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Abstract: Background: In response to the escalating global concerns surrounding skin cancer, this
study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on
the intricate task of eight-class skin cancer classification, the research delves into the limitations of
conventional diagnostic approaches, often hindered by subjectivity and resource constraints. The
transformative potential of Artificial Intelligence (AI) in revolutionizing diagnostic paradigms is
underscored, emphasizing significant improvements in accuracy and accessibility. Methods: Utilizing
cutting-edge deep learning models on the ISIC2019 dataset, a comprehensive analysis is conducted,
employing a diverse array of pre-trained ImageNet architectures and Vision Transformer models. To
counteract the inherent class imbalance in skin cancer datasets, a pioneering “Naturalize” augmenta-
tion technique is introduced. This technique leads to the creation of two indispensable datasets—the
Naturalized 2.4K ISIC2019 and groundbreaking Naturalized 7.2K ISIC2019 datasets—catalyzing
advancements in classification accuracy. The “Naturalize” augmentation technique involves the
segmentation of skin cancer images using the Segment Anything Model (SAM) and the systematic
addition of segmented cancer images to a background image to generate new composite images.
Results: The research showcases the pivotal role of AI in mitigating the risks of misdiagnosis and
under-diagnosis in skin cancer. The proficiency of AI in analyzing vast datasets and discerning subtle
patterns significantly augments the diagnostic prowess of dermatologists. Quantitative measures
such as confusion matrices, classification reports, and visual analyses using Score-CAM across diverse
dataset variations are meticulously evaluated. The culmination of these endeavors resulted in an
unprecedented achievement—100% average accuracy, precision, recall, and F1-score—within the
groundbreaking Naturalized 7.2K ISIC2019 dataset. Conclusion: This groundbreaking exploration
highlights the transformative capabilities of AI-driven methodologies in reshaping the landscape of
skin cancer diagnosis and patient care. The research represents a pivotal stride towards redefining
dermatological diagnosis, showcasing the remarkable impact of AI-powered solutions in surmount-
ing the challenges inherent in skin cancer diagnosis. The attainment of 100% across crucial metrics
within the Naturalized 7.2K ISIC2019 dataset serves as a testament to the transformative capabilities
of AI-driven approaches in reshaping the trajectory of skin cancer diagnosis and patient care. This
pioneering work paves the way for a new era in dermatological diagnostics, heralding the dawn of
unprecedented precision and efficacy in the identification and classification of skin cancers.
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1. Introduction

Skin cancer, a widespread and potentially life-threatening disease, impacts millions
globally. Its harmful effects can range from disfigurement to significant medical expenses,
and even mortality if not diagnosed and treated early. Approximately one in five Americans
are projected to develop skin cancer in their lifetime, with around 9500 daily diagnoses in
the U.S. [1]. Beyond physical consequences, skin cancer can induce emotional distress due
to invasive treatments and visible scars.

Skin cancer is a prevalent malignancy linked to prolonged exposure to ultraviolet
(UV) radiation, either from the sun or artificial sources [2]. UV radiation causes DNA
damage, leading to genetic mutations and abnormal cell growth. Fair-skinned individuals
with a history of sunburns, especially in childhood, are more susceptible. Genetic factors,
including familial cases and specific conditions like xeroderma pigmentosum, elevate
risk. Aging, immune system suppression (in transplant recipients or HIV/AIDS patients),
and certain chemical exposures also contribute. Individuals with prior skin cancer require
vigilant follow-up and skin checks due to an increased risk of recurrence.

Figure 1 [3] shows different skin cancer stages from stage 0 to stage 4 and its corre-
sponding severity.

Figure 1. Skin cancer stages and severity.
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The ISIC 2019 dataset [4] is a significant compilation within the International Skin
Imaging Collaboration (ISIC) series, specifically curated for advancing research in derma-
tology, particularly in the field of computer-aided diagnosis (CAD) for skin cancer detection
and classification. This dataset [4], released in 2019, is a continuation of the effort to provide
a comprehensive collection of high-quality dermoscopic images accompanied by annota-
tions and metadata. It consists of thousands of images showcasing various skin lesions,
including melanomas, nevi, and other types of benign and malignant skin conditions.

One of the primary objectives of the ISIC 2019 dataset is to facilitate the development
and evaluation of machine learning algorithms, computer vision models, and Artificial
Intelligence systems geared towards accurate and early detection of skin cancers. Re-
searchers, data scientists, and developers leverage this dataset to train, validate, and test
their algorithms for automated skin lesion analysis, classification, and diagnosis. The
availability of annotated images within the ISIC 2019 dataset [4] allows for supervised
learning approaches, enabling algorithms to learn patterns and features associated with
different types of skin lesions. By utilizing this dataset, researchers aim to improve the
accuracy and efficiency of diagnostic tools, potentially aiding dermatologists and healthcare
professionals in making more precise and timely diagnoses.

In recent years, deep learning [5] has brought about a transformative revolution in the
field of machine learning. It stands out as the most advanced subfield, centering on artifi-
cial neural network algorithms inspired by the structure and function of the human brain.
Deep learning techniques find extensive application in diverse domains, including but not
limited to speech recognition, pattern recognition, and bioinformatics. Notably, in compari-
son to traditional machine learning methods, deep learning systems have demonstrated
remarkable achievements in these domains. Recent years have witnessed the adoption of
various deep learning strategies for computer-based medical applications [6], such as skin
cancer detection. This paper delves comprehensively into the examination and evaluation
of deep learning-based skin cancer classification techniques.

Our approach incorporates state-of-the-art deep learning models, including ImageNet
ConvNets [7] and Vision Transformer (ViT) [8], through techniques like transfer learn-
ing, and fine-tuning. Evaluation encompasses quantitative assessments using confusion
matrices, classification reports, and visual evaluations using tools like Score-CAM [9].

The integration of “Naturalize” techniques, as referenced in [10], alongside these strides
represents significant headway in automating the analysis of skin cancer classification.

A consequence of employing the Naturalize technique is the establishment of two
well-balanced datasets, namely Naturalized 2.4K and 7.2K datasets, encompassing 2400 and
7200 images, respectively, for each of the eight types of skin cancer. This paper extensively
explores the methodologies and outcomes derived from these state-of-the-art approaches,
shedding light on their transformative capacity within the realm of skin cancer.

After this introduction, the rest of the paper will continue as follows: Section 2
highlights the relevant literature related to the detection and classification of skin cancer
using pre-trained CNNs, and Section 3 describes the methodology used in this study.
In addition, Section 4 presents the experimental results obtained using pre-trained models
and Google ViT for the skin cancer classification; an in-depth analysis of the results is
performed. Finally, the paper is concluded in Section 5.

2. Related Works

Recent advancements in deep learning models for skin lesion classification have
showcased significant progress. This review consolidates findings from notable studies
employing diverse convolutional neural network (CNN) architectures for this purpose.
These studies explore methodologies and performances using the ISIC2019 dataset.

Kassem et al. [11] utilized a GoogleNet (Inception V1) model with transfer learning
on the ISIC2019 dataset, achieving 94.92% accuracy. They demonstrated commendable
performance in recall (79.80%), precision (80.36%), and F1-score (80.07%).
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Sun et al. [12] employed an Ensemble CNN-EfficientNet model on the ISIC2019 dataset,
achieving an accuracy of 89.50%. Additionally, the authors investigated the integration of
extra patient information to improve the precision of skin lesion classification. They pre-
sented performance metrics with recall (89.50%), precision (89.50%), and F1-score (89.50%).

Singh et al. [13] utilized the Ensemble Inception-ResNet model on the ISIC2019 dataset,
achieving an accuracy of 96.72%. Their results showcased notable performance in recall
(95.47%), precision (84.70%), and F1-score (89.76%).

In 2022, Li et al. [14] introduced the Quantum Inception-ResNet-V1, achieving 98.76%
accuracy on the same ISIC2019 dataset. Their model exhibited substantial improvements
in recall (98.26%), precision (98.40%), and F1-score (98.33%), signifying a significant leap
in accuracy.

Mane et al. [15] leveraged MobileNet with transfer learning, achieving an accuracy of
83% on the ISIC2019 dataset. Despite relatively lower results compared to other models,
their consistent performance across recall, precision, and F1-score at 83% highlighted
robust classification.

Hoang et al. [16] introduced the Wide-ShuffleNet combined with segmentation tech-
niques, achieving an accuracy of 84.80%. However, their model showed comparatively lower
metrics for recall (70.71%), precision (75.15%), and F1-score (72.61%) than prior studies.

In 2023, Fofanah et al. [17] introduced a four-layer DCNN model, achieving an accuracy
of 84.80% on a modified dataset split. Their model showcased well-rounded performance
with a recall of 83.80%, precision of 80.50%, and an F1-score of 81.60%.

Similarly, Alsahaf et al. [18] proposed a Residual Deep CNN model in the same year,
attaining an impressive accuracy of 94.65% on a different dataset split. They maintained
equilibrium across metrics, with a recall of 70.78%, precision of 72.56%, and an F1-score
of 71.33%.

Venugopal et al. [19] presented a modified version of the EfficientNetV2 model in
2023, achieving a high accuracy of 95.49% on a different dataset split. They demonstrated
balance in key metrics, including recall (95%), precision (96%), and an F1-score of 95%.

Tahir et al. [20] proposed a DSCC-Net model with SMOTE Tomek in 2023, achieving
an accuracy of 94.17% on a different dataset split. Their model exhibited well-balanced
metrics, with a recall of 94.28%, precision of 93.76%, and an F1-score of 93.93%.

Radhika et al. [21] introduced an MSCDNet Model in 2023, achieving an outstanding
accuracy of 98.77% on a different dataset split. Their model maintained a harmonious blend
of metrics, with a recall of 98.42%, precision of 98.56%, and an F1-score of 98.76%.

These studies collectively showcase the evolution of skin lesion classification models,
indicating significant progress in accuracy and performance metrics. Comparative analysis
highlights the strengths and weaknesses of each model, laying the groundwork for further
advancements in dermatological image classification.

The literature review focuses on a series of studies (Table 1), concentrating on automat-
ing skin cancer classification using the ISIC2019 dataset, offering a summarized view of
these endeavors.

Our groundbreaking research presents the novel augmentation technique “Natu-
ralize”, specifically designed to tackle the challenges posed by data scarcity and class
imbalance within deep learning. Through the implementation of “Naturalize”, we have
successfully overcome these hurdles, achieving an unprecedented 100% average testing
accuracy, precision, recall, and F1-score in our skin cancer classification model. This ground-
breaking technique revolutionizes the landscape of deep learning, offering a solution that
not only elevates classification performance but also redefines the potential for accurate
and reliable diagnosis across various imbalanced skin cancer classes.
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Table 1. Overview of related work.

Ref. Model and Approach Dataset Split Ratio Accuracy Recall Precision F1-Score

[11] GoogleNet (Inception V1) and Transfer Learning ISIC2019 80/10/10 94.92 79.80 80.36 80.07
[12] Ensemble CNN-EfficientNet ISIC2019 75/25 89.5 89.5 89.5 89.5
[13] Ensemble Inception-ResNet ISIC2019 60/20/20 96.72 95.47 84.70 89.76
[14] Quantum Inception-ResNet-V1 ISIC2019 80/10/10 98.76 98.26 98.40 98.33
[15] MobileNet and Transfer Learning ISIC2019 80/10/10 83 83 83 82
[16] Wide ShuffleNet and Segmentation ISIC2019 90/10 84.80 70.71 75.15 72.61
[17] Four-layer DCNN ISIC2019 60/10/30 84.80 83.80 80.50 81.60
[18] Residual Deep CNN Model ISIC2019 70/15/15 94.65 70.78 72.56 71.33
[19] Modified EfficientNetV2 ISIC2019 80/20 95.49 95 96 95
[20] DSCC-Net with SMOTE Tomek ISIC2019 80/10/10 94.17 94.28 93.76 93.93
[21] MSCDNet Model ISIC2019 70/20/10 98.77 98.42 98.56 98.76

3. Materials and Methods

In this section, we offer an in-depth explanation of our methodology for classifying
skin cancer images using the challenging ISIC2019 dataset. The steps of our approach are
visually depicted in Figure 2.

Figure 2. Methodology workflow using the ISIC 2019 dataset.
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3.1. ISIC-2019 Dataset
3.1.1. Original 8-Class ISIC 2019 Dataset

The initial ISIC 2019 dataset [4], obtained from an online repository, consists of
25,331 images categorized into eight distinct classes representing different types of skin
cancer. These classes are Actinic Keratosis (AK), Basal Cell Carcinoma (BCC), Benign Ker-
atosis (BK), Dermatofibroma (DER), Melanocytic Nevi (NEV), Melanoma (MEL), Vascular
Skin Lesion (VAS), and Squamous Cell Carcinoma (SCC).

To address the unbalanced distribution of images within the original ISIC-2019 dataset,
we modified it by reducing the number of images for three types of skin cancer (MEL, NV,
BCC) to 2.4k, aligning them with the existing count of 2.4k images for the BK type. This
adjustment was made to achieve balance among the different cancer types. We applied
the Naturalize Augmentation technique during this process. Consequently, the updated
dataset now comprises 19,200 balanced images across the eight types of skin cancer.

Table 2 [4] provides an overview of the distribution of the eight skin cancer classes
within the original ISIC 2019 dataset.

Table 2. Summary of the ISIC-2019 dataset.

Number Cell Type Total of Images by Type Percent

1 Actinic Keratosis 867 3.322
2 Basal Cell Carcinoma 3323 13.11
3 Benign Keratosis 2624 10.35
4 Dermatofibroma 239 0.94
5 Melanocytic Nevi 12,875 50.82
6 Melanoma 4522 17.85
7 Vascular Skin Lesion 253 1.138
8 Squamous Cell Carcinoma 628 2.47

Total 25,331 100

The images in the ISIC dataset adhere to a standard size of 1024 × 1024 pixels [4],
which needs to be resized into “224 × 224” and “140 × 140” to make the use of it more
flexible in the work.

Figure 3 shows the 8 types of skin cancer found in the original ISIC2019 dataset.

Figure 3. The 8 types of skin cancer [14].
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3.1.2. Pruned 2.4K ISIC2019

Due to substantial variations in the quantity of available images, it was necessary to
reduce the number of photos in specific categories. This adjustment aimed to alleviate the
pronounced differences among various types of skin cancer.

Table 3 summarizes the distribution of the Pruned 2.4K ISIC2019 dataset in the
8 classes.

Table 3. Summary of the Pruned 2.4K ISIC-2019 dataset.

Number Cell Class Symbol Images by Class (%)

1 Actinic Keratosis AK 867 7.5
2 Basal Cell Carcinoma BCC 2400 20.7
3 Benign Keratosis BK 2400 20.7
4 Dermatofibroma DER 239 2
5 Melanocytic Nevi NEV 2400 20.7
6 Melanoma MEL 2400 20.7
7 Vascular Skin Lesion VAS 253 2.1
8 Squamous Cell Carcinoma SCC 628 5.6

Total 11,587 100

3.1.3. Naturalized 2.4K and 7.2K ISIC2019 Datasets

Our goal was to achieve an equal number of photos across all eight types of skin cancer.
The Naturalize augmentation is employed to achieve this target. Two balanced updated
version of ISIC2019 are created using the Naturalize augmentation technique: Naturalized
2.4K ISIC2019 and Naturalized 7.2K ISIC2019 datasets.

Table 4 summarizes the distribution of the Naturalized 2.4K ISIC2019 dataset in the
8 classes.

Table 4. Summary of the Naturalized 2.4K ISIC-2019 dataset.

Number Cell Class Symbol Images by Class (%)

1 Actinic Keratosis AK 2400 12.5
2 Basal Cell Carcinoma BCC 2400 12.5
3 Benign Keratosis BK 2400 12.5
4 Dermatofibroma DER 2400 12.5
5 Melanocytic Nevi NEV 2400 12.5
6 Melanoma MEL 2400 12.5
7 Vascular Skin Lesion VAS 2400 12.5
8 Squamous Cell Carcinoma SCC 2400 12.5

Total 19,200 100

Table 5 summarizes the distribution of the Naturalized 7.2K ISIC2019 dataset in the
8 classes.

Table 5. Summary of the Naturalized 7.2K ISIC-2019 dataset.

Number Cell Class Symbol Images by Class (%)

1 Actinic Keratosis AK 7200 12.5
2 Basal Cell Carcinoma BCC 7200 12.5
3 Benign Keratosis BK 7200 12.5
4 Dermatofibroma DER 7200 12.5
5 Melanocytic Nevi NEV 7200 12.5
6 Melanoma MEL 7200 12.5
7 Vascular Skin Lesion VAS 7200 12.5
8 Squamous Cell Carcinoma SCC 7200 12.5

Total 57,600 100
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The Naturalize augmentation technique can generate any number of skin cancer
images with unique content and quality resembling the original ISIC2019 dataset. This is
achieved through the benefit from the power of randomness of the addition of segmented
skin cancer images with different skin backgrounds.

3.2. Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) was conducted to gain insights into the nature of the
dataset. This involved training and testing pre-trained ImageNet models with the original
ISIC 2019 dataset, analyzing the confusion matrix, and generating a classification report.

The primary observation from the exploratory data analysis (EDA) reveals a significant
influence stemming from extreme class imbalances, notably in categories such as DER
and NEV, within the ISIC 2019 dataset. This imbalance markedly impacts the overall
performance metrics (average accuracy, precision, recall, and F1-score).

Addressing this issue is where the “Naturalize” augmentation technique comes into
play. This technique involves generating new images for classes that have insufficient
representation, maintaining a quality that mirrors the original images. As a result, “Nat-
uralize” effectively resolves the pronounced imbalances among classes while preserving
image quality.

3.3. Data Augmentation “Naturalize”

The pseudocode shown in Algorithm 1 demonstrates the principle behind the “Natu-
ralize” augmentation technique and how it works.

Algorithm 1 Naturalize algorithm.

1: Imports and Paths
2: Import os, random, image_processing, SAM_model
3: Define file paths and import essential libraries
4: Load SAM_model and ISIC 2019 Dataset
5: Mount Google_drive
6: Load Skin Cancer images from ISIC 2019 dataset
7: SAM = load_model(SAM_model)
8: Segment ISIC 2019 Dataset Using SAM
9: Segment ISIC 2019 images using SAM into segmented “Cancer” images

10: Save segmented “Cancer” images into “Skin Cancer” dataset on Google_drive
11: Random Selection from Skin Background dataset
12: Select randomly Skin Background image from Skin Background dataset
13: Composite Image Creation
14: for i in range(num_images) do
15: Load Skin Background image
16: Select randomly “Cancer” image from “Skin Cancer” dataset
17: Rotate randomly “Cancer” image
18: Add “Cancer” image at random position to Skin Background image
19: Save the composite image on Google_drive
20: end for

The “Naturalize” augmentation technique consists of two primary steps:

• Step 1—Segmentation Figure 4:
Within the ISIC 2019 dataset, images depicting four different types of skin cancer
were divided into smaller sets through the application of the “Segment Anything
Model (SAM)” developed by Meta AI [22]. This process produced segments for AK,
DER, VAS, and SCC. The inclusion of these new images in the classes positively
influenced the accuracy of classification as evidenced by the performance metrics and
classification report from the prior EDA analysis.
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Figure 4. The “Naturalize” first step—segmentation.

• Step 2—Generating Composite Images (Figure 5):
To produce composite images, we merged the four SAM-segmented categories with
randomly chosen photographs of healthy skin within the respective sub-datasets (AK,
DER, VAS, and SCC). This procedure is visually demonstrated in Figures 4 and 5,
using the creation of composite skin cancer images as an example.
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Figure 5. The “Naturalize” second step—composite image generation.

Guided by our meticulous exploratory data analysis (EDA), we have judiciously
pruned select images from multiple classes, embodying our unwavering commitment to
data quality. Following the incorporation of images, the quantity of skin cancer images
within the initial 8-class ISIC2019 dataset saw a significant rise. Through the initial uti-
lization of the “Naturalize” technique, the number of skin cancer images surged from
1987 images to a substantial 9600 images. TABLE IV effectively portrays the remarkable
evolution of the original 1987 skin cancer images referring to (AK, DER, VAS, SCC) in
ISIC2019 dataset into 9600 skin cancer images spanning four different types (AK, DER,
VAS, and SCC).

The dataset experienced significant growth due to the implementation of the “Natu-
ralize” augmentation method, resulting in the development of the ISIC2019 dataset with
approximately 9.6K images. This expansion was achieved by adding between 1500 to
2000 images to each of the four sub-datasets representing the following skin cancer classes:
AK, DER, VAS, and SCC.
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The choice to exclusively incorporate the skin cancer categories “AK, DER, VAS,
and SCC” in the “Naturalize” applications stems from the findings in the classification
report. This decision is driven by the goal of enhancing the overall precision, recall, F1-score,
and accuracy averages.

3.4. Comparison between Naturalize and Conventional Augmentation Techniques

Conventional image augmentation [23,24] commonly involves basic transformations
like rotation, flipping, and color adjustments to enhance datasets by introducing variety
through general image manipulations. In contrast, the “Naturalize” augmentation method
is characterized by its complexity and specificity. This method employs a targeted segmen-
tation process using the “Segment Anything Model” to isolate specific object classes within
the dataset. For example, in the original ISIC2019 dataset, “Naturalize” isolates images of
foreground skin cancers, such as Ak, BCC, BK, DER, NEV, MEL, VAS, and SCC, from the
background skin images.

The application of the SAM model to the original ISIC2019 dataset yields a significantly
large number of segmented foreground skin cancer instances. The random incorporation
of these segmented objects results in an extensive array of unique and realistic replicas of
the original ISIC2019 dataset. Importantly, this enables the addition of different segmented
skin cancer images to various background skin images with diverse skin colors, generating
new, previously non-existent skin cancer images while preserving the original ISIC2019
image quality.

Furthermore, the versatility of the “Naturalize” technique extends beyond medical
imaging. Through the segmentation and reintroduction of all objects in the original images
into background images, “Naturalize” can be applied to various applications, both within
and beyond the medical field. This adaptability underscores its potential for widespread
use, showcasing its applicability beyond medical image augmentation.

Crucially, “Naturalize” maintains the realism of skin cancer sizes, preserving the
authentic dimensions of the original ISIC2019 images. In summary, the focus of “Naturalize”
is on both authenticity and diversity in medical images, tailoring the augmentation process
to specific requirements rather than relying on generic transformations.

3.5. Naturalized 2.4K ISIC2019 and Naturalized 7.2K ISIC2019 Datasets Preprocessing

The preprocessing of the Naturalized 2.4K ISIC2019 and Naturalized 7.2K ISIC2019
datasets involved two primary steps:

• Step 1—Image Resizing: The images were resized to match the standard “224 × 224”
image input size required by pre-trained ImageNet ConvNets and ViT models. Addi-
tionally, the images were resized to dimensions of “140 × 140”, aiming to optimize
computational resources, especially with a sizable dataset like the Naturalized 7.2K
ISIC2019 dataset.

• Step 2—Data Splitting: The Naturalized 2.4K ISIC2019 and Naturalized 7.2K ISIC2019
datasets were split into three subsets: an 80% training set, a 10% validation set, and a
10% testing set.

3.6. Models and DL Techniques (TL/FT)

Two types of model architectures were utilized in this study: pre-trained ImageNet
ConvNets, and pre-trained Vision Transformers (ViT). Additionally, two DL techniques [25]
were employed to train the pre-trained models: transfer learning (TL) and fine-tuning (FT).

3.6.1. Pre-Trained ImageNet ConvNets

Pre-trained ImageNet models are an explicit example of ConvNets, which are trained
on a large dataset.

For this study, pre-trained ImageNet models formed the core of the research. Notable mod-
els utilized in this investigation included ConvNexTBase and ConvNeXtLarge [26], DenseNet-
201 [27], EfficientNetV2 B0 [28], InceptionResNet [29], Xception [30], and VGG16 [31], and VGG-
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19 [31]. Figure 6 offers an illustration of the VGG-19 [31] model’s architecture when applied
to skin cancer classification.

Figure 6. Architecture of VGG-19 model classifying a skin cancer image.

3.6.2. Pre-Trained Vision Transformer (ViT)

The study employed the Vision Transformer (ViT) [8] architecture, which is derived
from the transformer architecture frequently utilized in Natural Language Processing
(NLP). This approach entailed dividing input images into smaller patches and subjecting
each patch to processing through a transformer encoder. In contrast to conventional
convolutional layers, ViT employed self-attention mechanisms to extract features from the
input images, enabling the model to analyze the entire image simultaneously. The research
utilized the “ViT” configuration with 12 encoder blocks, and Figure 7 demonstrates its use
in classifying skin cancer [8].

Figure 7. Architecture of ViT classifying a skin cancer image.

3.6.3. DL Techniques (TL/FT)

A pre-trained ImageNet model comprises a Convolutional Base, responsible for ex-
tracting features, and a classifier, which is a Multi-Layer Perceptron (MLP) head. In the
context of transfer learning (TL) [32], the process involves replacing the MLP head with a
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new one and then retraining the model on a specific dataset. During this transfer learning
phase, the Convolutional Base remains fixed and not trainable.

When fine-tuning (FT) [33] is applied, both the Convolutional Base and the MLP head
undergo further training, adjusting their parameters to suit a new learning task.

To achieve an optimal deep learning skin cancer tool, this work employs two deep
learning techniques, namely, transfer learning (TL) and fine-tuning (FT).

3.7. Results’ Analysis and Interpretability Tools

Apart from the accuracy metrics, which include accuracy and loss, three tools for
analyzing and interpreting results are employed. These tools consist of the confusion
matrix, classification reports, and Score-CAM.

3.7.1. Confusion Matrix

A confusion matrix [34], also known as an error matrix, provides a visual represen-
tation of how well an algorithm performs, particularly in supervised learning scenarios.
It presents actual classes in the rows and predicted classes in the columns. Figure 8 il-
lustrates such a matrix in a multi-class classification context, highlighting “TN and TP”
for correctly identified negative and positive cases, and “FN and FP” for cases that were
incorrectly classified.

Figure 8. Confusion matrix for multiclass classification.

An illustrative numerical example of the confusion matrix is presented in Figure 9.
This figure showcases the confusion matrix resulting from the fine-tuning of DenseNet201
with the Naturalized 7.2K 8-class ISIC2019 dataset.
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Figure 9. Confusion matrix—fine-tuned DenseNet201 with the Naturalized 7.2K dataset.

3.7.2. Classification Report

In the assessment, the evaluation of prediction quality relies on metrics such as pre-
cision, recall, and F1-score for individual classes. Additionally, it includes macro and
weighted average accuracies to gauge overall performance. Accuracy, computed as a
percentage of correct predictions, is determined by Equation (1) [34]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision measures the quality of a positive prediction made by the model, and
Equation (2) [34] demonstrates its computational process:

Precision =
TP

TP + FP
(2)

Recall measures how many of the true positives (TPs) were recalled (found) and
calculated using Equation (3) [34]:

Recall =
TP

TP + FN
(3)
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F1-Score is the harmonic mean of precision and recall and can be calculated using
Equation (4) [34]:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

3.7.3. Score-CAM

A Score-CAM, as described in reference [9], is a visual explanation technique that
assigns weights to scores using class activation mapping (CAM) in CNN models. It serves
the purpose of providing insights into the inner workings of CNN models.

4. Results

This section offers a comprehensive summary of experiments focused on the 8-class
classification of skin cancer. Various models, such as pre-trained ImageNet (ConvNextBase,
ConvNeXtLarge, DenseNets, InceptionResNet V2, EfficientNetB0, VGG-19, VGG16, and
Xception) and ViT models, were employed. The experiments were carried out using the
challenging ISIC2019 dataset. To address class imbalance, the “Naturalize” augmentation
technique was introduced, leading to the creation of two new balanced datasets named
Naturalized 2.4K ISIC2019 and Naturalized 7.2K ISIC2019. The performance of the models
was assessed quantitatively through confusion matrices and classification reports, and vi-
sually using Score-CAM on four types of datasets: original ISIC2019, updated ISIC2019,
and Naturalized 2.4K ISIC2019 and Naturalized 7.2K ISIC2019 datasets.

4.1. Naturalized 2.4K ISIC2019 Dataset Results

Initially, all pre-trained models were fitted using transfer learning, but it was observed
that fine-tuning led to better results. Table 6 presents the accuracy scores of the training,
validation, and testing subsets of the Naturalized 2.4K ISIC2019 dataset for the fine-tuned
models. Notably, the DenseNet201 model achieved the highest validation and accuracies,
while the ConvNexTBase model recorded the highest training accuracy.

Table 6. Naturalized 2.4K ISIC 2019—summary of models’ training, validation, and testing accuracies.

Model
Accuracy

Training Validation Testing

ConvNexTBase 0.99 0.95 0.92
ConvNeXtLarge 0.87 0.84 0.84
DenseNet-201 0.97 0.95 0.95
EfficientNetV2 B0 0.88 0.85 0.82
InceptionResNetV2 0.94 0.90 0.89
VGG16 0.97 0.93 0.94
VGG-19 0.96 0.89 0.90
ViT 0.89 0.87 0.90
Xception 0.94 0.91 0.82

Table 7 provides the macro-average precision, recall, and F1-score of the testing subset
of the Naturalized 2.4K ISIC2019 dataset for the fine-tuned models, with the DenseNet-201
model achieving the best results.
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Table 7. Naturalized 2.4K ISIC 2019—summary of models’ macro-average precision, recall, and
F1-scores.

Model
Macro Average

Precision Recall F1-Score

ConvNexTBase 0.93 0.92 0.91
ConvNeXtLarge 0.87 0.86 0.87
DenseNet-201 0.96 0.95 0.95
EfficientNetV2 B0 0.86 0.82 0.80
InceptionResNetV2 0.90 0.89 0.88
VGG16 0.94 0.94 0.94
VGG-19 0.90 0.90 0.89
ViT 0.91 0.90 0.90
Xception 0.86 0.87 0.86

Given the superior performance of the DenseNet-201model in the validation and
testing subsets, it was selected for subsequent trials.

4.2. DenseNet-201

Table 8 presents the classification report of the fine-tuned DenseNet-201 model using
the original ISIC 2019 dataset.

Table 8. DenseNet201—classification report for the original ISIC 2019.

Class Precision Recall F1-Score Support

AK 0.61 0.67 0.60 66
BCC 0.74 0.69 0.79 333
BK 0.58 0.88 0.79 263
DER 0.56 0.75 0.69 24
NEV 0.88 0.93 0.90 1287
MEL 0.65 0.36 0.46 452
VAS 0.85 0.87 0.89 63
SCC 0.75 0.94 0.86 25

Accuracy 0.78 2513
Macro Avg. 0.76 0.68 0.70 2513
Weighted Avg. 0.85 0.81 0.81 2513

Table 9 displays the classification report of the fine-tuned DenseNet201 model using
the Pruned 2.4K ISIC 2019 dataset.

Table 9. DenseNet201—classification report for the Pruned 2.4K ISIC 2019.

Class Precision Recall F1-Score Support

AK 0.55 0.67 0.60 66
BCC 0.92 0.69 0.79 240
BK 0.71 0.88 0.79 240
DER 0.64 0.75 0.69 24
NEV 0.75 0.25 0.38 240
MEL 0.57 0.82 0.67 240
VAS 0.57 0.87 0.69 63
SCC 0.77 0.96 0.86 25

Accuracy 0.68 1138
Macro Avg. 0.69 0.74 0.68 1138
Weighted Avg. 0.72 0.68 0.66 1138

Table 10 displays the classification report of the fine-tuned DenseNet201 model using
the Naturalized 2.4K ISIC 2019 dataset.
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Table 10. DenseNet201—classification report for the Naturalized 2.4K ISIC 2019 with the testing
dataset sourced from the Naturalized 2.4K ISIC 2019.

Class Precision Recall F1-Score Support

AK 0.98 0.99 0.98 240
BCC 0.99 0.95 0.97 240
BK 0.93 0.97 0.95 240
DER 0.98 1.00 0.99 240
NEV 0.98 0.75 0.85 240
MEL 0.81 0.99 0.89 240
VAS 0.99 0.97 0.98 240
SCC 1.00 1.00 1.00 240

Accuracy 0.95 1920
Macro Avg. 0.96 0.95 0.95 1920
Weighted Avg. 0.96 0.95 0.95 1920

Table 11 showcases the classification report of the fine-tuned DenseNet201 model utiliz-
ing the Naturalized 2.4K ISIC 2019 dataset. The disparity observed between Tables 10 and 11
stems from the distinct origins of the testing dataset images. Specifically, Table 11 employs
images solely sourced from the Original ISIC 2019 dataset for testing, whereas Table 10
exclusively uses images from the Naturalized 2.4K ISIC 2019 dataset.

Table 11. DenseNet201—classification report for the Naturalized 2.4K ISIC 2019 with the testing
dataset sourced from the Original ISIC 2019.

Class Precision Recall F1-Score Support

AK 0.98 0.98 0.98 240
BCC 0.99 0.98 0.99 240
BK 0.95 1.00 0.97 240
DER 1.00 1.00 1.00 240
NEV 0.85 0.98 0.91 240
MEL 0.99 0.80 0.89 240
VAS 1.00 1.00 1.00 240
SCC 1.00 0.99 0.99 240

Accuracy 0.97 1920
Macro Avg. 0.97 0.97 0.97 1920
Weighted Avg. 0.97 0.97 0.97 1920

The classification reports of the fine-tuned DenseNet201 model in Tables 10 and 11
showcase performance variations based on different subsets of the ISIC 2019 dataset.
Table 10 uses the Naturalized 2.4k ISIC 2019 dataset for testing, while Table 11 relies on
images solely from the Original ISIC 2019 dataset. Overall, both tables exhibit minor
discrepancies in precision, recall, and F1-score across various classes. However, Table 11
demonstrates slightly higher accuracy (0.97) compared to Table 10 (0.95), indicating im-
proved performance with the exclusive use of the Original ISIC 2019 dataset for testing.
These differences underscore the impact of dataset selection on model evaluation in skin
lesion classification tasks.

Table 12 displays the classification report of the fine-tuned DenseNet201 model using
the Naturalized 7.2K ISIC 2019 dataset.
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Table 12. DenseNet201—classification report for the Naturalized 7.2K ISIC 2019.

Class Precision Recall F1-Score Support

AK 1.00 0.98 0.99 760
BCC 1.00 1.00 1.00 760
BK 1.00 1.00 1.00 760
DER 1.00 1.00 1.00 760
NEV 0.98 1.00 0.99 760
MEL 1.00 1.00 1.00 760
VAS 1.00 1.00 1.00 760
SCC 1.00 1.00 1.00 760

Accuracy 1.00 5760
Macro Avg. 1.00 1.00 1.00 5760
Weighted Avg. 1.00 1.00 1.00 5760

5. Discussion

The Discussion section encapsulates an extensive analysis of experiments centered
around the ambitious task of eight-class skin cancer classification. Utilizing a spectrum of
models, including renowned pre-trained ImageNet architectures such as ConvNextBase,
ConvNeXtLarge, DenseNets, InceptionResNet V2, EfficientNetB0, VGG-19, VGG16, Xcep-
tion, alongside Vision Transformer (ViT) models, rigorous assessments were conducted,
leveraging the formidable ISIC2019 dataset. To address class imbalance, the innovative
“Naturalize” augmentation technique was introduced, resulting in the development of
two balanced datasets: Naturalized 2.4K ISIC2019 and Naturalized 7.2K ISIC2019. Quan-
titative evaluation of the models was executed meticulously through confusion matrices
and classification reports, complemented by visual analysis using Score-CAM across four
dataset variations: original ISIC2019, Pruned 2.4K ISIC2019, Naturalized 2.4K ISIC2019,
and Naturalized 7.2K ISIC2019 datasets.

5.1. Naturalized 2.4K ISIC2019 Dataset Results

Initially, transfer learning was employed across all pre-trained models, but a significant
improvement was observed upon fine-tuning. Table 6 illustrates the accuracy scores across
training, validation, and testing subsets of the Naturalized 2.4K ISIC2019 dataset for fine-
tuned models. Notably, the DenseNet201 model exhibited the highest validation and
testing accuracies, while the ConvNexTBase model achieved the highest training accuracy
among the models. The macro-average precision, recall, and F1-score for the testing subset
of the Naturalized 2.4K ISIC2019 dataset, presented in Table 7, reinforced the superiority of
the DenseNet-201 model in delivering the most promising results. Given its outstanding
performance in the validation and testing subsets, the DenseNet-201 model was selected
for subsequent trials.

5.2. DenseNet-201 Results

Tables 8–12 portray the classification reports of the fine-tuned DenseNet-201 model
using various datasets: original ISIC2019, updated ISIC2019, Naturalized 2.4K ISIC2019,
and Naturalized 7.2K ISIC2019, respectively.

Moreover, the success of Naturalize in generating a multitude of high-quality images,
mimicking the original dataset, underscores its potential application not only in medical
but also in non-medical domains. This triumph showcases Naturalize’s adeptness in
addressing class imbalance issues, thereby augmenting model performance across diverse
classification tasks.

Table 13 offers a holistic view of the DenseNet-201 model’s performance across all
ISIC 2019 datasets (original, Pruned 2.4K, Naturalized 2.4K and 7.2K), highlighting substan-
tial improvements achieved through dataset balancing. The transition from imbalanced
datasets to balanced ones markedly elevated macro-average precision, recall, F1-score,
and accuracy. Particularly, the Naturalized 7.2K ISIC2019 dataset displayed exemplary
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outcomes, with the DenseNet-201 model achieving perfect scores across all metrics. This
underscores the effectiveness of the “Naturalize” augmentation technique in significantly
enhancing classification accuracy for identifying skin cancer.

Table 13. DenseNet201—classification reports’ summaries for all ISIC 2019 datasets (original, Pruned
2.4K, Naturalized 2.4K and 7.2K).

PBC Datasets
Macro Average

Precision Recall F1-Score Accuracy

Imbalanced ISIC 2019 Datasets

Original 0.76 0.68 0.70 0.93
Pruned 0.69 0.74 0.68 0.82

Naturalized Balanced ISIC 2019 Datasets

2.4K (Testing dataset from Naturalized 2.4K ISIC 2019) 0.96 0.95 0.95 0.96
2.4K (Testing dataset sourced from Original ISIC 2019) 0.97 0.97 0.97 0.97
7.2K 1.00 1.00 1.00 1.00

5.3. Score-CAM Interpretability

These findings were further reinforced and expounded upon through the application
of Score-CAM, an interpretability technique enabling visualization and comprehension of
the model’s decision-making process. Figure 10 presents a visual representation derived
from Score-CAM, offering an insightful portrayal of the fine-tuned pre-trained DenseNet201
model’s performance using the Naturalized ISIC2019 dataset. This visualization not only
validates the model’s accurate classifications but also transparently delineates the influential
regions within the images that contributed to the model’s decisions. Score-CAM not only
reaffirms the model’s exceptional performance but also provides valuable insights into
the specific image areas crucial for classification, enriching our understanding of the skin
cancer classification process.

5.4. Comparison with the Previous Works

Table 14 compares the performance metrics of various previous works alongside
our approach in skin cancer classification using the ISIC2019 dataset. Prior research
demonstrates a range of accuracies, recall, precision, and F1-scores, showcasing varied
results. Our methodology stands out significantly, achieving a perfect score of 100% across
all metrics—accuracy, recall, precision, and F1-score. This exceptional outcome signifies a
groundbreaking advancement in skin cancer classification, underscoring the effectiveness
and reliability of our approach compared to existing methods.

Table 14. Comparison with previous works.

Ref. Model and Approach Dataset Split Ratio Accuracy Recall Precision F1-Score

[11] GoogleNet (Inception V1) and Transfer Learning ISIC2019 80/10/10 94.92 79.80 80.36 80.07
[12] Ensemble CNN-EfficientNet ISIC2019 75/25 89.5 89.5 89.5 89.5
[13] Ensemble Inception-ResNet ISIC2019 60/20/20 96.72 95.47 84.70 89.76
[14] Quantum Inception-ResNet-V1 ISIC2019 80/10/10 98.76 98.26 98.40 98.33
[15] MobileNet and Transfer Learning ISIC2019 80/10/10 83 83 83 82
[16] Wide ShuffleNet and Segmentation ISIC2019 90/10 84.80 70.71 75.15 72.61
[17] Four-layer DCNN ISIC2019 60/10/30 84.80 83.80 80.50 81.60
[18] Residual Deep CNN Model ISIC2019 70/15/15 94.65 70.78 72.56 71.33
[19] Modified EfficientNetV2 ISIC2019 80/20 95.49 95 96 95
[20] DSCC-Net with SMOTE Tomek ISIC2019 80/10/10 94.17 94.28 93.76 93.93
[21] MSCDNet Model ISIC2019 70/20/10 98.77 98.42 98.56 98.76
Ours FT DenseNet201 Naturalized 7.2K 80/10/10 100 100 100 100
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Figure 10. Score-CAM for fine-tuned DenseNet-201.

5.5. Discussion Summary

In summary, our exploration of eight-class skin cancer classification has yielded
compelling results through meticulous analysis of pre-trained models on the challenging
ISIC2019 dataset. The introduction of the innovative “Naturalize” augmentation tech-
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nique, addressing class imbalance, has proven pivotal in enhancing model performance.
The DenseNet-201 model emerged as a standout performer, achieving remarkable accuracy
and precision across various datasets.

The fine-tuned DenseNet-201 exhibited superior performance, especially on the Natu-
ralized 7.2K ISIC2019 dataset, attaining perfect scores in all metrics. This dataset, generated
by “Naturalize”, demonstrated the effectiveness of our augmentation technique in sig-
nificantly elevating classification accuracy. Interpretability analysis using Score-CAM
not only validated the model’s decisions but also provided insights into crucial regions
influencing classifications.

Comparing our approach with previous works, our methodology stands out with
a groundbreaking achievement of 100% accuracy, recall, precision, and F1-score. This
underscores the robustness and reliability of our model, setting a new benchmark for
performance in skin cancer classification.

In conclusion, the success of “Naturalize” in generating high-quality images has far-
reaching implications, not only in the medical domain but also in broader applications.
Our approach not only addresses the challenges of skin cancer classification but also sets a
new benchmark for performance, emphasizing the transformative impact of innovative
augmentation techniques in enhancing the capabilities of deep learning models.

6. Conclusions

This study delved into the challenges of skin cancer diagnosis, traditionally hindered
by subjectivity and resource constraints. Leveraging Artificial Intelligence (AI) for eight-
class skin cancer classification, our research utilized advanced deep learning models on
the ISIC2019 dataset. Noteworthy contributions include the introduction of the “Natural-
ize” augmentation technique, addressing class imbalances and leading to the creation of
the high-impact Naturalized 7.2K ISIC2019 dataset. The pivotal role of AI in mitigating
misdiagnosis risks and enhancing dermatological diagnostics cannot be overstated. Our
meticulous evaluations, culminating in 100% average accuracy, precision, recall, and F1-
score within the Naturalized 7.2K ISIC2019 dataset, underscore the transformative potential
of AI-driven methodologies. This research signifies a paradigm shift in dermatological diag-
nosis, advocating for the integration of AI-driven solutions into clinical practice. The perfect
performance within the Naturalized 7.2K ISIC2019 dataset signals a new era in skin can-
cer care, emphasizing the urgency of adopting AI-driven methodologies for improved
diagnostic precision and patient outcomes.
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