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Abstract: Chronic hepatitis B (CHB) poses treatment challenges, with treatment response and dis-
ease outcome often determined by the immune response, particularly mononuclear phagocytes.
Monocytes can differentiate into various subpopulations influenced by AHR. Statins, known for
inflammation modulation, may impact monocyte function via AHR activation. This study explored
rosuvastatin (RSV)’s effects on monocyte subtypes, inflammatory markers, and AHR in CHB patients.
Fifteen CHB patients were randomly assigned to receive either 20 mg RSV or a placebo daily for
three months. Flow cytometry assessed CD14+ CD16− (classical), CD14+ CD16+ (intermediate),
and CD14dim CD16+ (patrolling) monocyte subtypes, along with AHR levels in each subset. ELISA
quantified cytokines IL-6, IFN-γ, IL-12, IL-10, TNF-α, TGF-β, and IL-1β. RSV expanded CD14+
CD16− classical and reduced CD14+ CD16+ intermediate monocytes in CHB patients while increas-
ing AHR+ cell percentages in all subsets. RSV treatment upregulated key AHR target genes (Cyp1a1,
Cyp1b1, and ARNT), indicating robust AHR signaling activation. It also reduced pro-inflammatory
cytokine levels (IL-6, IFNγ, IL-12, TNF-α) and elevated anti-inflammatory cytokines (IL-10, TGF-β).
Thus, RSV may modulate the immune response by altering monocyte subtypes in CHB patients via
AHR activation.

Keywords: chronic hepatitis B (CHB); monocytes; aryl hydrocarbon receptor (AHR); rosuvastatin
(RSV); CD14; CD16

1. Introduction

The hepatitis B virus (HBV) may lead to a diffuse chronic infectious state, exhibiting
diverse manifestations with life-threatening outcomes [1]. The vaccination of newborns is
believed to be the most efficient solution against HBV [2]. However, some confining factors
have blunted the vaccination plans, mostly in developing countries [3]. The effectiveness
and integrity of the antiviral immune response can decisively alter the duration of the
infection and prevent chronic hepatitis B (CHB). The elements of the body’s natural defense
system, which encompass mononuclear phagocytes (monocytes, macrophages, and Kupffer
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cells), dendritic cells (DCs), and natural killer (NK) cells, and how they engage with the
virus, significantly influence the outcome of CHB [4].

The secretion of HBV-mediated pro- and anti-inflammatory cytokines from effector
immune cells, such as IFNγ, IFNα, IL1, IL10, IL6, etc., are deregulated during CHB [5–7].
The impairment of innate immunity [8], in addition to the consequent flawed maturation
of adaptive immune cells [9], leaves the CHB patients vulnerable to the uncontrolled
replication of HBV [10].

According to the indisputable role of immunity in the pathogenesis of CHB, nu-
merous therapeutic strategies are focused on enhancing the immune response against
HBV, especially via modulating innate immune cells [8]. While the present drugs used
for CHB treatment, such as nucleotide analogs (like lamivudine, adefovir, tenofovir, and
entecavir) [11] and interferons [12] can effectively inhibit viral replication and bolster
the adaptive immune response [13], the safety of these medications remains a topic of
debate [14,15], and their impact on innate immune cells is not thoroughly established.

Monocytes, macrophages, and Kupffer cells are innate immune cells directing the
antiviral immune response, related to the mononuclear phagocyte system [16]. It has
been suggested that the monocyte functions are disrupted during CHB [17,18], which
could affect the function of phagocytes, while the principal origin of all immune cells
within the mononuclear phagocyte system is circulating monocytes [19,20]. Monocytes are
classified into three main subgroups based on their expression of CD14 and CD16, which
include classical monocytes (CD14+ CD16−), intermediate monocytes (CD14+ CD16+),
and patrolling (nonclassical) monocytes (CD14dim CD16+) [21,22]. While the percentages
of these subpopulations are altered in different disease states, and each subset represents
specific physiological functions [23], it is of great importance to study the alterations of
monocyte subsets in CHB patients and monitor the responses of immune cells to each
treatment. The CD14+ CD16− classical monocytes, as the most frequent subpopulation,
are mainly involved in phagocytosis, antigen processing, and presentation [24]. The CD14+
CD16+ intermediate monocyte, as the least frequent subpopulation, is mostly involved
in inflammatory responses (but may also exert proinflammatory effects), such as reactive
oxygen species (ROS) production, and T-cell stimulation [25]. The patrolling monocytes are
mobile monocytes, involved in tissue repair, exhibiting accelerated antiviral responses by
producing proinflammatory cytokines [26].

Several signaling pathways have been identified with the ability to alter monocyte
subsets or affect their maturation [27,28]. Recent studies revealed that the aryl hydrocar-
bon receptor (AHR) molecular pathway is able to modulate the function and maturation
of immune cells [29], including monocytes [30], and the type of immune response [31].
AHR could be activated by diverse synthetic and natural ligands, mainly composed of
polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and halo-
genated dioxins [32]. Statins competitively inhibit 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA), leading to reduced blood cholesterol levels, while also demonstrating potent
anti-inflammatory properties [33]. There have been indications that certain statins, such as
rosuvastatin (RSV), might function as selective ligands for the aryl hydrocarbon receptor
(AHR) [34]. While numerous contradictory studies have examined the impact of RSV
on inflammation in different illnesses [35], as far as we know, no study has specifically
examined the influence of RSV on altering monocyte subtypes in patients with CHB. Thus,
our objective was to explore the effects of RSV on the alteration of monocyte subgroups in
CHB patients, in correlation with AHR expression, and to evaluate cytokine levels in the
sera of patients receiving RSV or placebo treatment.

2. Materials and Methods
2.1. Participant Selection and Characteristics

The samples utilized in this study were obtained from a prior prospective, single-center,
randomized, double-blinded, placebo-controlled clinical trial, which was registered and
published in the Iranian Registry of Clinical Trials (IRCTID: IRCT20190602043789N1) [36].
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In summary, 30 CHB patients, carefully matched for sex, age, and treatment methods, were
selected from the Gastroenterology and Liver Clinic at Sayyad-e-Shirazi Hospital, Golestan
University of Medical Sciences (GoUMS), Gorgan, Iran. The study protocol was thoroughly
reviewed and approved by the GoUMS Ethics Committee in accordance with the principles
outlined in the Declaration of Helsinki (Ethics Code: IR.GOUMS.REC.1397.342). All
participants provided written informed consent after a comprehensive explanation of the
study details. A skilled gastroenterologist verified the presence of CHB in all patients based
on clinical examinations and laboratory indicators. Patients co-infected with hepatitis A
virus (HAV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), or hepatitis
D virus (HDV) were excluded from the study. Exclusion criteria involved patients with
chronic liver impairment due to non-viral factors, autoimmune disorders, acute renal
failure (ARF), malignancies, drug and/or alcohol dependency, pregnant individuals, and
those with a history of statin hypersensitivity.

The patients were randomly assigned in a blinded manner to two groups of 15 in-
dividuals each, in a 1:1 ratio, receiving either rosuvastatin or a placebo. Over a period
of 12 weeks, all participants were orally administered rosuvastatin tablets (20 mg, Abidi
Company, Tehran, Iran) or corresponding placebos once daily. In the event of any reported
adverse effects, the treatment was halted under the supervision of the gastroenterologist.
A total of 5 mL of peripheral blood (PB) was drawn from each participant under sterile
conditions and sent to the Stem Cells Research Center laboratory at GoUMS.

2.2. Immunophenotyping of Monocytes by Flowcytometry

As previously outlined, we separated the peripheral blood mononuclear cells (PBMCs)
through Ficoll-Paque (Baharafshan, Tehran, Iran) density gradient centrifugation [37]. After
confirming the viability of PBMCs, we suspended 4–5 × 105 viable cells in warm PBS.
These PBMCs were subsequently marked with APC-conjugated anti-human HLA-DR
antibody (Catalogue # 307609; Biolegend, San Diego, CA, USA), and FITC-conjugated
anti-human CD14 antibody (Catalogue # 301804; Biolegend). To examine the different
subsets of monocytes in each group, we used FITC-conjugated anti-human CD14 antibody
and PE/cyanine5-conjugated anti-human CD16 antibody (Catalogue # 302009; Biolegend).
The proportions of CD14+ CD16− classical, CD14+ CD16+ intermediate, and CD14dim
CD16+ patrolling monocytes were determined within the HLA-DR+ CD14+ monocyte
population. Additionally, the monocytes were labeled with PE-conjugated human AHR
antibody (Catalogue # 694503; Biolegend). The percentages of AHR+ events were assessed
for each monocyte subpopulation. For each sample, cells were incubated with 5 µL of
each antibody or marker for 30 min at room temperature, and dark, as suggested by the
manufacturer [38].

To ensure the specificity of our analysis, we took precautionary measures to exclude
any other cell types during flow cytometry, focusing exclusively on the targeted PBMCs. To
enhance the accuracy of our fluorescence-based measurements, Fluorescence Minus One
(FMO) control was employed, allowing us to establish baseline fluorescence levels and
precisely delineate the boundaries of distinct monocyte subsets within the analyzed PBMC
populations. All measurements were performed in triplicate. The immunophenotypes of
the stained samples in each group were analyzed using the BD Accuri C6 flow cytometer
(BD PharMingen, San Diego, CA, USA) and BD Accuri C6 plus software.

2.3. ELISA Cytokine Assay

Serum samples were obtained from all CHB patients receiving either RSV or placebo
treatment. The levels of pro-inflammatory cytokines (IL-12, TNF-α, IL-1β, IL-6, and IFN-γ)
and anti-inflammatory cytokines (IL-10 and TGF-β1) were evaluated using commercially
available ELISA kits (Zellbio, Berlin, Germany) in accordance with the provided guide-
lines [39]. In brief, serum samples were added to microplate wells coated with specific
antibodies for each cytokine and incubated for 2 h at room temperature to allow cytokine
binding. Following incubation, wells were washed using provided washing buffers to
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remove unbound substances. Enzyme-conjugated secondary antibodies were then added
and incubated for 1 h at room temperature. After another round of washing, a substrate
solution was added and incubated for 30 min at room temperature, and dark. The optical
density (O.D) of each sample was measured at a wavelength of 450 nm using the StatFAX
2100 ELISA plate reader (Awareness Inc., Palm City, FL, USA). Each experiment for all sam-
ples was conducted in triplicate, and the results were expressed as picograms of cytokines
per mL.

2.4. Gene Expression Analysis

Total RNA was isolated from PBMCs of CHB patients using TRIzol reagent (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s protocols [40]. The
isolated RNA was quantified using a NanoDrop spectrophotometer (Thermo Fisher Scien-
tific, USA) to confirm its purity (A260/A280 ratio between 1.8 and 2.0) and concentration
(≥200 ng/µL). Complementary DNA (cDNA) was synthesized from the purified total RNA
using the Yekta Tajhiz cDNA synthesis kit (Yekta Tajhiz, Tehran, Iran) according to the
manufacturer’s instructions [41]. Following cDNA synthesis, DNAse I treatment (Thermo
Fisher Scientific, USA) was performed to eliminate any residual genomic DNA contam-
ination. Real-time polymerase chain reaction (qPCR) was conducted using SYBR Green
dye (Yekta Tajhiz, Iran) on a StepOne Plus PCR machine (Applied Biosystems, Waltham,
MA, USA) [42]. The primer sequences used for amplification of target genes and the melt-
ing temperatures are listed in Table 1. The expression levels of genes of interest relevant
to AHR activation, namely cytochrome P450 1A1 (Cyp1a1; NM_000410.4), cytochrome
P450 1B1 (Cyp1b1; NM_000100.3), aryl hydrocarbon receptor nuclear translocator (ARNT;
NM_000739.3), and indoleamine-2,3-dioxygenase 1 (IDO-1; NM_002164.4), were evaluated.
To ensure accuracy and reliability, the expression levels were normalized to the endoge-
nous control gene, 18S ribosomal RNA (18srRNA; NR_003278.3). The fold change in gene
expression was determined using the comparative 2−∆∆Ct method, using Livak method.
The relative fold change in gene expression was calculated by comparing the experimental
group (CHB patients treated with RSV) to the control group (CHB patients without RSV
treatment) [43].

Table 1. List of primers used in gene expression quantification.

Gene Gene ID Forward Sequence (5′-3′) Reverse Primer (5′-3′)
Product
Length

(bp)

Tm
(◦C)

Cyp1a1 NM_000410.4 GATTGAGCACTGTCAGGAGAAGC ATGAGGCTCCAGGAGATAGCAG 138 61

Cyp1b1 NM_000100.3 GCCACTATCACTGACATCTTCGG CACGACCTGATCCAATTCTGCC 129 61

ARNT NM_000739.3 GGAATGCCTACTCCAGTCTTGC CTTTGCCACTGCGACCAGACTT 109 61

IDO-1 NM_002164.4 GCCTGATCTCATAGAGTCTGGC TGCATCCCAGAACTAGACGTGC 119 61

18srRNA NR_003278.3 ACCCGTTGAACCCCATTCGTGA GCCTCACTAAACCATCCAATCGG 159 61

2.5. Statistical Assessment

SPSS 23.0 (SPSS Inc., Chicago, IBM, IL, USA) and GraphPad Prism 8.4.2 software
(GraphPad Software Inc., San Diego, CA, USA) were employed for data analysis and
graphical representation. The data are presented as Means ± Standard Deviation (S.D.). A
comparison of means between the two groups was conducted using the Mann–Whitney U
test. Statistical significance was defined as p-values less than 0.05. The statistical procedures
were validated by the Department of Research and Technology at GoUMS.
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3. Results
3.1. The Administration of Rosuvastatin Led to an Increase in CD14+ CD16− Classical
Monocytes and a Decrease in CD14+ CD16+ Intermediate Monocytes in CHB Patients

We identified the viable monocytes within PBMCs from both the placebo and rosuvas-
tatin groups (Figure 1A,D) and evaluated the proportions of HLA-DR+ CD14+ monocytes
in CHB patients (Figure 1B,E). Through an examination of the CD14 and CD16 markers
on HLA-DR+ CD14+ monocytes, we determined the presence of CD14+ CD16− classi-
cal, CD14+ CD16+ intermediate, and CD14dim CD16+ patrolling monocytes in both sets
of CHB patients (Figure 1C,F). Our results illustrated that rosuvastatin treatment sub-
stantially raised the percentages of CD14+ CD16− classical monocytes in CHB patients
(p-value < 0.0001). Similarly, we observed a significant reduction in the percentages of
CD14+ CD16+ intermediate cells following rosuvastatin intervention in comparison to the
placebo group (p-value < 0.0001). The percentages of patrolling cells exhibited no significant
changes with RSV treatment (Figure 1G).
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Figure 1. Immunophenotyping of HLA-DR+ CD14+ monocytes in chronic hepatitis B (CHB) patients
treated with rosuvastatin or placebo. Monocytes (A,D) were gated according to staining by APC-
conjugated anti-human HLA-DR antibody, and FITC-conjugated anti-human CD14 antibody (B,E).
The percentages of CD14+ CD16− classical, CD14+ CD16+ intermediate, and CD14dim CD16+ pa-
trolling monocytes were evaluated on HLA-DR+ CD14+ monocytes, by FITC-conjugated anti-human
CD14 antibody, and PE/cyanine5-conjugated anti-human CD16 antibody (C,F). Rosuvastatin treat-
ment increased the percentages of CD14+ CD16− classical monocytes and decreased the percentages
of CD14+ CD16+ intermediate monocytes in CHB patients (G). Mann–Whitney U test was used to
compare the means between two groups. Each bar represents Means ± Standard deviation. ns: not
significant; **** p-value < 0.0001.
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3.2. Rosuvastatin Treatment Resulted in Elevated Percentages of AHR+ Cells across All Monocyte
Subgroups in CHB Patients

We assessed the proportions of AHR+ cells within the three subgroups of CD14+
CD16− classical, CD14+ CD16+ intermediate, and CD14dim CD16+ patrolling mono-
cytes in CHB patients receiving either rosuvastatin or placebo treatment (Figure 2A–F).
Rosuvastatin intervention notably raised the percentages of AHR+ cells among classical
(p-value < 0.001), intermediate (p-value < 0.0001), and patrolling (p-value < 0.05) monocytes
(Figure 2G).
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Figure 2. Evaluating the percentages of AHR+ cells among each subpopulation of monocytes in CHB
patients treated with rosuvastatin or placebo. PE-conjugated anti-human AHR antibody was used to
stain monocytes in each subpopulation (A–F). We found that RSV intervention could significantly
increase the percentages of AHR+ cells among classical, intermediate, and patrolling monocytes (G).
Mann–Whitney U test was used to compare the means between two groups. Each bar represents
Means ± Standard deviation. **** p-value < 0.0001; *** p-value < 0.001; * p-value < 0.05.

3.3. Rosuvastatin Treatment Modified the Levels of Pro- and Anti-Inflammatory Cytokines

We conducted ELISA cytokine assays on the serum samples from CHB patients treated
with either RSV or placebo to evaluate the secretion levels of pro- and anti-inflammatory
cytokines. The results revealed that in response to RSV, IL-6 was significantly reduced in
CHB patients (p-value < 0.001) (Figure 3A). The pro-inflammatory cytokine IFNγ exhibited a
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significant decrease in RSV-treated CHB patients (p-value < 0.001) (Figure 3B). Additionally,
the serum levels of IL-12 were downregulated in CHB patients who received RSV (p-value
< 0.01) (Figure 3C). On the other hand, the anti-inflammatory cytokine IL-10 showed a
notable increase in RSV-treated patients (p-value < 0.05) (Figure 3D). TNF-α demonstrated
a decrease in response to RSV (p-value < 0.01) (Figure 3E), whereas TGF-β showed a
significant increase (p-value < 0.01) (Figure 3F). The levels of IL-1β did not exhibit significant
changes between the two groups of patients (Figure 3G).
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Figure 3. ELISA cytokine assay was used to evaluate the pro- and anti-inflammatory cytokine levels
in the sera of CHB patients treated with placebo or rosuvastatin (RSV), related to the activation of
monocytes. IL-6 was significantly downregulated in response to RSV (A). The pro-inflammatory
cytokine of IFNγ was significantly decreased in RSV-treated CHB patients (B). IL-12 serum expression
was downregulated in CHB patients who received RSV (C). The anti-inflammatory cytokine of IL-10
was markedly increased in RSV-treated patients (D). TNF-α was decreased in response to RSV (E),
while TGF-β was significantly increased (F). IL-1β was not significantly changed between two groups
of patients (G). Mann–Whitney U test was used to compare the means between two groups. Each
bar represents Means ± Standard deviation. p-values lower than 0.05 were considered statistically
significant. * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not statistically significant.

3.4. RSV Treatment Activates AHR Signaling in CHB Patients

To investigate the activation of AHR by RSV in CHB patients, we analyzed the ex-
pression of four AHR target genes (Cyp1a1, Cyp1b1, IDO-1, and ARNT). The fold change
in mRNA expression was compared between CHB patients treated with RSV and those
receiving placebo using qPCR. Compared to the placebo group (fold change = 1.031), RSV
treatment significantly upregulated Cyp1a1 expression with a fold change of 1.872 (Fig-
ure 4A). This 82% increase suggests a robust activation of AHR pathways by RSV in CHB
patients. Similar to Cyp1a1, Cyp1b1 expression was significantly higher in the RSV group
(fold change = 3.856) compared to the placebo group (fold change = 1.041) (Figure 4B).
This threefold increase further supports the activation of AHR signaling following RSV
exposure. Consistent with the trends observed for Cyp1a1 and Cyp1b1, ARNT expression
demonstrated a significant upregulation in the RSV group (fold change = 3.413) compared
to the placebo group (fold change = 1.013) (Figure 4C). This increase in ARNT, a key
component of the AHR heterodimer, indicates a robust activation of the AHR complex
and downstream signaling pathways. The RSV treatment led to a slight increase in IDO-1
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expression (fold change = 1.625) compared to the placebo group (fold change = 1.007)
(Figure 4D).
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Whitney U test. (A) Cyp1a1 expression was significantly upregulated in the RSV group compared to
the placebo group (fold change = 1.872 vs. 1.031, p < 0.05). (B) Similar to Cyp1a1, Cyp1b1 expression
was significantly higher in the RSV group compared to the placebo group (fold change = 3.856 vs.
1.041, p < 0.01). (C) Consistent with the trends observed for Cyp1a1 and Cyp1b1, ARNT expression
demonstrated a significant upregulation in the RSV group compared to the placebo group (fold
change = 3.413 vs. 1.013, p < 0.01). (D) The RSV treatment led to a slight increase in IDO-1 expression
compared to the placebo group (fold change = 1.625 vs. 1.007). ** p < 0.01, *** p < 0.001.

4. Discussion

Hepatitis B virus (HBV) infection remains a significant health concern, with roughly
45% of the global population residing in regions with high prevalence [44]. Vaccination
is currently the most efficient and cost-effective approach to prevent HBV infection [5].
Individuals with positive HBV serology for six months or more are considered chronic
hepatitis B (CHB) patients [6,20]. In some cases, chronic infection, which is associated with
deregulated immune responses, may lead to irrecoverable damage to the liver [6]. CHB
is divided into HBeAg positive or negative states, where the HBeAg positive patients are
usually more prone to higher rates of viral replication and thus increased infection [45].

The initial defense against pathogens, such as HBV, involves the body’s innate immu-
nity, including mononuclear phagocytes [10,17,46]. Viral infections trigger the production
of type I interferons (IFN-α and IFN-β) and other inflammatory cytokines via Toll-like recep-
tors (TLR3, 7, 8, and 9) and the retinoic acid-inducible gene I (RIG-I) [17]. Whether the HBV
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infection clears or persists into a chronic state is largely determined by the host’s innate im-
mune responses, including monocytes [14]. The monocyte functions are disrupted during
CHB [18,19], which could alter the fate of the disease and response to treatment [20,22]. The
monocytes are classified into three primary subgroups based on their expression of CD14
and CD16: classical monocytes (CD14+ CD16−), intermediate monocytes (CD14+ CD16+),
and patrolling (nonclassical) monocytes (CD14dim CD16+) [21]. Although the monocyte
subtypes are altered in different infectious diseases, there is relatively little information
about the consequences of chronic HBV infection, and treatment strategies, on monocyte
subtypes. According to a recent study conducted by Dey et al., classical monocytes (CD14+
CD16−) were decreased, while intermediate monocytes (CD14+ CD16+) and patrolling
monocytes (CD14dim CD16+) were increased in CHB patients compared to the control
group. Additionally, the study found that one year of tenofovir therapy did not restore
the functions and populations of monocytes to normal levels [47]. Accordingly, novel or
repurposed drugs should also target the normalization of monocytes, where current drugs
failed to.

The aryl hydrocarbon receptor (AHR) molecular pathway is able to modulate the
function and maturation of immune cells [29], including monocytes [30], and the type of
immune response [31]. AHR could be activated by diverse synthetic and natural ligands,
of which statins, including rosuvastatin (RSV) may act as specific AHR ligands [34]. In this
study, our objective was to examine how RSV affects alterations in monocyte subgroups
among CHB patients, with a focus on AHR expression, while also evaluating cytokine
levels in the serum of patients treated with either RSV or placebo. Our findings revealed
that RSV treatment led to an increase in CD14+ CD16− classical monocytes and a decrease
in CD14+ CD16+ intermediate monocytes in CHB patients. However, there was no signifi-
cant alteration in the proportions of patrolling monocytes following RSV administration.
While certain studies have reported conflicting impacts of statins on monocyte subsets
in atherosclerosis, no study, as far as we are aware, has highlighted the effects of RSV on
monocyte subtypes in CHB patients. While de Carvalho et al. showed higher percentages
of classical monocytes and lower patrolling monocytes in statin-treated patients, which was
in accordance with our findings [48], Krychtiuk et al. indicated that monocyte subset distri-
bution was skewed toward an increase in CD14+ CD16+ intermediate cells [49]. Kauerova
et al. established that the utilization of statin therapy elevated the ratio of anti-inflammatory
macrophages, concurrently reducing the ratio of pro-inflammatory macrophages, consis-
tent with our own findings [50]. Since the CD14+ CD16− classical monocytes are mainly
involved in phagocytosis and antigen processing, expanding the classical monocytes could
be in favor of increasing the antiviral immune response. Eberhardt et al. showed that
statins can increase the rate of efferocytosis, by reducing the CD47-mediated “do not eat
me” signal [51]. Contrary to the immunomodulatory impacts of statins, certain in vitro re-
search has indicated that statins might induce pro-inflammatory signaling in mononuclear
phagocytes. Specifically, the activation of NF-κB and AP-1 through LPS-induced TLR4
activation in macrophages can favor a pro-inflammatory immune response [52,53].

We also showed that RSV intervention may expand the AHR+ cells in all subpopula-
tions of monocytes in CHB patients. Manni et al. demonstrated that RSV can activate AHR
in a dose-dependent manner. Moreover, AHR-deficient bone marrow-derived macrophages
(BMDMs) expressed lower levels of HMG-CoA as the main target protein of statin [54].

Our findings offered compelling evidence for RSV-mediated activation of AHR signal-
ing in CHB patients. The significant upregulation of Cyp1a1, Cyp1b1, and ARNT mRNA
expression strongly suggests RSV triggers robust AHR pathway activation. These results
align with previous studies demonstrating RSV’s ability to induce Cyp1a1 and Cyp1b1
expression in human endothelial cells [55]. The observed upregulation of ARNT, a critical
AHR coactivator, further corroborates the notion of enhanced AHR complex formation and
downstream signaling. Our findings within the context of CHB require further exploration
to elucidate the interplay between RSV, AHR, and IDO-1 regulation. Future studies employ-
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ing larger sample sizes and exploring additional AHR target genes could provide deeper
insights into the intricate mechanisms underlying RSV-AHR interactions in CHB patients.

Additionally, our study exhibited that RSV treatment in CHB patients reduced the
serum concentrations of pro-inflammatory cytokines IL-6, IFNγ, IL-12, and TNF-α, while
elevating the levels of anti-inflammatory cytokines IL-10 and TGF-β. Consistently, Iwata
et al. demonstrated that statins might exert anti-inflammatory effects by decreasing cytokine
production, aligning with our observations [56]. In line with our findings, Fu et al. revealed
that statin-stimulated monocytes may produce TNFα, IL6, and IL1β. Moreover, monocyte-
derived macrophages (MDMs), which are prepared in the absence of statins, may lose their
capacity for cytokine production and phagocytosis [57].

5. Conclusions

The administration of rosuvastatin led to an increase in CD14+ CD16− classical
monocytes and a decrease in CD14+ CD16+ intermediate monocytes among CHB patients,
suggesting a favorable antiviral immune response. Additionally, RSV treatment raised
the proportions of AHR+ cells across all monocyte subgroups, highlighting RSV as an
effective AHR agonist. RSV intervention in CHB patients reduced the serum levels of
pro-inflammatory cytokines IL-6, IFNγ, IL-12, and TNF-α, while elevating the levels of
anti-inflammatory cytokines IL-10 and TGF-β. Overall, our results position RSV as an
immune response modulator in CHB patients through the alteration of monocyte subtypes
via AHR. Nonetheless, further investigations are warranted.
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