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Abstract: In Japan, rural areas are grappling with population decline and aging, leading to a short-
age of labor for farmland maintenance. This has resulted in the abandonment of farmland or its
conversion for solar photovoltaic (PV) use. However, this unplanned conversion raises concerns
about agricultural productivity decline, landscape degradation, biodiversity loss, water resource
maintenance, and disaster prevention. This study focuses on the Kushida watershed, examining
(1) accurate farmland classification using remote sensing data, (2) the geographical distribution of
farmland converted to PV systems from 2016 to 2021 and concentrated along the river, especially
on north-facing slopes, (3) the highest conversion rates in wheat fields, followed by legume fields,
tea fields, and paddy fields, and (4) no clear correlation between farmland conversions and changes
in the number of farmers, but associations with farmland geography and solar radiation levels.
These findings contribute to a nuanced understanding of sustainable rural development in Japan,
emphasizing the importance of considering geographical factors in the conversion of farmland to PV.
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1. Introduction

The rise in abandoned farmland and the expansion of construction areas pose both
challenges and opportunities for land use in suburban and rural regions [1–3]. In Japan,
a shortage of land managers has led to more farmers converting parts of their farmland
into solar photovoltaic (PV) systems to generate additional income [4,5]. The fusion of
agriculture and PV technology holds significant potential for reducing global reliance on
fossil fuels and lowering CO2 emissions [6,7]. PV farms not only contribute to energy
production but also bring social benefits, including food supplies and regional economic
development [8,9]. The Japanese government aims for regional decarbonization by 2050,
targeting a 46% reduction in greenhouse gas emissions from 2013 levels by 2030 [10]. The
government actively encourages PV system implementation on unused rural land as part
of this initiative.

Although PV systems are advancing at a fast pace, there is limited research available
on the impact and consequence of the conversion of farmlands into PV systems on the
surrounding environment. Mountainous environments are more sensitive than urban
areas, and the construction of PV systems can have significant impacts on soil and climate,
potentially affecting the surrounding or regional ecosystem patterns. Studies conducted
by Adeh et al. [11] have shown that PV construction in mountainous environments can
have adverse effects on soil and climate. Additionally, research by Jiang et al. (2022),
Zhang et al. (2023), and Zheng et al. (2023) [12–14] demonstrated that PV construction
can impact the ecosystem patterns in surrounding or regional areas. The transformation
of agricultural land into PV systems, as a complete land use change, is believed to have
significant impacts on the surrounding environment and particularly on crop growth [11].
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In watershed areas, farmland not only contributes significantly to the landscape and
food supply but also has the potential to address flooding hazards [12,13], indirectly
leading to an increased risk of flooding. Additionally, due to the strong relationship
between farmland and biodiversity [14,15], converting large areas of farmland threatens
local ecological balance.

Despite these concerns, research on the actual conversion of farmland into PV systems,
considering both human and geographical factors, is limited. In the central region of Japan,
home to the largest tea plantations and rice fields, farmland is a vital part of the local
landscape. However, depopulation in suburban and rural areas is accelerating farmland
abandonment [16,17]. Despite strict regulations on land use conversion in Japan [18], many
landowners have opted to convert farmland into PV systems, prompting environmental
concerns from the government and citizens [1,19]. In Mie Prefecture, the ordinance related
to the introduction of PV systems was revised in April 2022, establishing guidelines and
regulations for PV system installation in productive green spaces. However, to avoid
stricter regulations, many farmers converted their farmlands into PV systems before the
ordinance was enacted in 2022, resulting in a series of environmental issues. Given that
crop growth depends on a suitable environment, any changes in the surroundings may
lead to decreased crop yield and quality [20–22]. Therefore, a deeper understanding of
farmland conversion patterns into PV is crucial to effectively address these concerns.

In this study, our focus was on exploring the geographic causes behind the conversion
of various farmland types to photovoltaic (PV) systems. Employing remote sensing data
and a machine learning model, we categorized farmland based on crop types. Subsequently,
we conducted a spatial analysis on four types of farmlands to examine the patterns of
land conversion into PV systems, taking into account geographical conditions, population
changes, and management costs. What distinguishes our study from existing research is
our specific emphasis on farmland conversion to PV systems and the integrated analysis
of both social factors and geographic characteristics. Through this approach, we acquired
insights into farmland geographical features and investigated the relationships between
land conversion and both geo and socio-economic factors. The study yielded the following
key findings:

We confirmed the effectiveness of farmland classification using NDVI and MNDWI in
the watershed area, enabling the accurate categorization of crop types based on growth
status and the presence of water bodies.

Spatial information was acquired to comprehend the geographic conditions influenc-
ing the conversion of farmland into PV systems. This involved analyzing the position and
distribution patterns of converted land and examining their correlation with the surround-
ing topography and water bodies, thereby identifying factors influencing PV system sizing.

By comprehensively investigating both geographic and social factors, we identified
patterns of farmland conversion into PV systems based on crop types. Specifically, ana-
lyzing the relationships between land conversion, geographic factors, and social factors
revealed distinct conversion patterns based on crop type.

2. Materials and Methods
2.1. Site Description and Data Collection

This research is focused on the Kushida River basin in Mie Prefecture, located in
the central part of Japan (Figure 1). It encompasses the following three areas: Matsusaka
City, Taki Town, and Meiwa Town. With a total area of 767.62 km2 and a population of
approximately 200,000 (2015), it is a typical agricultural city, where forests and farmland
account for about 82% of the total area. However, due to depopulation, a significant portion
of the farmland in this region has been converted into PV systems. This raises concerns not
only about increased flood risks in the watershed but also about significant impacts on the
surrounding ecosystems. According to the official investigation results from the Japanese
government (Table 1), the Kushida River basin, where the study area is located, is facing
a severe decline in population, concurrent with a reduction in the agricultural land area.
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Over the decade from 2010 to 2020, the population in the area decreased by 10.1%, while the
agricultural land area decreased by 6.3%. The agricultural economic output also declined
by 7.3%, indicating the decline of agriculture, which is the pillar industry of this region.

Figure 1. Research site.

Table 1. Research area’s social and nature resource information.

Year Population Farmland Area Agricultural Output Annual Rainfall

2010 218,000 116.5 km2 8,840,000,000 ¥ 1794 mm
2015 209,000 114.2 km2 8,630,000,000 ¥ 1757 mm
2020 196,000 109.2 km2 8,190,000,000 ¥ 1839 mm

Data from government statistical offices website: http//:www.e-stat.go.jp (accessed on 10 March 2024)

The data sources for this study included satellite images (Sentinel-2), official govern-
ment databases, and on-site surveys. Remote sensing has been widely applied in land use
and agricultural research [23–25]. In this study, the location and type of farmland are con-
sidered to be factors that influence the rate of conversion to land for PV. Additionally, the
crop type also affects the location conditions and labor required for management. Therefore,
conversion for solar panel use was observed and analyzed separately for each crop type,
aiming to examine the specific impacts of geographical factors on different crops. Given
the presence of numerous small-scale agricultural plots within the study area, Sentinel-2
images from the European Space Agency (ESA) were used for a more accurate classification
of land types. The farmland polygons and farming community data were downloaded
from the Ministry of Agriculture, Forestry, and Fisheries of Japan (MAFF) for 2016 and
2021, respectively. Geographical features such as digital elevation models (DEMs), road
networks, river data, and aerial photographs for PA extraction were acquired from public
data provided by the Geospatial Information Authority of Japan.

2.2. Model Structures and Simulation Methods

The workflow used in this study is illustrated in Figure 2. Firstly, the monthly NDVI
and MNDWI for the study area from 2016 to 2017 using Sentinel-2 data was calculated.
Then, a machine learning model called Random Forest (RF) was implemented to classify
the farmland into the following four types: paddy fields (PFs), wheat fields (WFs), tea
fields (TFs), and bean fields (BFs). The positions of the PV systems in the study area
were identified using a combination of ArcGIS Pro’s deep learning module and manual
corrections based on aerial photographs taken in 2021. Based on these data, the number
and locations of farmland units converted into solar panels were determined from 2016
to 2021. Finally, combining social factors (population changes) and geographic factors is
conducted to derive conversion patterns for each crop type.

http//:www.e-stat.go.jp
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Figure 2. Workflow used in this research.

2.2.1. Classification of Farmland with Sentinel-2 Data

The farmland locations were obtained from the MAFF and imported into ArcGIS as
polygons. Based on the on-site interviews (25 local farmers in 2021), the farmland in this
area was classified into the following four categories: “Paddy Fields (PFs)”, “Wheat Fields
(WFs)”, “Tea Fields (TFs)”, and “Bean Fields (BFs)”.

The distinguishing feature of PFs is the presence of water bodies during the irrigation
period. Therefore, the modified normalized difference water index (MNDWI) [26,27] was
used to differentiate PFs from other types of farmland. The calculation formula (1) for the
MNDWI is an improvement of the NDWI calculation formula proposed by XU (2007) [28]
based on the McFeeters (1996) [29]:

MNDWI = (G − SWIR)/(G − SWIR) (1)

where G represents the green band value, and SWIR represents the Short-Wave Infrared
Radiometer band value. MNDWI is an index for water area determination; it is performed
for each field by overlaying the field plot data on the MNDWI image that is binarized
(threshold values are automatically determined by Otsu’s method). Establishing a threshold
based on MNDWI allows the differentiation of paddy fields (PFs) from other farmlands.
For the period from February to June 2017, corresponding to the PF irrigation season, we
computed MNDWI temporal change images in the study area. The statistical analysis led
to the setting of a threshold at −0.022. Subsequently, using the MAFF’s farmland location
data, we extracted regions with MNDWI values surpassing the threshold (indicating water)
and calculated the areas and counts of PFs (Figure 3).

Figure 3. (a) MNDWI value change pattern between PFs and other farmlands. (b) PF selection with
irrigated time.

As various crops exhibit distinct growth cycles, their patterns observed through
remote sensing data differ. To distinguish the remaining three crop types, variations in the
normalized difference vegetation index (NDVI) were considered. NDVI, widely accepted
as a vegetation indicator, estimates vegetation density by computing the difference in
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reflectance between visible and near-infrared light [30] (Equation (2)). NDVI finds extensive
application in vegetation monitoring and agriculture for tracking changes and assessing
vegetation health [31–33]:

NDVI = (NIR − R)/(NIR + R) (2)

where NIR represents near-infrared reflectance and R represents red reflectance.
The monthly NDVI values from November 2016 to October 2017 using Sentinel-

2 images were calculated using Equation 2. However, NDVI values for January, July,
and October were not calculated due to cloud cover. Utilizing the 9-month NDVI as an
independent variable, the Random Forest (RF) model was applied to classify farmland into
the following three types: wheat fields (WF), tea fields (TF), and bean fields (BF). During
field surveys, 154 TF, 206 WF, and 150 BF samples were manually labeled. The labeled
samples were then used to train and test the model with corresponding NDVI values
(Figure 4). RF is a machine learning method widely used in landscape analysis [34–37] due
to its high accuracy and ability to handle small sample sizes [38].

Figure 4. (a) RF model training data set for NDVI changes with three types farmland. (b) RF model
prediction results for NDVI changes.

The RF model is an ensemble of decision trees based on the bootstrap sampling of the
training data, and the final prediction is obtained by averaging the predictions of all the
trees [39]. The calibration of the RF model involves the following three parameters [40]: the
number of trees (n_tree), the number of covariates selected at each split (m_try), and the
size of the terminal nodes (node_size). In this study, after multiple trials and adjustments,
we set n_tree = 300, node_size = 6, and m_try = 3. Among the 510 samples, 70% were used
as training samples, and 30% were used as test samples.

2.2.2. Locating the Agricultural Land Converted into PV Systems (2016 to 2021)

To identify the farmland converted to PV systems between 2016 and 2021, the 2021
aerial photographs were analyzed using the DeepLab model. It is a deep learning module
in ArcGIS Pro [41,42]. DeepLab is an image analysis model based on Fully Convolutional
Neural Networks (FCNs) that can extract specific objects from images. It is widely used
in land use and environmental green space fields [43,44]. This tool extracted the polygon
data of all PV systems in the study area from the 2021 aerial photographs and conducted
the manual verification and correction of the results. Then, ArcGIS was used to juxtapose
the PV system polygons with the 2016 farmland data. This enabled us to determine the
number and locations of farmland areas that were converted to solar panels for each crop
type from 2016 to 2021 (Figure 5). It is important to note that the area of the PV system
might partially match the original farmland area. For this study, if the PV system utilizes
more than 50% of its area, it is considered to be converted.
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Figure 5. Locating the agricultural land conversion PV system.

2.2.3. Analysis of Motives for Farmland Diversion

To study what causes farmland to change, it is important to look at both geograph-
ical and human elements. This study explored the human factors influencing farmland
conversion, focusing on how the number of farmers in each village changes. Data from
the Japanese government (E-stat) on the number of farmers in each village was extracted
and imported to ArcGIS as shape layers. The following formula was used to calculate
the personal farming rate (PFR) from 2016 to 2021. This rate shows how the number of
individual farmers has changed. We also calculated the farmland conversion rate (FCR)
for each village, showing how much farmland has turned into PV systems. By looking at
these two rates, we could understand how the change in the number of farmers and the
conversion of farmland are related.

PFRj =
PFN j2020 − PFN j2015

PFN j2015
× 100% (3)

FCRj =
CLj

FLj
× 100% (4)

where PFRj represents the change rate in the farmer population in area j. PFNj represents
the number of farmers in area j, FCRj represents the farmland conversion rate in region j,
CLj denotes the number of converted farmlands in region j, and FLj represents the total
farmland area in region j in 2016. We used multiple regression to see how changes in farmer
numbers and six geographical factors for (1) slope direction, (2) slope angle, (3) elevation
(DEM), (4) openness, (5) distance to water (WD), (6) distance to roads (RD) are affecting
farmland conversion. Openness expresses the dominance (positive) or enclosure (negative)
of a landscape location. See Yokoyama et al. (2002) 0 for a precise definition. Openness has
been related to how wide a landscape can be viewed from any position.

Additionally, we performed a separate analysis for different farmland types to see the
geographical traits of converted lands. We used one-way ANOVA to check if there was
a significant difference in geographical features among various farmlands and converted
lands. One-way ANOVA is a filter to select the relevant factor and is used in most landscape
studies [45–48]. One-way ANOVA has proven its effectiveness in solving the problem of
high dimensionality in the feature space [49,50].

Some studies have shown that solar radiation profiles greatly affect the reliability of
PV system sizing [20,51]. To confirm whether these findings also apply to the river basin
area, we used the solar radiation analysis tool in ArcGIS to calculate and compare the solar
radiation levels in the farmland areas and the regions converted into PV systems.

3. Results
3.1. Farmland Classification Model Results

To determine the accuracy of the farmland classification model, we used the confusion
matrix to validate the results. The accuracy value and confusion matrix were employed as
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criteria for determining the accuracy of the RF model. The accuracy value of a model is
a measure that describes its overall accuracy and was determined in this study using the
following equation:

Accuracy = (TWF + TBF + TTF)/Sn (5)

where TWF, TBF, and TTF represent the number of WF, BF, and TF instances accurately
predicted by the model based on the test samples, while Sn represents the total number
of test samples. The accuracy value of the model constructed in this step reached 0.91,
suggesting the effectiveness of the model. The confusion matrix (Table 2) reveals the
prediction accuracy for each land type. Among them, TF extraction demonstrated the
highest precision at 93%. This can be attributed to the fast growth cycle of TFs. However,
our model did not include other farmlands like fruit or vegetable farms or unused lands,
which might have caused some errors.

Table 2. Confusion matrix.

Predicted

TFs BFs WFs

Actual
TFs 44 2 0
BFs 5 47 2
WFs 1 4 48

Based on the classification results, it can be observed that PFs have the highest quantity
and occupy the largest area within the study zone (Figure 6a). PFs and WFs exhibit similar
distribution patterns, primarily located in low-lying flatlands and suburban areas. TFs,
on the other hand, are lower in numbers and are mainly situated in high-altitude regions
such as mountainous areas. The BFs are distributed in multiple locations and are relatively
more dispersed in their distribution, though they are concentrated primarily near rivers
(Figure 6b).

Figure 6. (a) Results of farmland classification. (b) Distribution of different types of farmlands.

3.2. Conversion of Farmland into PV Systems

According to the calculations, a total of 1806 new PVs were constructed in the study
area between 2016 and 2021, with a total area of 394.8 ha. Regarding farmland conversion,
of approximately 106,000 locations, 1052 sites were converted to PV systems, accounting for
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0.98% of the total, with an area of 77.93 ha. Considering that this change occurred within a
span of just five years, it is a noteworthy trend. In terms of land types, WFs have the highest
number of conversion instances, with 20 hectares (0.93%) out of a total of 1019 hectares
being converted into PV systems. On the other hand, TFs and PFs have conversion rates of
only 0.47% and 0.54%, respectively (Table 3).

Table 3. Results of farmland conversion to PV.

PFs TFs BFs WFs Total

Total Number 58,197 4862 24,110 19,339 106,508
Total Area (ha) 9646.8 393.3 1177.7 1019.7 11,237.5
Conv Number 437 32 246 337 1052
Conv Area (ha) 45.52 2.13 9.56 20.72 77.93

Conv Number % 0.75% 0.66% 1.02% 1.74% 0.98%
Conv Area % 0.47% 0.54% 0.81% 0.93% 0.64%

When analyzing the number of converted fields to solar panels, both suburban areas
and mountainous areas exhibited a high density (Figure 7a). However, when considering
the converted area, it was found that this high density was concentrated only in the
suburban areas.

Figure 7. (a) Number and density of converted farmland. (b) Area density of converted farmland.

3.3. Analysis of GEO-Motives for Conversion of Farmland

The ANOVA showed significant (at 0.01 level) geographical differences between
converted land and all farmlands Table 4).

These significant differences suggest that geographical features are key in farmland
conversion. To understand their specific impact (positive or negative), we compared the
average values of these features for both converted and unconverted farmlands. As shown
in Figure 8 and Table 5, average values were calculated for farmland and converted land
based on various geographical features, as follows:
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(1) Water source distance (WD): converted TFs, BFs, and WFs are closer to the average
distance to water sources than PF, which is 20% further.

(2) Road distance (RD): converted lands are generally closer to roads, usually less than
25 m away.

(3) Elevation (DEM): both BF and WF conversions seem influenced by elevation, with
WF conversions more common in higher-elevation areas.

(4) Slope: WFs show a relationship with slopes, indicating more conversions in steepe areas.
(5) Slope direction (DIRECTION): there is no clear trend, but converted lands often

face southeast.
(6) Openness (OPEN): this impacts BF, WF, and TF conversions, with converted lands

typically having lower average openness values, affecting factors like sunlight duration.

Table 4. Results of one-way ANOVA.

WD RD DEM SLOPE OPEN DIRECTION

2 PF—PFc_Sig <0.001 0 0.972 0.996 0.709 0.025
4 WF—WFc_Sig <0.001 0 0 0 0 0.02
3 BF—BFc_Sig <0.001 0 0 0.106 0 0.144
1 TF—TFc_Sig 0.998 0 0.498 1 0 1

F 184.16 159.1 2380.92 3096.87 568.67 159.71
DF 7 7 7 7 7 7

Figure 8. The relationship between the average values of geographical features and different types of
farmland conversion.

By analyzing the relationships between farmland conversion and geographical factors,
we identified the positive and negative factors influencing the conversion of each type of
farmland (Table 6). “PST” represents the fact that larger values of the geographic factor
have a positive impact on the farmland in terms of its conversion to PV systems. “NGT”
representing the larger values have a negative impact on farmland in the conversion to a
PV. “/” means that the corresponding factor has no effect on the farm’s conversion.
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Table 5. Results of the mean for each parameter for each crop and the converted and non-converted PVs.

WD (m) RD (m) DEM (m) SLOPE OPEN DIRECTION

PFs
PF 209.6 60.1 43.8 2.21 0.241 125.8

PF-conv 262.03 21.5 49.3 1.96 0.211 144.1

WFs
WF 246.7 45 41.2 1.93 0.3 127

WF-conv 172.8 14.9 126.4 5.08 0.051 146.3

BFs
BF 187.1 108.6 93.7 5.5 0.152 149

BF-conv 138.4 17 162.7 6.35 0.012 163.9

TFs
TF 154.6 130.9 144 9.1 0.034 161.7

TF-conv 129.7 22.1 152.8 10 <0.001 169.5

Table 6. Factors influencing the conversion of each type of farmland.

WD RD DEM SLOPE OPEN DIRECTION

PFs NGT PST / / / /
WFs PST PST NGT NGT NGT /
BFs PST PST NGT / NGT /
TFs / PST / / NGT /

Then, we calculated the annual solar radiation for all types of farmland and conversion
sites (Table 7). The results show that the annual total solar radiation that the conversion sites
receive is 2,265,092 W/m2, surpassing both the average for the entire Kushida River basin
(1,916,778 W/m2) and the average for all types of farmland (1,961,580 W/m2). Further-
more, the conversion sites even exceed the average solar radiation of existing PV systems
(1,959,251 W/m2) by 15%. This suggests that solar radiation is an important factor in the
conversion of farmland into PV systems.

Table 7. Results of the total annual solar radiation analysis.

Study Area All PV System Conv
PV System All Farmland

Solar Radiation
Avg

1,916,778
W/m2/year

1,959,251
W/m2/year

2,265,092
W/m2/year

1,961,580
W/m2/year

3.4. Social Factors Related to the Conversion of Farmland

In our study, we found that 68 villages (a total of 345 villages) experienced farmland
conversion between 2016 and 2021, with FCR ranging from 0.1% to 38% (Figure 9a). During
these five years, the PFR in the study area decreased by 29.1% overall, with 224 villages
experiencing a PFR change, with changes in the villages ranging from a decrease of 83% to
an increase of 11% (Figure 9b).

The results of our multiple regression analysis (Table 8) show that the significance
probability is less than 0.01, indicating the significance of the model. The R-squared value
is 0.244, indicating that the variables in this model explain 24% of the variation in the FCR.
Moreover, the significance of each variable could be determined based on the significance
probability (P), and we found that the four variables in this model could be studied using
the beta value, where the greater the value of beta is, the greater its effect on the dependent
variable is. The slope direction, slope angle, elevation (DEM), and distance to roads (RDs)
are significant explanatory variables (p < 0.05, beta >0.1 or <−0.1). However, no correlation
was found between the personal farming rate (PFR) and the farmland conversion rate (FCR).

Table 8. Results of regression analysis.

Direction Openness DEM Angle WD RD PFR

P* 0.014 0.316 0 0.05 0.613 0.084 0.517
B 0.005 0.002 0.016 −0.007 −0.001 −0.003 0.001

Beta 0.180 0.069 0.578 −0.244 −0.034 −0.112 0.040
*P represents the significance probability of each factor, B and Beta represent the extent to which the factor
influences the model.
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Figure 9. (a) The FCR in each village, which represents the farmland conversion rate in each village;
(b) The PFR in each village, which represents the rate of an increase/decrease in the farmer population
in each village.

4. Discussion

This study classified farmland based on crop type and examined the tendency of each
type to be converted into PV systems.

4.1. Current Land Use after Farmland Conversion

In this study, about 78 ha of the farmland was converted into PV systems within
5 years. Most of the farmland conversions were spread out near the river. Regarding the
conversion tendencies of different types of farmlands, the conversion rate was highest for
WFs (1.7%) and lowest for TFs (0.66%). PFs and TFs, which are considered the main local
crops, have the lowest rates of conversion into PV systems.

4.2. Relationship between Farmland Conversion and GEO-Motives

Furthermore, we found that the conversion of each type of farmland is influenced
by its geo-characteristics and cultivation environment. In general, all types of farmlands
closer to roads tend to have higher chances of conversion. This could be attributed to
the exhaust and dust from vehicles on roads, which may negatively affect crop quality,
encouraging people to convert their own farmland; also, being close to the road makes
maintenance and repair more convenient. From the tendency to convert each type of
farmland, we obtained the following conclusions. (1) The conversion of WFs is closely
related to each geo-characteristic except the direction. This is likely due to the higher labor
demand for WFs compared to other types of farmlands, making it economically unfeasible
to allocate labor and income in areas with harsh conditions, such as high-elevation areas
in mountainous regions. (2) Since BFs and WFs are both dryland crops, their growing
conditions are not very different. Therefore, the geo-characteristics of conversion land are
almost the same for both except for the slope angle. This is because there are quite a few
terraces in the local BF, and the significance of terraces in mitigating the influence of slope
angle on crop cultivation has far-reaching implications for sustainable agriculture and land
use management. Terraces, as a cultural and environmental heritage of the local landscape,
are constrained and protected in terms of land use 0. Therefore, the inclination of the land
does not affect the cultivation of BF. Similarly, TFs and PFs are not affected by slopes for
the same reason. (3) PFs tend to be more easily converted when they are situated further
away from waterways, which can be attributed to their unique cultivation environments
and the need for water resources in PFs. Our on-site interviews with PF farmers revealed
that irrigation-related tasks, such as pump installation and water channel maintenance,
incurred significant management costs, making natural gravity-fed irrigation the most
convenient method. Thus, the tendency of PFs to be converted aligns with their distance
from water sources. Additionally, there was almost no correlation found between the slope
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direction of farmland and its conversion into land for PV systems. (4) The conversion of
TFs as a high-value crop is influenced by RD while also correlated with openness.

When considering the conversion of all types of farmlands, it was observed that
farmland conversion primarily occurred in localized settlements along rivers. In particular,
only the northern side of the river was utilized for conversion in the downstream and
middle reaches (where elevation is lower than 200 m). When combined with the analysis of
solar radiation, it could be inferred that the location of farmland along rivers and in the
middle and lower reaches provides longer exposure to sunlight, maximizing the efficiency
of PV system utilization.

4.3. Relationship between Farmland Conversion and Social Detective

In this study, when we analyzed a village unit level, no direct relationship was found
between the conversion rate of farmland and the increase or decrease in the number of
farmers. It is possible that individual farmers own multiple plots of land and do not convert
all of them. Factors such as the aging of agricultural operators and changes in the surrounding
environment should also be considered. Additionally, the number of farmland plots owned
by a single farmer varies, and future research should also take these factors into account.

4.4. Relative Research about PV Location Character

From a macro-planning perspective, solar energy utilization significantly shows char-
acteristics of resource dependence and policy-driven aspects, with varying driving factors
across different study scales and regions. Studies based on urban and mixed areas suggest
that PV site selection is often determined by investment costs and economic benefits [52–54].
Our research indicates that in watershed areas, geographical factors like elevation, slope,
and solar radiation are key drivers for PV site selection, while social factors like population
change have little impact. This aligns with the findings by SUN [55] in plains and macro
areas. In some studies on PV site selection in mountainous areas [56], proximity to roads is
considered a positive factor, which is consistent with our findings that farmlands converted
to PV are mostly near roads.

4.5. The Potential Impacts on the Environment

The conversion of farmland to PV may have significant effects on the surrounding
environment. Changing land use from farmland to PV implies a loss of permeable layers
and an increase in impermeable surfaces. Such changes undoubtedly affect the local
ecological environment. Some studies suggest that constructing PV in desert areas increases
the soil moisture content, but in watershed regions, this change may exacerbate the risk
of flooding. Although, there may be alterations in the infiltration and retention of water
within the soil. This could potentially exacerbate drought conditions by reducing soil
moisture availability for agricultural activities and natural vegetation. With less vegetation
to intercept rainfall and facilitate evapotranspiration, there could be increased surface
runoff and reduced groundwater recharge. This disruption to the natural water balance
might contribute to a decline in water availability during dry periods, exacerbating drought
conditions in the watershed.

Additionally, the presence of large arrays of solar panels can create localized warming
effects, known as the “heat island” effect, due to the absorption and re-radiation of solar en-
ergy. These elevated temperatures can further exacerbate drought conditions by increasing
evaporation rates and intensifying water stress on vegetation and soil moisture.

4.6. Limitations and Prospects

Our proposed methodological framework fills a gap in identifying the spatial distri-
bution of farmland conversion to PV in watershed regions and is a strong reference for
modeling farmland conversion and land use changes. This framework can also be applied
to other regions or countries, aiding in more accurately identifying suitable areas for PV
and site selection criteria. However, this work has limitations, such as a limited number of
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samples involved, which should be increased for macro studies. Additionally, the accuracy
of the model and the limited number of dependent variables should be expanded in future
research to consider more detailed influencing factors.

5. Conclusions

This study conducted a classification survey of farmland within a watershed area,
revealing that the factors influencing the conversion of these lands to PV systems vary
based on the type of agricultural land. The results indicate that, over a span of five years, a
total of 77.93 ha (0.64%) of agricultural land was converted to PV systems, with most of
the locations concentrated near streams. While the PFs in the study area were converted
the most overall, in terms of the percentage, WFs were converted close to one percent
of the area. Conversion factors were found to be influenced by geographical conditions
specific to each agricultural land type, with the distance to roads and annual solar radiation
directly affecting the conversion of almost all types of agricultural land. Furthermore,
the impact of population change was almost negligible in relation to the conversion to
PV. By combining a Random Forest (RF) model with the one-way analysis of variance
(ANOVA) method, this study analyzed changes in different types of agricultural land,
revealing various driving factors and suggesting the complexity of causal relationships
controlling watershed land use change. Through the comparative analysis of influencing
factors across diverse topographic zones, we shed light on the nuanced dynamics of land
use change in varied geographical contexts. The findings of this study hold relevance
beyond the specific watershed examined, providing valuable insights into the broader
mechanisms driving agricultural land conversion. Since most of the data used in the study
are from public websites, we believe that the methodology used in the study can still be
applied to non-specific areas on a global scale. Such methods are instrumental in guiding
future research and policymaking endeavors aimed at sustainable land management and
renewable energy integration.
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