundary movement, and the tedious re-meshing process cause
difficulty for the conventional methods using the body-fitted meshes. Thus, it is a good
problem to evaluate the accuracy and reliability of the present solver. As shown in Figure 14,
the computational domain is a rectangular box for which the width is 2 cm and the length
is 6 cm. A rigid circular cylinder with a diameter of Dc = 0.25 cm is statically placed
at the location of (1 cm, 4 cm) in the box. The density of the particle is ρs = 1.25 g/cm3,
and the density of the static fluid is ρf = 1.0 g/cm3. The dynamic viscosity of the fluid is
0.1 g/(cm·s). Hybrid unstructured mesh is used to discretize the computational domain.
In the region along the sedimentation trajectory, the uniform mesh of h = 0.02 Dc is applied
as displayed in Figure 14. There are 225 Lagrangian points on the surface of the particle.
All boundaries of the box are no-slip walls.
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Figure 14. Entire mesh (left) and close-up view of mesh in the region along the sedimentation
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After releasing the particle at t = 0 s, the particle will freely fall under the effect
of gravity and the resistance from the fluid. Figure 15 plots the instantaneous vorticity
contours at four time instants of t = 0.1 s, 0.3 s, 0.5 s, and 0.7 s obtained using the present
EIB-LBFS method, which shows good agreement with the numerical results in Ref. [30].
Figure 16 compares the computed evolutions of the vertical coordinate Y, vertical velocity
V, and local Reynolds number Re with the reference data [30,62], thus confirming excellent
agreement. These observations validate that the EIB-LBFS method can exactly satisfy the
no-slip boundary condition and provide accurate results for the FSI problem.
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Figure 15. Vorticity contours at (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.5 s, and (d) t = 0.7 s obtained using 
the EIB-LBFS method for the falling circular cylinder in a rectangular box. 
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Figure 15. Vorticity contours at (a) t = 0.1 s, (b) t = 0.3 s, (c) t = 0.5 s, and (d) t = 0.7 s obtained using
the EIB-LBFS method for the falling circular cylinder in a rectangular box.
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Figure 16. Comparison of the time evolution of (a) vertical coordinate, (b) vertical velocity, and (c) 
local Reynolds number obtained using the EIB-LBFS method with reference data from Zhao et al. 
[30] and Wan and Turek [62] for sedimentation of a circular particle in a rectangular box. 
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Figure 16. Comparison of the time evolution of (a) vertical coordinate, (b) vertical velocity, and
(c) local Reynolds number obtained using the EIB-LBFS method with reference data from Zhao
et al. [30] and Wan and Turek [62] for sedimentation of a circular particle in a rectangular box.

5. Conclusions

Flow problems with moving boundaries and fluid-structure interactions are very
common in industries and in nature. IBM has become one popular CFD method to solve
such problems. However, for incompressible flow problems with stationary or moving
boundaries and FSI problems, the unphysical streamline penetration, low computational
efficiency, and flexibility of using unstructured grids are key problems. To address these
problems, this work combines the explicit boundary-condition-enforced immersed bound-
ary method with the lattice Boltzmann flux solver and integrates the resulting EIB-LBFS
into the open-source OpenFOAM platform for effective simulation of incompressible flow
problems with moving boundaries and fluid–structure interaction problems. Because the
original boundary-condition-enforced IBM applies the implicit technique to solve the linear
equation system for the velocity correction, it could be inefficient when the large-scale prob-
lems or moving boundary are considered. By computing the velocity correction explicitly,
the EIBM improves the computational efficiency with a global second-order accuracy in
space. In addition, the LBFS inherits the advantages of the LBM for solving the incom-
pressible viscous flow problems and avoids the drawbacks of the LBM, such as the lattice
uniformity, and the tie-up between the time step and the lattice spacing. The LBFS can
simultaneously evaluate the inviscid and viscous fluxes at the cell interface, which is more
straightforward than the separate method, like the Riemann solver for the inviscid flux and
the central finite difference for the viscous flux. By incorporating the EIB-LBFS method into
the OpenFOAM, it could be much easier to apply this effective method to solve various
flow problems with moving boundaries and FSI problems.

To assess whether the no-slip boundary condition can be exactly satisfied or not in
the EIBM and to evaluate the ability and accuracy of the EIB-LBFS method for solving
problems with complex geometries and moving boundaries, a series of representative cases
are tested. First, the accuracy test validates that the EIB-LBFS is second-order accurate in
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space. By solving the problems of flow past a stationary circular cylinder and NACA0012
airfoil, the exact satisfaction of the no-slip boundary condition and the good accuracy for
the EIB-LBFS method are then verified via the good agreement between the obtained results
and the reference data. The good performance of the present method is further validated
by solving well the flow past an oscillating cylinder. For all of these cases, the present
method shows better accuracy in terms of force coefficients or representative parameters
in comparison to the IBM in FOAM-Extend 4.0 with the same mesh. In addition, there is
neither non-physical penetration of the streamlines nor non-physical oscillations in the
force coefficients or pressure distribution. In the end, the EIB-LBFS method is further
validated by solving an FSI problem. These tests provide evident proofs that the EIB-LBFS
method is reliable and that it could be a promising alternative for solving incompressible
flow problems with a moving boundary and fluid–structure interaction problems.
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Nomenclature

ρ density
u velocity vector
p pressure
µ dynamic viscosity
ν kinematic viscosity
f restoring force
U conservative variables vector
F flux tensor
G body force vector
Ωi control cell i
eα lattice velocity vector
τν single relaxation parameter
δt streaming time step
h mesh spacing
cs the sound speed
f eq equilibrium density distribution function
f neq non-equilibrium density distribution function
r physical location of the cell interface
t time
∆u velocity correction
Xl Lagrangian points
∆uB(Xl) velocity corrections at the Lagrangian points
Dc diameter of the circular cylinder
Re Reynolds number
U0 free-stream velocity
Cp pressure coefficient
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Cl lift coefficient
Cd drag coefficient
St Strouhal number
Ls recirculation length
θs separation angle
p0 pressure of the free-stream
pw pressure on the cylinder surface
Fl lift force
Fd drag force
fo vortex shedding frequency
Ae oscillating amplitude
fe excitation frequency
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