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Abstract: Multiwalled carbon nanotubes (MWCNTs) exhibit outstanding physical properties, includ-
ing high thermal conductivity, excellent mechanical strength, and low electrical resistivity, which
make them suitable candidates for a variety of applications. The work presented in this paper focuses
on the pool boiling performance of refrigerant R-134a on microporous Cu-MWCNT composite sur-
face layers. A two-stage electrodeposition technique was used to fabricate Cu-MWCNT composite
coatings. In order to achieve variation in the surface properties of the Cu-MWCNT composite surface
layer, electrodeposition was carried out at various bath temperatures (25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C).
All surfaces coated with the Cu-MWCNT composite demonstrated superior boiling performance
compared to the uncoated surface. Heat transfer coefficient (HTC) values for Cu-MWCNT com-
posite surface layers, prepared at bath temperatures of 25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C, exhibited
improvements of up to 1.75, 1.88, 2.06, and 2.22, respectively, in comparison to the plain Cu surface.

Keywords: HTC; pool boiling; electrodeposition; MWCNTs; R-134a

1. Introduction

In the past few decades, awareness about the importance of reducing energy use and
protecting the environment has increased in response to the greenhouse effect generated by
the burning of fossil fuels [1,2]. The Intergovernmental Panel on Climate Change’s (IPCC)
sixth assessment report emphasizes the urgency of taking action to reduce greenhouse gas
emissions and limit global warming [3]. Greenhouse warming can be reduced by improving
the efficiency of energy conversion devices. To achieve this objective, the performance of
heat transfer in air-conditioning and refrigeration equipment has to be increased. Because
of the high heat removal capacity, boiling heat transfer (BHT) has been used in several
thermal management systems [4]. Recently, BHT has been proposed as a solution for
systems with extremely high heat flux in a very compact volume. Therefore, boiling heat
dissipation is extensively employed in various industrial sectors, including batteries for
electric vehicles, electronic gadgets, boilers, nuclear power plants, and reactors [5].

In recent years, there has been a significant amount of research on methods for im-
proving passive pool BHT with microscale surface cavities, porous coatings, and the
growth of dendrite structures [6]. Active cavities are those cavities containing trapped
non-condensable gases that usually generate bubbles [7]. A microporous coating is one
of the best ways to improve pool BHT because it has more active cavities on the heating
surface [8]. Microporous surfaces have been extensively researched in the literature. An-
derson et al. [9] fabricated a microporous surface by vapor blasting on the Cu test surface,
yielding a 170% increase in critical heat flux (CHF) with FC-87. Bergles et al. [10] used a
proprietary method to fabricate porous surfaces on the bronze substrate, yielding 250%
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enhancement in heat transfer coefficient (HTC) with water and up to 8 times enhancement
with refrigerants. Sugiyama et al. [11] examined the pool BHT performance of R-114 on
various surfaces. They discovered that the augmentation with porous heat transfer surface
was only significant at low values of heat flux.

Numerous techniques, such as spray coating [12], RF sputtering [13], electrodeposi-
tion [14], PVD [15], e-beam evaporation [16], CVD [17], and dip coating [18], have been used
to fabricate microporous coatings. Electrodeposition is preferred over available techniques
for the preparation of microporous coatings on metallic heating surfaces because of its
simplicity, controllability, and cost-effectiveness [19,20]. Gheitaghy et al. [21] systematically
studied nanostructured microporous surfaces fabricated by electrodeposition techniques
by varying electrolyte temperatures. Results showed that the HTC of the nanostructured
microporous surface was 270% higher than that of the bare copper surface. Gupta et al. [22]
prepared Cu-TiO2 nanocomposite coatings by a two-step electrodeposition method. They
found a significant augmentation of 185% in HTC and an increase of 86% in CHF compared
with the bare copper surface. Protich et al. [23] developed a copper–graphene composite
using an electrodeposition technique and reported augmentation of 66% in CHF. Katarkar
et al. [19] fabricated microporous Cu-graphene composite coatings and attained a 97% in-
crease in HTC relative to the bare Cu surface. Shakeri et al. [24] created hierarchical pattern
heating surfaces using a combination of six-stage electrodeposition and photolithography
techniques and achieved an improvement of about 119% in HTC compared to the bare
surface. During electrodeposition, the surface roughness and porosity of copper coating can
be tailored by varying the process parameters such as temperature, pH, current density, and
rate of magnetic stirring [25]. In order to further enhance the pool BHT, the reinforcement
of graphene oxide [26], graphene nanoplatelet [19], aluminum oxide [27], and titanium
oxide [22] particles into copper matrix coatings have been used. Multiwalled carbon nan-
otubes (MWCNTs), a member of the carbon group, have extraordinary mechanical, thermal,
thermodynamic, and electrochemical properties [28]. This study presents a microporous
Cu-MWCNT composite heating surface that synergistically combines the high thermal
conductivity of copper with the unique properties of MWCNTs. The reinforcement of
MWCNTs into the copper matrix may help in enhancing the pool BHT performance. This
advancement could revolutionize fields like electronics cooling, power generation, and
thermal management in demanding industrial processes. However, the pool BHT perfor-
mance on two-stage electro-co-deposited Cu-MWCNT composite coatings with R-134a is
not studied yet.

In this research, MWCNT-reinforced Cu matrix (Cu-MWCNT) composite coatings
were fabricated by varying bath temperatures (25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C) using a
two-stage electrodeposition technique, and the pool BHT performance of R-134a on coated
surfaces was examined. The effect of bath temperature on surface morphology, elemental
composition, roughness, porosity, and wettability of Cu-MWCNT composite coatings
was investigated. The microporous Cu-MWCNT composite-coated surfaces are prepared
with the aim of reducing the energy loss from thermal systems and demonstrating their
suitability for energy-saving applications.

2. Surface Preparation and Characterization
2.1. Materials

Copper sulfate pentahydrate (CuSO4·5H2O) and sulfuric acid (H2SO4) were obtained
from Merck Life Science, Bengaluru, India. The MWCNTs (length = 1–10 µm, inner
diameter = 2–6 nm, outer diameter = 10–15 nm, and purity = 90%) were received from
Sigma-Aldrich, Bengaluru, India.

2.2. Two-Stage Electrodeposition

The copper substrates were ground with 120-, 400-, 800-, 1200-, and 2000-grade water-
proof abrasive paper, and subsequently, cleaning was carried out using acetone to remove
oil and similar dirt. After that, the copper substrates were washed with deionized (DI)
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water and dried. The obtained substrate was considered as an uncoated Cu heating surface
(surface roughness = 0.08 ± 0.02 µm) and also used to deposit composite coatings in the
present work. The Cu-MWCNTs electroplating solution consisted of 100 g/L CuSO4·5H2O,
5–30 g/L H2SO4, 50 mg/L MWCNTs, and 500 mL DI water. The details of the operating
conditions employed for the two-stage electrodeposition process are listed in Table 1. The
cleaned copper substrate with the dimension of Ø 9.0 mm was employed as a cathode,
and a pure copper plate (99.95%) was utilized as an anode. Prior to the deposition process,
the plating solution was stirred to disperse the MWCNTs in the plating solution using a
magnetic stirrer at 300 rpm for 1 h. After this, ultrasonic oscillation (20 kHz, 500 W) was
provided for 45 min to evenly disperse MWCNTs in the electrolyte bath. The pH value of
the bath was adjusted to 2 by adding H2SO4. The electrodeposition of Cu-MWCNT com-
posite coatings was carried out at various electrolyte bath temperatures using a two-stage
electrodeposition technique, as shown in Figure 1. The higher current density (0.2 A/cm2)
was applied in the first stage for 60 s to form a microporous coating, and subsequently,
a low current density was used for 0.5 h to provide more strength to the microporous
structure. The evaluation of hydrogen bubbles on the surface of the coating was clearly
observed during the deposition process.

Table 1. Processing parameters employed during two-stage electrodeposition.

Process Parameters Range

pH 2
Bath Temperature 25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C,

Ultrasonic treatment 20 kHz, 500 W for 45 min
Magnetic stirring 300 rpm

Electrodeposition time 60 s (1st stage); 30 min (2nd stage)
Current density 0.2 A/cm2 (1st stage); 0.05 A/cm2 (2nd stage)

Thermo 2024, 4, FOR PEER REVIEW  3 
 

 

2.2. Two-Stage Electrodeposition 
The copper substrates were ground with 120-, 400-, 800-, 1200-, and 2000-grade wa-

terproof abrasive paper, and subsequently, cleaning was carried out using acetone to re-
move oil and similar dirt. After that, the copper substrates were washed with deionized 
(DI) water and dried. The obtained substrate was considered as an uncoated Cu heating 
surface (surface roughness = 0.08 ± 0.02 µm) and also used to deposit composite coatings 
in the present work. The Cu-MWCNTs electroplating solution consisted of 100 g/L 
CuSO4·5H2O, 5–30 g/L H2SO4, 50 mg/L MWCNTs, and 500 mL DI water. The details of the 
operating conditions employed for the two-stage electrodeposition process are listed in 
Table 1. The cleaned copper substrate with the dimension of Ø 9.0 mm was employed as 
a cathode, and a pure copper plate (99.95%) was utilized as an anode. Prior to the deposi-
tion process, the plating solution was stirred to disperse the MWCNTs in the plating so-
lution using a magnetic stirrer at 300 rpm for 1 h. After this, ultrasonic oscillation (20 kHz, 
500 W) was provided for 45 min to evenly disperse MWCNTs in the electrolyte bath. The 
pH value of the bath was adjusted to 2 by adding H2SO4. The electrodeposition of Cu-
MWCNT composite coatings was carried out at various electrolyte bath temperatures us-
ing a two-stage electrodeposition technique, as shown in Figure 1. The higher current den-
sity (0.2 A/cm2) was applied in the first stage for 60 s to form a microporous coating, and 
subsequently, a low current density was used for 0.5 h to provide more strength to the 
microporous structure. The evaluation of hydrogen bubbles on the surface of the coating 
was clearly observed during the deposition process. 

Table 1. Processing parameters employed during two-stage electrodeposition. 

Process Parameters Range 
pH 2 

Bath Temperature 25 °C, 30 °C, 35 °C, 40 °C, 
Ultrasonic treatment 20 kHz, 500 W for 45 min 

Magnetic stirring 300 rpm 
Electrodeposition time 60 s (1st stage); 30 min (2nd stage) 

Current density 0.2 A/cm2 (1st stage); 0.05 A/cm2 (2nd stage) 

 
Figure 1. Schematic diagram of two−stage electrodeposition. 

2.3. Characterization of Cu-MWCNT Composite Coatings 
The morphologies and compositions of MWCNT and Cu-MWCNT composite coat-

ings were examined by an FEI-Apreo-S scanning electron microscope with energy-disper-
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Figure 1. Schematic diagram of two−stage electrodeposition.

2.3. Characterization of Cu-MWCNT Composite Coatings

The morphologies and compositions of MWCNT and Cu-MWCNT composite coatings
were examined by an FEI-Apreo-S scanning electron microscope with energy-dispersive
spectroscopy (SEM/EDS, FEI, Delhi, India). The thicknesses of prepared coatings were
gauged using a laser ellipsometer (Sentech, Mumbai, India). The roughness curve for
Cu-MWCNT composite coatings was determined by a 2D profilometer (Taylor Habsons,
Bengaluru, India). ImageJ software (1.54d) was employed to determine the porosity of the
coating surface.
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3. Experimental Setup and Procedure
3.1. Pool Boiling Experimental Setup

Figure 2 shows the essential components and apparatus used in the pool boiling
experiments. The experimental setup consisted of a condensation unit, thermocouples, an
electrical source, a copper block that served as the heater, and a cylindrical boiling vessel.
The cylindrical boiling vessel (volume ≈ 4.48 L) was made of steel. It had two circular
observation windows on either side, which were covered with Pyrex glass to allow for
observation of the internal heating phenomenon. The vessel was sealed with two round
steel flanges, one at the top and one at the bottom. A refrigerant injection device was
mounted on the upper flange. The condensation coil condenses the evaporated vapor and
helps to maintain the boiling vessel at the saturated level. The pressure of the heating vessel
was monitored with a pressure gauge. The applied pressure of the saturation fluid was
controlled by the electrical pressure limiter and controller, known as the pressure valve,
within a specified pressure range. The boiling liquid in the pool was heated to a saturation
temperature using a secondary heater. Appropriate exterior insulation made of glass fiber
was used on the heating vessel to maintain isothermal conditions. To prevent heat from
transferring from the copper blocks to the heating vessel, a Teflon ring was used to seal the
joint between the bottom flanges of the heating vessel and the copper block. The cartridge
heater was connected to a variac to control the heating power. The copper-heated blocks
were placed over the lower portion of the test surface area. Three K-type thermocouples
were inserted into the heating element at an angular distance of 120 degrees to monitor the
temperature and heat flow of the test surface. To accurately measure the liquid’s saturation
temperature, another thermocouple was installed in the liquid.
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3.2. Experimental Procedure

Refrigerant R-134a was used to investigate the pool BHT of uncoated copper and
coated Cu-MWCNT composite surface layers. The thermophysical fluid properties of
R-134a are obtained from Ref. [29]. Acetone was used to rinse the heating boiling chamber
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before each run of testing. The testing surface was mounted at the lower flange of the
heating vessel. After installation, nitrogen gas was introduced into the vessel to check
for leaks. Once the unit was confirmed to be leak-proof, R-134a coolant was added to the
boiling vessel. The refrigerant R-134a was boiled for two hours using an additional heater
to remove any dissolved gases. The pool BHT of R-134a was evaluated at a steady pressure
ratio

(
Operating pressure

Critical pressure

)
of 0.102 and an equilibrium temperature of 10 ◦C. During all the

tests, the data points were taken in the order of increasing heat flux ranging from 7 to
60 kW/m2 in the pool of 10 ◦C. The mass flow rate of the condensing liquid from the water
chiller was adjusted for each power input to maintain a constant pressure in the system.
The same experimental protocol was followed for each test surface. After each experiment,
the test surface and coolant R-134a were removed from the boiling vessel.

4. Data Reduction and Uncertainty Analysis
4.1. Data Reduction

The schematic diagram of the heating section to measure the heat fluxes is shown in
Figure 3a. In order to minimize heat losses in the radial direction and provision of 1D heat
flow, the heating section was insulated with mineral insulation tape, polyethylene foam,
and glass wool. To minimize the contact resistance, a thin layer of thermal grease was
applied between the heating surface and the copper heating block. The entire assembly is
then secured tightly inside a Teflon bush using a nut and bolt locking mechanism. Hence,
in the present study, the contact resistance between the heating surface and the copper
heating block is assumed to be neglected. The resistance diagram, shown in Figure 3b, was
used to calculate the surface temperatures. Please note that Figure 3b is not drawn to scale.
The rates of heat transfer (Q) in various sections (A), (B), (C), (D), and (E) were determined
using Fourier’s law of heat conduction equation along the axial direction of heating section,
represented by Equations (1), (2), (3), (4) and (5), respectively.

QA = kAA
T3 − T4

X1
(1)

QB = kAB
T4 − T5

X2
(2)

QC = kAC
T5 − T6

X3
(3)

QD = kAD
T6 − T7

X4
(4)

QE = kAE
T7 − TS

X5
(5)

where k is thermal conductivity, A is the area of the section, and X is the section length.
The surface temperature (T S) was determined by Equation (6):

TS = T3 −
VI
k

(
X1

AA
+

X2

AB
+

X3

AC
+

X4

AD
+

X5

AE

)
(6)

Heat flux (q) was determined by Equation (7):

q =
Q
AE

(7)

The BHT coefficient can be obtained by Equation (8):

h =
q

Ts − Tsat
(8)

where Tsat is the saturation temperature of the working fuid (R-134a).
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4.2. Uncertainty Analysis

Uncertainty analysis of the measuring devices and experimental data was performed
using the methodology proposed by Schultz and Cole [30].

Mathematically, Uy =

[
∑n

i=1

{(
∂y
∂xi

)
Uxi

}2
] 1

2

(9)

where Uxi is uncertainty associated with xi, and y is the calculated parameter.
The systematic errors for temperature, voltage, length, and current measurements were

determined to be ±0.1 ◦C, ±0.01 V, ±1.0 mm, and ±0.002 A, respectively. The calculated
uncertainties for wall superheat (∆T), heat transfer coefficient (h), and heat flux (q) were
±7.8%, ±8.2%, and ±3.2%, respectively.

5. Results and Discussion
5.1. Surface Characterization of Cu-MWCNT Composite Coatings

The FE-SEM images of the Cu-MWCNT composite surface layers deposited at various
bath temperatures are depicted in Figure 4. At low bath temperatures (25 ◦C and 30 ◦C), the
surface of the Cu-MWCNT composite appears relatively smooth, as seen in Figure 4a–d.
With an increase in bath temperature (35 ◦C and 40 ◦C), the Cu-MWCNT composite
coating grows relatively quickly, resulting in high surface roughness and larger particle
size (see Figure 4e–h). The existence of micropores is clearly observed in Figure 4g,h. This
is mainly due to the fast crystallization of the composite coating in a high-temperature
environment. The EDS element distribution map and corresponding EDS spectrum of
Cu-MWCNT composite coating deposited at 40 ◦C are shown in Figure 5a,b. As shown
in Figure 5, Cu and C elements are uniformly distributed in the Cu-MWCNT composite
coating, confirming the reinforcement of MWCNTs into the copper matrix. The effect of
various bath temperatures on coating thickness and surface properties, such as surface
roughness and porosity, is also studied. The porosity, surface roughness, and thickness of
Cu-MWCNT composite coatings increase as the bath temperature increases (Table 2). This
is mainly due to the rise in the deposition rate of Cu2+ with an increase in bath temperature
from 25 ◦C to 40 ◦C. The maximum average surface roughness of 36 µm was obtained in
the Cu-MWCNT composite coating at 40 ◦C, as shown in Figure 6.
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Table 2. Porosity, surface roughness, and thickness of Cu-MWCNT composite coatings.

Coating Porosity (%) Surface Roughness
(µm) Thickness (µm)

Cu-MWCNTs (25 ◦C) 32 ± 4 0.18 ± 0.04 14 ± 4
Cu-MWCNTs (30 ◦C) 38 ± 5 0.25 ± 0.04 18 ± 4
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5.2. Analysis of Pool Boiling Curves

Figure 7 illustrates the variations of the heat flux (q) in relation to the wall superheat
(∆T). The boiling heat transfer curves obtained in the current experimental setup for Cu-
MWCNT composite surface layers prepared at different bath temperatures display various
shapes, mainly due to the combination of heat transfer surface properties and the thermal
properties of the boiling refrigerant. The Cu-MWCNT composite coating electrodeposited
at a bath temperature of 40 ◦C exhibited a higher heat transfer rate than the uncoated
Cu surface at the same value of wall superheat. With an increase in bath temperature
from 25 ◦C to 40 ◦C, the Cu-MWCNT composite surface layer showed a further increase
in the boiling performance. The Cu-MWCNT composite coating (40 ◦C) achieved a wall
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superheat value of around 4.14 K. This wall superheat value was significantly lower than
that of the plain Cu plate, which attained its wall superheat value of about 8.80 K. It was
reported that heat transfer performance of microporous coated heat transfer surfaces was
significantly affected by factors such as coating thickness, surface roughness, porosity, and
the thermo-physical characteristics of the boiling fluid as evidence of previous work [31].
For R-134a, the Cu-MWCNT composite coating (40 ◦C) demonstrated the lowest wall
superheat as compared to all other heating surfaces. This may be because of the larger heat
transfer area and the presence of micropores on the surface Cu-MWCNT composite coating
(see Figure 4g,h).
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The variation of the heat transfer coefficient (h) with respect to heat flux (q) for Cu-
MWCNT composite surface layers prepared at different bath temperatures is represented in
Figure 8. Compared with the bare Cu heating surface, the Cu-MWCNT composite coatings
electrodeposited at different bath temperatures had significantly higher values of the heat
transfer coefficient at the same values of heat flux. The Cu-MWCNT composite coating
(40 ◦C) achieved the highest heat transfer coefficient of approximately 8.44 kW/m2·K
at a heat flux of 59.46 kW/m2, with a significantly lower wall superheat value (around
7.04 K) compared to the plain Cu plate. The plain Cu plate attained its higher heat flux
of 3.96 kW/m2·K at the same heat flux value but with a much higher wall superheat
value (around 15 K). The enhanced performance can be attributed to two main factors: the
increased heat transfer area of the two-stage electrodeposited composite surfaces and the
presence of microporosity. This microporosity facilitates the flow of refrigerant toward the
heating surface and the escape of vapor from the coated surface by providing a network of
interconnected void spaces.

Figure 9 illustrates the variation in the enhancement ratio
(

hER = hcoated
huncoated

)
as a func-

tion of heat flux. It can be seen from Figure 9 that the maximum hER values for Cu-MWCNT
composite coatings electrodeposited at bath temperatures of 25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C
are 1.75, 1.88, 2.06, and 2.22, respectively, over the bare Cu surface. However, for composite-
coated surfaces, the values of the highest hER were achieved before the test maximum heat
flux was reached.
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5.3. Comparison of the Present Work with Previous Ones

The comparison of the present work with other previously reported microporous
heating surfaces in terms of HTC improvement is listed in Table 3. As observed from Table 3,
the experimental results for the prepared Cu-MWCNT composite surface layers were
similar to or better than the results for the other heating surfaces. This comparison reveals
that the Cu-MWCNT composite surface layer fabricated by the two-stage electrodeposition
technique is particularly well suited for real-world boiling heat transfer applications owing
to the increased nucleation site density, a larger surface area, and increased capillary-
assisted liquid supply.



Thermo 2024, 4 26

Table 3. Comparative assessment of this work with published literature.

Coating Base
Material Working Fluid Coating Method Remark Ref.

Cu-MWCNTs Cu R-134a Two-step
electrodeposition HTC increased by 122% Present

work

Al@GNPs Al R-134a Mechanical milling, screen
printing, and sintering HTC increased by 143% [32]

Graphene/CNT Cu DI water Self-assembling HTC increased by 100% [33]

Cu-GNPs Cu R-134a Two-step
electrodeposition HTC increased by 97% [19]

GO Cu DI water Dip coating HTC increased by 47% [34]

CNT-Cu Cu R-134a Mechanical alloying and
cold spray HTC increased by 74% [35]

Cu and graphene Cu DI water Electrodeposition and dip
coating HTC increased by 82% [36]

Cu-Zinc Cu HFE-7200 Electrophoretic deposition HTC increased by 100% [37]
Al2O3 Cu SES36 Electrophoretic deposition HTC increased by 76.9% [38]

TiO2 Cu R134a Electron beam
evaporation HTC increased by 87.5% [39]

Cu particles Cu R-134a Powder flame spraying HTC increased by 100% [40]

6. Conclusions

In summary, a Cu-MWCNT composite coating was synthesized by a two-stage elec-
trodeposition technique at various bath temperatures. Serving as the heating surface, the
Cu-MWCNT composite surface layer has significantly enhanced the pool BHT of R-134a.
The Cu-MWCNT composite coating fabricated at a bath temperature of 40 ◦C showed the
highest surface porosity of 49%, a coating thickness of 27 µm, and a surface roughness of
36 µm among all the prepared coatings. Results demonstrated that modified surfaces fabri-
cated using the two-stage electrodeposition technique exhibit enhanced surface properties,
leading to an increased nucleation site density. Compared to the uncoated Cu surface, the
wall superheat for the Cu-MWCNT composite surface layer (40 ◦C) was reduced by 53%.
The highest hER values for the Cu-MWCNT composite surface layer electrodeposited at
25 ◦C, 30 ◦C, 35 ◦C, and 40 ◦C were found to be 1.75, 1.88, 2.06, and 2.22, respectively, over
bare Cu surface. Overall, the thicker Cu-MWCNT composite surface layer (40 ◦C) is a
more effective heat transfer material than the thinner coatings. This is due to its larger heat
transfer area and higher nucleation site density.
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