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Abstract: In this study, a material based on polyethylene (PE) and microcrystalline cellulose (MC) was de-
veloped as a breathable packaging film. Surface functionalization of MC with 3-aminopropyltriethoxysilane
(APTES) has been shown to be an efficient option to tailor their properties and increase opportu-
nities for the application of MC on the reinforcement of polymers such as polyethylene (PE). The
functionalization of MC with the mentioned silane derivative was achieved using a green method
and later used in the development of composites with PE in three percentages (1, 3, and 5%). All
the materials were prepared by melt blending and characterized in terms of structural properties
(ATR-FTIR and FTIR in transmittance mode, EDX, and SEM), thermal properties (DSC and TGA),
thermomechanical properties (DMA), contact angle measurements and permeability to water vapor.
The materials demonstrated the potential to be used as breathable film packaging for fresh products.

Keywords: polyethylene composites; microcrystalline cellulose; food packaging; surface functionalization

1. Introduction

Depending on the type of food, different barrier properties can be required. For
example, a packaging film that enables retailers to market fresh foods with extended shelf-
life without employing any major processing or chemical additives (like preservatives)
would prevent a significant quantity of fresh products from spoiling [1,2].

Recently, due to the interest in environmentally friendly polymer composites, natural
fibers have been used, enhancing mechanical properties and biodegradability of the poly-
mer matrix. Cellulose, a natural fiber, is widely used as reinforcement for polymers due to
its availability, great mechanical properties, low cost, and biodegradability combined with
unique characteristics such as low density, light weight, high specific area (that can interact
more strongly with the matrix), and, above all its, makes cellulose a potential eco-friendly
additive [3]. Besides these properties, cellulose could also modify the barrier properties of
the polymer matrix. However, their hydrophilic character causes poor compatibility with
hydrophobic matrices, such as polyethylene [4]. This problem can be easily solved since
the presence of repetitive hydroxyl groups on the cellulose surface makes it suitable for
several chemical modifications. These changes are essential to increase the compatibility
with a polymer matrix, which is an important requirement to achieve good mechanical
properties [3,5–7]. Polyethylene (PE) filled with cellulose can have a better compatibility
through surface modification of cellulose by the addition of a coupling agent to the matrix.
Intensive research on modification strategies of cellulose surface to improve the compatibi-
lization degree between cellulose fibers and polymeric matrices has been performed [7–10].
Of all the coupling agents used, silane derivatives seem to be an excellent choice due to the
diversity of functional groups and their commercial availability on a large scale. Moreover,
the diversity of functional groups in silane coupling materials is a useful strategy that
enhances the ability of covalent linkage between cellulose fibers and polymer matrices
when two functional groups are presented. Usually, the general structure of silane coupling
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agents available is (RO)3-Si-R′-X, where alkoxy groups (RO) are capable of reacting with
the cellulose surface, rich in OH groups, intermediated by hydrolysis processes, and the
other group (R′-X) where R′ is an alkyl chain and X is an organofunctional group that
can be used to react with the polymer matrix by covalent linkage [11,12]. From all vari-
eties of silane coupling agents, 3-aminopropyltriethoxysilane (APTES), the agent used in
this study, is frequently used in silane modification due to its high reactivity, simplistic
structure, and low cost resulting in a cellulose-silica composite [13]. Nevertheless, the
presence of an amine group on the APTES offers a good compatibilization by covalent
linkage, via amine, with PE grafted with maleic anhydride. The modified PE (PE E226)
used in this study is FUSABOND® E226 resin, which is described by the FDA as a material
that can be used for packaging, transporting, or holding food, subject to the limitations and
requirements therein.

Therefore, this work aims to develop a methodology to create a breathable material for
packaging applications that incorporates modified MC to be chemically bonded to grafted
PE, resulting in a continuous matrix with good mechanical and barrier properties. For
this, cellulose was first modified with APTES and then the materials were obtained by
reactive blending in a mixer. The structure, morphology, and physical properties of the
materials were characterized. Studies of surface hydrophobicity were also performed by
contact angle measurement and permeability to water vapor and oxygen was carried out
to evaluate the barrier properties.

2. Materials and Methods
2.1. Materials

Polyethylene grafted with maleic anhydride (PE-g-MA, PE E226 FUSABOND®) was
kindly provided by a Portuguese company. Microcrystalline cellulose (MC) and N,N-
dimethylacetamide (DMAc) were supplied from Acros Organics (Waltham, MA, USA),
while lithium chloride (LiCl), ethanol, and ammonia solution 25 wt% were purchased from
Fisher Chemical (Geel, Belgium). 3-aminopropyltriethoxysilane (APTES) 98% and calcium
chloride anhydrous (CaCl2) 93% were acquired from Alfa Aesar (Waltham, MA, USA). All
materials were used without further purification.

2.2. Methods
2.2.1. Microcrystalline Cellulose Modification with 3-Aminopropyltriethoxysilane

The modification of microcrystalline cellulose (MC) surface was carried out using
a procedure already reported by Jia et al. [14]. First, a suspension with MC (1.4 g) and
LiCl (1.5 g) in N,N-dimethylacetamide (20 mL) was left stirring at 90 ◦C for 3 h, on a
borosilicate glass beaker. Then, 5 mL of the previous MC solution was added to a mixture
of ethanol (50 mL)/distilled water (10 mL) and promptly, 2 mL of ammonia solution
(25 wt%) and 3-aminopropyltriethoxysilane (1 mL) were added at once to the colloidal
solution, which remained under strong stirring at room temperature for 24 h. The white
precipitate was separated from the solution through centrifugation, washed with a mixture
of water/ethanol, and dried in the oven at 60 ◦C under vacuum.

2.2.2. Microcomposite Preparation

PE-g-MA and MC-APTES were dried overnight in a vacuum oven at 80 ◦C to prevent
the hydrolysis of polymers during processing. Samples were prepared in a batch mixer
(Haake Rheomix Roller Roters R600 (Thermo Scientific™, Waltham, MA, USA), volume
69 mL), equipped with two rotors running in a counter-rotating way. Firstly, PE-g-MA was
introduced inside the mixer and left around 2.5 min, then MC-APTES was added and a
melt temperature of 140 ◦C, 80 rpm, and 7 min reaction time were used (Table 1). After, all
materials were recovered in a metallic plate and left to cool under ambient conditions.
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Table 1. Composition and processing conditions.

Composition Code
Weight (%) Processing Conditions

PE-g-MA MA-APTES Tm (◦C) Rotors Speed (rpm) tmixing (min)

PE-g-MA_1% MC-APTES 99 1
140 80 2.5 mixing + 7 reactionPE-g-MA_3% MC-APTES 97 3

PE-g-MA_5% MC-APTES 95 5

To achieve our purposes, three materials were prepared adding 1, 3, and 5 wt% of
MC-APTES to the melt matrix. From the prepared materials, thin films were produced by
compression molding in a hot press at 140 ◦C under a compressive force of 10 tons on a
5′′ diameter ram, with an average thickness of 100 µm.

2.3. Characterization
2.3.1. Fourier-Transform Infrared (FTIR) Spectroscopy

The FTIR analysis of the initial and modified materials was conducted on a Jasco 4100
FTIR (Jasco, Easton, MD, USA) spectrometer in ATR and transmittance mode for modified
MC-APTES and for the prepared films (PE-g-MA_MC-APTES), respectively, in the range of
4500–400 cm−1 using 32 scans and a resolution of 8 cm−1.

2.3.2. Thermal Analysis

Thermogravimetric analysis (TGA) was performed using a TA Q500 thermogravimet-
ric analyzer (TA Instruments, New Castle, DE, USA). The samples (approximately 15 mg)
were placed in a platinum crucible and heated from 40 ◦C to 600 ◦C at a heating rate of
10 ◦C/min under a nitrogen flow (60 mL/min). The initial decomposition temperature
(Tonset), the derivative maximum decomposing rate temperature (Tmax), and the residual
weight were determined.

Differential scanning calorimetry (DSC) analysis was accomplished in a Netzsch 200
Maya (Netzsch, Selb, Germany); approximately 4 mg of each sample was cut and placed
in an aluminum pan. A heating/cooling ramp was run at 10 ◦C/min, between 25 ◦C and
200 ◦C under nitrogen, for each sample.

The degree of crystallinity χc was calculated according to Equation (1), as described
in [15] as follows:

χc(%) =
∆Hm

W f · ∆H0
m
× 100% (1)

where W f is the PE-g-MA weight fraction, ∆H0
m is the theoretical melting enthalpy of 100%

crystalline PE (293 J/g) [16], and ∆Hm is the melting enthalpy of our sample.

2.3.3. Scanning Electron Microscopy (SEM)

The morphology of the surface and cross-section of the samples was analyzed using
a Leica Cambridge S360 scanning electron microscope (Leica, Berlin, Germany). The
samples were previously placed in liquid nitrogen and then fractured, followed by a gold
thin coating.

2.3.4. Energy Dispersive X-ray (EDX) Analysis

EDX was performed using a Pegasus X4M (EDAX, Pleasanton, CA, USA) detector
coupled to SEM equipment to detect the presence of Si on the sample.

2.3.5. Dynamic Mechanical Analysis (DMA)

Dynamic mechanical analysis measurements were made on rectangular films with
the same dimensions (2 cm × 0.5 cm × 100 µm) using a Triton Technology DMA. Samples
were evaluated using a dynamic temperature sweep to measure the storage modulus and
loss moduli (E′ and E′′) at a constant frequency (1 Hz), constant force (1 N), and a constant
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heating rate of 3 ◦C/min in oscillatory mode in a range of temperatures between 30 ◦C and
110 ◦C. The measurements were made three times for each composite.

2.3.6. Contact Angle Measurements (CA)

CA measurements (Contact Angle System OCA 20 Dataphysics, Filderstadt, Germany)
were made using distilled water (volume: 3 µL; rate: 2 µL/s) that was dropped on the film
surface with a precision syringe using the sessile drop method. The initial image of the
drop (taken by 0 s) was recorded with a video camera. At least 20 measurements per film
were carried out and the mean value was taken. The contact angles were calculated by the
Laplace–Young Fitting method.

2.3.7. Water Vapor Permeability (WVP)

The water vapor transmission rate (WVTR) of films was determined by the ASTM
method E96 [17]. The desiccant method was used to determine the value of water vapor
transmission. The films were placed in circular metal test dishes with a surface diameter of
69.50 mm and filled with ~25 g of anhydrous CaCl2 previously dried in a vacuum oven
at 150 ◦C overnight. Then, were sealed with parafilm to ensure that humidity migration
occurred exclusively through the film. Next, the test cups were placed in a desiccator
and kept at room temperature and 94.26 ± 4.33% relative humidity (RH) in triplicate and
weighed daily for one month. The measured WVTR of the films was calculated using
Equation (2):

WVTR
(

g water/(m2 × hour)
)
=

G
t × A

(2)

where G/t (g water/h) is the slope (weight versus time plot) and A is the effective film
area (m2). WVTR was calculated using three replications and expressed in g·h−1m−2.

2.3.8. Statistical Analysis

Analysis of variance (ANOVA) and a post hoc Tukey test was used to perform the
statistical analysis of the results, using the OriginPro (v. 9.8.0) program.

3. Results and Discussion
3.1. Structural and Morphological Analysis

The reaction between MC and APTES was performed in solvent; LiCl and DMAc, as
a mixture of solvent, is an important factor once the formed complex ([(DMAc)2-Li]Cl)
penetrates into the cellulose structure, acting as spacers in the MC packing chains, which
facilitates the chemical modification [18]. Therefore, the reaction with silane coupling
agent, APTES, occurred successfully and could be confirmed by complementary analysis
of ATR-FTIR Figure 1 and EDX Figure 3. The modification of MC with APTES was
detected by the appearance of an additional peak at 1562 cm−1, corresponding to the
bending vibration of -NH2 groups, indicating that they were successfully introduced
onto the MC surface. The adsorption peak of Si-O-Si vibration, characteristic of self-
condensation, occurred between the silane reaction with cellulose hydroxyl groups at
around 1000–1100 cm−1 and is overlapped with the C-O-C vibration bands of cellulose at
around 950–1200 cm−1. Moreover, the band corresponding to the Si-O-cellulose, around
1150 cm−1, could not be observed due to the presence of the large and intense C-O-C
vibration bands of cellulose [13,19,20].
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After the incorporation of modified cellulose in the polymer, a reaction occurs through
amide linkage between the amine group of cellulose-silane and maleic anhydride grafted
onto PE, as illustrated on Scheme 1.
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Scheme 1. Reaction scheme of PE-g-MA and MC-APTES.

According to the ATR-FTIR results (Figure 1a), both samples exhibited absorption peaks
that are characteristic of cellulose, namely the peaks at 3318, 2859, 1428, 1315, and 1025 cm−1,
which are associated with the vibration of -OH, C-H, -CH2, and C-O, respectively.

Films of the prepared materials and PE-g-MA were analyzed by FTIR in transmittance
mode and are depicted in Figure 1b. The covalent linkage between PE-g-MA and modified
cellulose was confirmed by the disappearance of the bending vibration -NH2 at 1562 cm−1,
which demonstrates that the amino groups on the cellulose surfaces were converted to
an -NH-band at 3320 cm−1 and an amide band around 1613 cm−1. Moreover, the band
intensity increases with increasing content of modified cellulose and there is also a growth
of the broad band related to the -OH groups of cellulose and to the consequent succinic
ring opening.
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SEM micrographs of PE-g-MA and PE-g-MA containing 5 wt% MC-APTES are repre-
sented in Figure 2. Since the micrographs of the materials with 1 and 3 wt% of MC-APTES
are very similar to the one with 5% MC-APTES, only the latter is presented. The surface
and cross-section of PE-g-MA film, Figure 2a, revealed smooth and homogeneous surfaces,
whereas the film that incorporates MC-APTES exhibits a rough surface, Figure 2b. More-
over, in the cross-section of the same samples, in Figure 2b it is possible to notice that
MC-APTES is located along the sample and at the surface. As expected from the chemical
results, the modified MC was successfully chemically linked to the polymer matrix.
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Figure 2. Sample surface and cross-section SEM micrographs of (a) PE-g-MA and (b) PE-g-MA +
5%MC-APTES.

The presence of silicon (Si) and oxygen (O) in the polymer matrix assessed by EDX are
present in Figure 3. Figure 3a corresponds to the modified MC, where the O and Si peaks
have a significant intensity. As expected, a lower intensity can be observed in Figure 3b,
which corresponds to the samples containing 5 wt% of MC-APTES, respectively. Even
though the peak intensity increased with the amount of MC-APTES incorporated, they are
almost undetected for the samples containing 1 wt%. This can be due to the heterogeneous
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dispersion of the MC-APTES in the matrix that made the evaluation more complicated
since only points are selected in this kind of analysis.
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3.2. Thermal and Mechanical Analysis

The effect of MC functionalization with APTES on its thermal properties and incor-
poration in the PE matrix was evaluated (Figures 4 and 5, respectively). Figure 4 depicts
the thermal decomposition of MC and modified MC, where it is possible to observe an
initial weight loss (~5%) around T = 80 ◦C, for MC, probably due to the vaporization of
adsorbed water. The modification of the MC surface with APTES increases both the initial
thermal degradation and temperature at the maximum degradation rate, with a difference
of around 10 ◦C between MC (350.6 ◦C) and MC-APTES (361.2 ◦C), as can be seen in
Figure 4b. This increase in the thermal stability of MC-APTES may be attributed to the
good interaction between the APTES and MC and their consequent crosslinking reactions
that occurred during the functionalization. Moreover, the results also demonstrate that
for T = 500 ◦C (Figure 4a), MC-APTES have a higher residual mass value than unmodified
MC, 26.9 and 14.6%, respectively. This result can be associated with the presence of siloxy
moieties on MC-APTES products that remain as a residue. These results are in agreement
with the results reported by H. Khanjanzadeh et al. [13].

Macromol 2024, 4, FOR PEER REVIEW 8 
 

 

 
Figure 4. TGA curve weight loss (a) and first derivative (b) of unmodified MC and modified MC. 

TGA results of the prepared materials, Figure 5, reveal that despite the fact that an 
earlier decomposition temperature between 320–343 °C can be noticed, the thermal stabil-
ity is slightly enhanced since the degradation peak of the PE matrix shifts to higher tem-
peratures. Whereas the curve for PE-g-MA presented only one thermal degradation stage 
with a mass loss of almost 100%, the curve of the other samples displays two thermal 
degradation stages. The first degradation peak is related to cellulose degradation (320–
343 °C) and, as expected, increasing the MC-APTES amount increases the weight loss 
(around 4.5%) and a decrease in the decomposition temperature value, Figure 5b. The 
same occurs for the degradation peak of PE (478–479 °C), the sample with 1%MC-APTES 
seems to be the most thermally stable composite when compared with the other compo-
sites. This is in accordance with the literature; Ch.V.Alexanyan et al. reported a study 
where it is possible to verify that the presence of cellulosic materials translates into a slight 
increase in the degradation temperature. Moreover, the charcoal, resulting from cellulose 
degradation, contributes to the hydrogenation of the unsaturated products and, conse-
quently, the hydrogenated products develop at higher temperatures [21]. 

 
Figure 5. TGA curve weight loss (a) and first derivative (b) of PE-g-MA and PE-g-MA-MC-APTES 
composites. 

The DSC experimental curves of PE-g-MA_MC-APTES composites obtained from the 
first heating and cooling cycle are displayed in Figure 6 and Table 2.  

Crystalline polymers are characterized by a melting transition at a certain tempera-
ture, the melting temperature (Tm), and enthalpy (∆H) for melting. The crystallinity of the 

Figure 4. TGA curve weight loss (a) and first derivative (b) of unmodified MC and modified MC.



Macromol 2024, 4 276

Macromol 2024, 4, FOR PEER REVIEW 8 
 

 

 
Figure 4. TGA curve weight loss (a) and first derivative (b) of unmodified MC and modified MC. 

TGA results of the prepared materials, Figure 5, reveal that despite the fact that an 
earlier decomposition temperature between 320–343 °C can be noticed, the thermal stabil-
ity is slightly enhanced since the degradation peak of the PE matrix shifts to higher tem-
peratures. Whereas the curve for PE-g-MA presented only one thermal degradation stage 
with a mass loss of almost 100%, the curve of the other samples displays two thermal 
degradation stages. The first degradation peak is related to cellulose degradation (320–
343 °C) and, as expected, increasing the MC-APTES amount increases the weight loss 
(around 4.5%) and a decrease in the decomposition temperature value, Figure 5b. The 
same occurs for the degradation peak of PE (478–479 °C), the sample with 1%MC-APTES 
seems to be the most thermally stable composite when compared with the other compo-
sites. This is in accordance with the literature; Ch.V.Alexanyan et al. reported a study 
where it is possible to verify that the presence of cellulosic materials translates into a slight 
increase in the degradation temperature. Moreover, the charcoal, resulting from cellulose 
degradation, contributes to the hydrogenation of the unsaturated products and, conse-
quently, the hydrogenated products develop at higher temperatures [21]. 

 
Figure 5. TGA curve weight loss (a) and first derivative (b) of PE-g-MA and PE-g-MA-MC-APTES 
composites. 

The DSC experimental curves of PE-g-MA_MC-APTES composites obtained from the 
first heating and cooling cycle are displayed in Figure 6 and Table 2.  

Crystalline polymers are characterized by a melting transition at a certain tempera-
ture, the melting temperature (Tm), and enthalpy (∆H) for melting. The crystallinity of the 
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composites.

TGA results of the prepared materials, Figure 5, reveal that despite the fact that an ear-
lier decomposition temperature between 320–343 ◦C can be noticed, the thermal stability is
slightly enhanced since the degradation peak of the PE matrix shifts to higher temperatures.
Whereas the curve for PE-g-MA presented only one thermal degradation stage with a mass
loss of almost 100%, the curve of the other samples displays two thermal degradation stages.
The first degradation peak is related to cellulose degradation (320–343 ◦C) and, as expected,
increasing the MC-APTES amount increases the weight loss (around 4.5%) and a decrease
in the decomposition temperature value, Figure 5b. The same occurs for the degradation
peak of PE (478–479 ◦C), the sample with 1%MC-APTES seems to be the most thermally
stable composite when compared with the other composites. This is in accordance with
the literature; Ch.V.Alexanyan et al. reported a study where it is possible to verify that
the presence of cellulosic materials translates into a slight increase in the degradation
temperature. Moreover, the charcoal, resulting from cellulose degradation, contributes
to the hydrogenation of the unsaturated products and, consequently, the hydrogenated
products develop at higher temperatures [21].

The DSC experimental curves of PE-g-MA_MC-APTES composites obtained from the
first heating and cooling cycle are displayed in Figure 6 and Table 2.
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Figure 6. Thermal behavior of PE-g-MA and prepared samples.
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Table 2. DSC results for PE-g-MA composites.

Sample ∆Hm [J/g] Xc [%] Tm [◦C] Tc [◦C]

PE-g-MA 123.9 42.3 125 105
1% MC-APTES 126.8 43.7 124 107
3% MC-APTES 120.3 42.3 124 106
5% MC-APTES 111.8 40.2 123 107

Crystalline polymers are characterized by a melting transition at a certain temperature,
the melting temperature (Tm), and enthalpy (∆H) for melting. The crystallinity of the
PE was in the range of 40–44% for all studied composites, where the crystallinity of neat
PE-g-MA is 42.9%. The presence of MC slightly shifts the melting point of PE-g-MA for
lower temperatures, narrowing the peak. This could be evidence that the presence of
cellulose in the matrix induces less stable crystals. On the other hand, cellulose can act as a
nucleating agent during the cooling cycle, whereas the crystallization peak starts at higher
temperatures. Although this results, no significant changes in crystallinity are detected,
which cannot be related to the following characterization of the film properties.

Dynamic mechanical results of all materials (Figure 7) exhibited an increase in stor-
age modulus as the amount of modified MC content in the polymer increased. This is
associated with the reinforcement effect of the MC. Moreover, the shift of tan delta to
lower temperatures is in agreement with E′ enhancement as the shift to lower temperatures
indicates a better compatibilization between modified MC and the polymer matrix.
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Figure 7. Storage modulus (solid) and tan δ (dash) obtained by DMA for neat PE-g-MA and PE_MC-
APTES composites.

3.3. Water Affinity Assessment

Polyethylene is known as a hydrophobic polymer, meaning that its wetting ability is
very low, which can be a disadvantage in food applications. Therefore, the incorporation of
more hydrophilic materials, such as cellulose and/or cellulose-silane composites, could
increase the wettability capacity [22].

Distilled water (volume: 3 µL; rate: 2 µL/s) was dropped on the film surface with a
precision syringe using the sessile drop method. The image of the initial drop (taken at
0 s) was recorded with a video camera; the contact angles along with the drop image are
depicted in Figure 8. As expected, the increase in MC-APTES content on the PE matrix
increases the surface wettability and decreases the contact angle. The CA of PE-g-MA is
around 90◦, due to the hydrophobic nature of PE, while for the materials with 1, 3, and
5% of MC-APTES, the CA are approximately 83◦, 81◦, and 79◦, respectively. This means
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that the surface of the film became more hydrophilic with increasing cellulose content,
as already reported in the literature [22–24]. Thus, these results are in agreement with
the obtained surface SEM image, Figure 2b, where is possible to observe the presence of
modified cellulose on the film surface. Thus, the effect of cellulose on the hydrophilic
character of the prepared materials is visible, since the hydroxyl groups present in cellulose
are able to form strong hydrogen bonds with the water molecules. Therefore, it is possible
to change the hydrophilicity/hydrophobicity of the material by changing the MC content.
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The water vapor barrier property is vital for packaging as it can prevent or allow the
transmission of this gas from the atmosphere to the food. Therefore, it is crucial to control
the transmission of gases/moisture from the environment to the food to extend the shelf
life and quality of food [25]. The incorporation of more hydrophilic materials, such as
cellulosic derivatives, can change the barrier properties of the gases. Although cellulose
displays an effective barrier to gases when it is in a humid environment, cellulose swells; to
overcome this drawback and to afford a hydrophobic character, chemical functionalization
has been carried out on the cellulose structure [26]. Despite the silanization of the cellulose
surface, a smaller number of hydroxyl groups are still available to link water molecules,
promoting a path for water vapor.

The WVTR characterizes the capability of moisture to penetrate and pass through the
film and it was assessed to understand the effect of MC-APTES content on film water vapor
transmission, Figure 9. The results of WVTR demonstrate that the addition of modified
cellulose in the PE matrix increased the WVTR of the films from 0.13 ± 0.030 g·h−1m−2

(PE-g-MA) to 0.29 ± 0.026 and 0.37 ± 0.038 and 0.69 ± 0.015 g·h−1m−2 of the films with 1,
3, and 5%MC-APTES, respectively. The presence of modified MC results in a lower barrier
to water molecules when compared to PE-g-MA and an increase from 3 to 5% MC-APTES
raises the WVTR almost twice, namely by 0.37 and 0.69 g·h−1m2, respectively. This agrees
with the literature results, where it is reported that cellulose increases barrier properties
due to its solid web-like architecture.
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4. Conclusions

An environmentally friendly and simple modification of the MC surface with silane
derivatives, as shown in FTIR analysis, and posterior melt blending with PE-g-MA allowed
the chemical bonding of both polymer matrix and MC. SEM studies reveal strong inter-
actions between the amino-silane groups attached to the cellulose and the MA grafted
in the PE matrix. Consequently, the mechanical properties improved when compared to
the polymer matrix. Moreover, the introduction of modified cellulose in the PE matrix
results in an increase in thermal stability, shifting the degradation peak of the PE matrix to
higher temperatures.

The hydrophilicity and water vapor transmission of produced films can be controlled
depending on MC-APTES contents and increasing the MC-APTES content increases the
wettability of the film and consequently decreases the CA. For example, the CA of PE-g-
MA_5%MC-APTES composite is significantly lower than for neat PE-g-MA, ~79◦ and ~90◦,
respectively, which means more hydrophilic film. Similarly, increasing the MC-APTES
content results in higher WVTR compared to neat PE-g-MA.

Therefore, the strategy used allows us to prepare packaging films with good mechani-
cal properties and gas transmission for fresh products.
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