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Abstract: The sigma-delta modulator (SDM) is one of the well-established data converter architectures.
It is well-known for achieving a high signal-to-noise ratio (SNR). In the SDM, the integrators in the
loop filter could suffer from overloading if the signal swing exceeds its maximum level, which leads
to performance and SNR degradation. Thus, scaling the system coefficients is needed, such that there
is no overloading for the integrators. In this work, we present a systematic general method that
could be used for scaling the signal swings in the continuous-time low-pass sigma-delta modulator
(SDM). The proposed method can be applied to any continuous-time low-pass SDM architecture,
and it includes the scaling of all the possible combinations of the system coefficients. Moreover,
an open-source Simulink-based toolbox that includes the systematic method is presented. This
toolbox could help the designer to execute the scaling process and the simulations in an efficient way.
In addition to that, a design example is discussed to illustrate the proposed method, wherein the
presented toolbox is used for simulations, and the simulation results are shown.

Keywords: sigma-delta modulator; coefficients scaling; analog-to-digital conversion; system level
optimization; modelling; MATLAB; Simulink; toolbox

1. Introduction

The sigma-delta modulator (SDM) is the most commonly used data converter in
high-precision applications. It can perform high-resolution data conversion using the
oversampling and noise-shaping techniques. There is a recent trend nowadays to use the
sigma-delta modulator in high-speed applications. For such applications, the continuous-
time sigma-delta modulator is widely used. The continuous-time sigma-delta modulator
is preferred over the discrete-time sigma-delta modulator due to its higher speed and its
lower power consumption [1,2].

In continuous-time sigma-delta modulators, the integrators could suffer from over-
loading if the output signal swing exceeds the full-scale limit. This overloading causes
degradation in the performance of the modulator that can be noticed when implementing
the circuits, wherein the signal is clipped if its swing is larger than the full-scale limit.
Therefore, one important step in the system-level design of the SDM is to perform scaling
for the system coefficients, such that the integrators’ output swings are within the full-scale
limit, so that there is no overloading [3,4].

Figure 1 shows a general third-order continuous-time low-pass sigma-delta modulator.
It includes all the possible system coefficients. It includes feedforward coefficients (“k”
coefficients), input feedforward coefficients (“b” coefficients), resonators (“g” coefficients),
and feedback DAC coefficients (“a” coefficients). There are two types of coefficients that
are included: the resistive types (ending with ”R”) and the capacitive types (ending with
“C”). For the feedback DACs, each one can be either a resistive DAC or a current DAC. The
third-order SDM includes three integrators. Each integrator supports three input paths:
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including resistive input paths (R), capacitive input paths (C), and DAC input paths (D). It
also includes an adder block and a quantizer block. The quantizer can be a single-bit or
a multi-bit quantizer. This general third-order SDM is used for illustration in this work;
however, the same concepts can be applied to any other order.
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Several methods for SDM coefficient scaling have been published before. A systematic
method for scaling integrators’ output swings in sigma-delta modulators has been proposed
in [5]. Another systematic method for scaling integrators’ output swings in resonator-based
continuous-time sigma-delta modulators has been proposed in [6]. Moreover, another
method for scaling the feedback coefficients of continuous-time sigma-delta modulators
has been proposed in [7]. These methods can be used to scale integrators’ output swings by
scaling the system coefficients, while preserving both the signal transfer function (STF) and
the noise transfer function (NTF). However, these methods still have some limitations.

First, every one of these methods discusses only one specific filter type of the sigma-
delta modulator, either SDM with feedback filter architecture or SDM with feedforward
filter architecture. However, various published designs tend to have a hybrid architecture,
including both feedforward and feedback coefficients at the same time, which helps to
reduce the STF peaking while ensuring that the integrators’ output swing is not large [8–13].
Such hybrid architecture was not included in the previous three methods. Second, they do
not include the scaling technique for the input feedforward coefficients (“b” coefficients),
which have been used in some recent designs [14–16]. Third, they do not include the scaling
technique for the capacitive-type coefficients, which have been used in several published
sigma delta modulators [17–21]. Fourth, they only include the simplest integrator model
(1/S), but they do not include other models for the integrator, such as the opamp-based
RC integrator with a series resistor and capacitor in the feedback network, which has been
used in multiple SDM designs [22–27], or the one with a parallel resistor and capacitor
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in the feedback network, which has been used in some SDM designs [28,29]. Fifth, they
do not include the method of adjusting the signal swing at the input of the quantizer,
which is needed to avoid the overloading of the quantizer. Sixth, none of these methods
discussed the trade-off between the integrator output swing and the linearity specification
of the integrator.

With respect to the tools for the automation of this scaling process, one well-known
option is the MATLAB-based Schreier Delta-Sigma toolbox [30]. It can perform the scaling
of the coefficients automatically to adjust the signal swings, and it generates the scaled
coefficients. However, it has the same limitations mentioned before in previous scaling
methods, with the exception that it includes the option to scale the input feedforward
coefficients (“b” coefficients).

In this work, a systematic general method for the scaling of the signal swings in the
continuous-time low-pass sigma-delta modulator is proposed. This method overcomes the
limitations mentioned before. First, the proposed method is a generic method that could be
applied to any SDM architecture, including the scaling of all the possible system coefficients
(feedforward coefficients, feedback coefficients, and resonators). Second, it includes the
scaling technique of the input feedforward coefficients (“b” coefficients). Third, it provides
the scaling method for capacitive-type coefficients in addition to resistive-type coefficients.
Fourth, it includes various integrator models that are not included in the previous reported
methods, such as the opamp-based RC integrator with a series resistor and capacitor in the
feedback network, or the one with a parallel resistor and capacitor in the feedback network.
Fifth, it includes the option of adjusting the signal swing at the input of the quantizer. Sixth,
it includes the non-linearity effect of the integrator to deduce the trade-off between the
integrator output swing and the integrator non-linearity.

Moreover, an open-source MATLAB and Simulink-based toolbox has been included in
this work (link in the references section) [31]. This toolbox can be easily used to simulate
continuous-time sigma-delta modulators and to scale signal swings, with the proposed
systematic method included inside the toolbox. The user can enter the system coefficients,
simulate the system, and deduce the needed scaling of the swings. Then, he can select
the scaling factor needed for each block, and the new coefficients will be calculated au-
tomatically. Hence, this toolbox greatly aids in automating the process of scaling SDM
system coefficients.

The paper is organized as follows: In Section 2, the integrator block is discussed in
detail, presenting the different models included for the integrator and discussing integrator
non-linearity modelling after that. In Section 3, the proposed systematic method for scaling
the integrators’ output swings, and the proposed method for adjusting the signal swing at
the input of the quantizer are both presented. In Section 4, a design example is discussed for
illustration, and the toolbox simulation results are shown. Section 5 concludes the paper.

2. Modelling of the Integrator

Before discussing the proposed systematic scaling method, it is crucial to first discuss
the model of the integrator that can be used in the continuous-time low-pass SDM. The
proposed toolbox, accompanied by the proposed systematic method, includes various
models for the opamp-based RC integrator. The integrator model can generally support
resistive input path, capacitive input path, and DAC input path. The DAC could be a
current DAC or a resistive DAC. Regarding the integrator feedback network, the included
designs have three types of the feedback networks: a capacitor, a capacitor with a series
resistor, and a capacitor with a parallel resistor.

Figure 2 shows a simplified schematic of the family of opamp-based RC integrator
designs included in the study. A summary of the included designs of the opamp-based RC
integrator is presented in Table 1. The definitions of the main circuit parameters related
to Figure 2 are shown in Table 2. The output expressions of the included designs of the
opamp-based RC integrator are shown in Table 3. The negative sign due to the inverting
gain of the single-ended opamp-based RC integrator is neglected for simplicity. It is worth
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mentioning that the opamp is assumed to be ideal for simplicity because non-idealities,
such as its finite gain and bandwidth do not have any significant effect on the system
coefficients scaling process. Table 4 includes the definitions of the input coefficients used in
the equations mentioned in Table 3. Table 5 includes the definitions of some parameters
used in the equations mentioned in Table 3.
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Table 1. Included designs of the opamp-based RC integrator.

Design # Input Path Type DAC Type Feedback Network

D1 Resistive and Capacitive Current DAC C
D2 Resistive and Capacitive Resistive DAC C
D3 Resistive and Capacitive Current DAC C + series R
D4 Resistive and Capacitive Resistive DAC C + series R
D5 Resistive and Capacitive Current DAC C + parallel R
D6 Resistive and Capacitive Resistive DAC C + parallel R

Table 2. Main circuit parameters of the opamp-based RC integrator.

Parameter Definition

C Integrator capacitor in the feedback network.

RP Parallel resistor with the capacitor in the feedback network.

RS Series resistor with the capacitor in the feedback network.

Ri
Resistor of the resistive input path.
There are (n) resistive input paths (R1, . . . , Rn).

Ci
Capacitor of the capacitive input path.
There are (m) capacitive input paths (C1, . . . , Cm).

VRi
Input signal of the resistive input path of the integrator.
There are (n) resistive path input signals (VR1, . . . , VRn).
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Table 2. Cont.

Parameter Definition

VCi
Input signal of the capacitive input path of the integrator.
There are (m) capacitive path input signals ( VC1, . . . , VCm).

gm Transconductance of the current DAC.
IIDAC = gm · VIDAC (1)

VIDAC Input signal of the current DAC input path.

RDAC Resistor of the resistive DAC input path.

VRDAC Input signal of the resistive DAC input path.

Table 3. Output expressions of the included designs of the opamp-based RC integrator.

Design # Output Expression

D1 Vout = S·(∑m
i=1 KCiVCi)+(∑n

i=1 FsKRiVRi)+(FsKIDACVIDAC)
S

(2)

D2 Vout = S·(∑m
i=1 KCiVCi)+(∑n

i=1 FsKRiVRi)+(FsKRDACVRDAC)
S

(3)

D3 Vout = (∑m
i=1( (S2· XP

Fs )+S)·KCi VCi)+(∑n
i=1((S·XP)+Fs)·KRiVRi)+(((S·XP)+Fs)·KIDAC VIDAC)

S
(4)

D4 Vout = (∑m
i=1( (S2· XP

Fs )+S)·KCi VCi)+(∑n
i=1((S·XP)+Fs)·KRiVRi)+(((S·XP)+Fs)·KRDAC VRDAC)

S
(5)

D5 Vout = S·(∑m
i=1 KCi VCi)+(∑n

i=1 FsKRiVRi)+(FsKIDACVIDAC)

S+ 1
TP

(6)

D6 Vout = S·(∑m
i=1 KCi VCi)+(∑n

i=1 FsKRiVRi)+(FsKRDACVRDAC)

S+ 1
TP

(7)

Table 4. Definitions of the input coefficients.

Coefficient Definition

KRi
Coefficient of the resistive input path.
KRi =

1
Fs ·Ri ·C (8)

KCi
Coefficient of the capacitive input path.
KCi =

Ci
C (9)

KIDAC
Coefficient of the current DAC input path.
KIDAC =

gm
Fs ·C (10)

KRDAC
Coefficient of the resistive DAC input path.
KRDAC = 1

Fs ·RDAC ·C (11)

Table 5. Definitions of some parameters used in Table 3.

Parameter Definition

Fs Sampling frequency.

TP TP = RP · C (12)

XP XP =
(

1
KRi

· RS
Ri

)
= RS · Fs · C (13)

Figure 3 shows the simplified general diagram of the model of the integrator. There
are three types of input paths: the resistive input path, capacitive input path, and the
DAC input path (which can be either current DAC or resistive DAC). There is a transfer
function block for each one of the three paths based on the derived equations from (2) to (7).
The model also includes a saturation block which includes the option of swing limitation
beyond a certain threshold. Moreover, it has the option to include the non-linearity effect
of the opamp. This will be discussed in the next paragraph.
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One important thing that was not included in the previous methods [5–7] is the non-
linearity effect of the opamp gain used in the integrator. In real circuits, as the output
swing of the integrator becomes large (even within the allowed full-scale limit), the output
impedance of the opamp can be affected due to the change in the available headroom on
the CMOS transistors, and hence the gain of the opamp can vary with the output swing
level. Such non-linearity in the opamp gain leads to harmonic distortion and degradation
in the SNDR (Signal to Noise and Distortion Ratio). Thus, it is important to include such an
effect in the integrator model to see the non-linearity effect versus the output swing level.

Equations (14) and (15) describe the transfer function of this block given that the input
is within the full-scale limit. Ideally (i.e., with no included non-linearity), the output equals
the input. However, by including the non-linearity effect, there will be a smooth gain
compression in the transfer function.

The term (α) represents the non-linearity. If its value is zero, this means that the block
is perfectly linear (non-linearity is not included). As its value becomes larger than zero,
this means more non-linearity. Figure 4 shows the characteristics of this block for different
values of (α). In this graph, both the input and the output are normalized over the full-
scale limit.

Vout = Vin ; if α = 0 (14)

Vout =
1

tanh(α)
· tanh(α · Vin) ; if α ̸= 0 (15)

1 
 

 
  
Figure 4. Transfer function of the soft saturation block for different values of (α).
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3. Proposed Systematic Method for Scaling the Signal Swings
3.1. Proposed Method for Scaling the Integrators’ Output Swings

Now, after discussing the model of the integrator, the general idea of the scaling
method of the integrator’s output swing is discussed here. Figure 5 shows the general
basic concept of this method. If it is desired to scale the integrator output swing by factor
(F), all the input paths of the integrator are scaled by the factor (F), and all the paths
connected to the output of the integrator are scaled by (1/F). There are three input paths of
the integrators: the resistive input path, the capacitive input path, and the DAC input path.
The paths connected to the output of the integrator are the resistive path and the capacitive
path. By using this scaling method, the signal transfer function (STF) and the noise transfer
function (NTF) of the SDM are not affected at all.
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3.2. Proposed Method for Adjusting the Quantizer Input Signal Swing

In addition to the scaling of the integrator output swing, this paper presents a method
to adjust the signal swing at the input of the quantizer. For adjusting the signal swing at
the input of the quantizer, all the input paths to the quantizer are scaled by the factor (Fq),
and all the paths connected to the output of the quantizer (which are the feedback DACs)
are scaled by (1/Fq).

This proposed method has no effect on the noise transfer function (NTF). However, it
has an effect on the signal transfer function (STF). The whole STF is scaled by the factor
(Fq). Therefore, for example, if the signal swing at the input of the quantizer is scaled by
(Fq = 0.7), the STF magnitude will be multiplied by 0.7, which means that its magnitude
will decrease by 3 dB and the SNR will decrease by 3 dB.

Figure 6 shows the simplified diagram of the original SDM before adjusting the
quantizer input signal swing. The quantizer is modelled as a gain block (Kq) (wherein Kq is
the gain of the quantizer) and the quantization noise is added after it. The STF and NTF of
the system can be deduced using th diagram below, and they are given by (16) and (17).

STF =
X(S) · Kq

1 + D(S) · Kq · Y(S)
(16)

NTF =
1

1 + D(S) · Kq · Y(S)
(17)

If the input path of the quantizer is scaled by (Fq), and the output path of the quantizer
is scaled by (1/Fq), the new simplified diagram of the modified SDM is shown in Figure 7.
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The new STF and NTF of the system can be deduced using the diagram below, and they
are given by (18) and (19).

STF a f ter including Fq =
X(S) · Kq · Fq

1 + 1
Fq
· D(S) · Kq · Fq · Y(S)

=
X(S) · Kq · Fq

1 + D(S) · Kq · Y(S)
(18)

NTF a f ter including Fq =
1

1 + 1
Fq
· D(S) · Kq · Fq · Y(s)

=
1

1 + D(S) · Kq · Y(S)
(19)
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Figure 7. Simplified SDM diagram after adjusting the quantizer input signal swing.

It is clear from the previous equations that the NTF will remain unchanged, while the
STF will change. For the STF, the denominator remains the same, while the numerator is
multiplied by the factor (Fq).

It is important to mention that adjusting the signal swing at the input of the quantizer
(using Fq) is not exactly linear; this is because the quantizer is a non-linear block in reality.
Furthermore, it is also worth mentioning that using the scaling factor (Fq) could lead to a
very small change in the output swings of the integrators. That can be noticed in the design
example discussed later.

3.3. Summary of the Scaling Factors

By applying the proposed methods mentioned above to the general third-order SDM
shown in Figure 1, Table 6 presents a summary. This table shows the scaling factor of each
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coefficient in the SDM, wherein (F1) is the scaling factor of the first integrator output swing,
(F2) is the scaling factor of the second integrator output swing, (F3) is the scaling factor of
the third integrator output swing, and (Fq) is the factor used for adjusting the quantizer
input signal swing. The third-order SDM is used for illustration; however, the same concept
can be applied to any other order.

Table 6. Scaling factor for each coefficient in a third-order SDM.

Coeff. Scaling
Factor Coeff. Scaling

Factor Coeff. Scaling
Factor

k12_R F2
F1

b1_R F1 k13_R F3
F1

k23_R F3
F2

b2_R F2 k14_R Fq
F1

k34_R Fq
F3

b3_R F3 k24_R Fq
F2

a1 F1
Fq

b4_R Fq k12_C F2
F1

a2 F2
Fq

b1_C F1 k13_C F3
F1

a3 F3
Fq

b2_C F2 k23_C F3
F2

a4 Fq
Fq

= 1 b3_C F3 g32_R F2
F3

g21_R F1
F2

g31_R F1
F3

g31_C F1
F3

4. Design Example and Simulation Results
4.1. Design Example

For further illustration, a design example is discussed here. The proposed method
is applied to a fourth-order SDM. The presented Simulink-based toolbox was used to
perform the simulations and the scaling required. Figure 8 shows the simplified diagram
of the design example. Figure 9 shows the detailed equivalent circuit diagram. It is a
fourth-order continuous-time low-pass sigma-delta modulator with both feedforward
coefficients and feedback current DACs. There are four integrators. Each of the first and
the second integrators is an opamp-based RC integrator having a capacitor in the feedback
network, and its output equation can be defined as mentioned in (2). The third integrator
is an opamp-based RC integrator with a resistor parallel to the capacitor in the feedback
network, and its output can be defined as mentioned before in (6). The fourth integrator is
an opamp-based RC integrator having a series resistor with the capacitor in the feedback
network, and its output can be defined as mentioned before in (4). Two types of coefficients
are used: the resistive-type and the capacitive-type. There are two resistive-type resonators
as well. A multi-bit quantizer is used (4 bits) in this modulator. A delay (0.5 Ts) is included
after the quantizer to model the delay of the D-latch that follows the quantizer. The used
oversampling ratio (OSR) is 16. Table 7 shows the values of the coefficients of the design
example before performing the scaling.

Table 7. Values of the coefficients for the design example before scaling.

Coeff. Value Coeff. Value Coeff. Value

k12_R 0.802 a1 −0.356 k13_R 0.129
k23_R 0.333 a2 −1.158 k25_R 0.155
k34_R 0.81 a3 −1.403 k12_C 0.2
k45_R 0.444 a4 −2.04 k13_C 0.129
b1_R 0.7 a5 −0.58 k23_C 0.0737
b3_R 0.45 g21_R −0.0377 TP_3 50/Fs

g43_R −0.0062 XP_4 0.1
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4.2. Simulation Conditions and Observing the Swings

To simulate the SDM, an input signal whose amplitude equals 70% of the full scale is
used for testing. Table 8 shows the normalized signals swings (i.e., normalized over the
full-scale limit) in the SDM before performing any scaling. It is clear that the output swings
of the integrators need to be scaled. It can also be noticed that the signal swing at the input
of the quantizer needs to be adjusted.
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Table 8. Normalized signal swings in the SDM before scaling.

Signal Normalized Swing Signal Normalized Swing

Integrator 1 output 1.6 Integrator 4 output 3
Integrator 2 output 3.4 Quantizer input 1.25
Integrator 3 output 2.95

4.3. Applying the Proposed Scaling Method

Applying the proposed systematic method to this fourth-order design example, the
scaling factor of each coefficient in the SDM can be deduced as shown in Table 9, wherein
(F1), (F2), (F3), (F4) are the scaling factors of the first integrator output swing, the second
integrator output swing, the third integrator output swing, and the fourth integrator output
swing, respectively. The term (Fq) is the factor used for adjusting the quantizer input
signal swing.

Table 9. Scaling factor for each SDM coefficient in the design example.

Coeff. Scaling
Factor Coeff. Scaling

Factor Coeff. Scaling
Factor

k12_R F2
F1

a1 F1
Fq

k13_R F3
F1

k23_R F3
F2

a2 F2
Fq

k25_R Fq
F2

k34_R F4
F3

a3 F3
Fq

k12_C F2
F1

k45_R Fq
F4

a4 F4
Fq

k13_C F3
F1

b1_R F1 a5 Fq
Fq

= 1 k23_C F3
F2

b3_R F3 g21_R F1
F2

g43_R F3
F4

4.4. Simulations and Verification of Swing Scaling

The verification of the swing scaling is divided into three parts. In the first part of the
verification, the scaling of the output swings of the integrators is verified alone without
adjusting the signal swing at the input of the quantizer. In the second part of the verification,
adjusting the signal swing at the input of the quantizer is verified alone, without scaling
the output swings of the integrators. In the third part of the verification, the two concepts
are verified together. These concepts are scaling the output swings of the integrators and
adjusting the signal swing at the input of the quantizer.

Table 10 shows the normalized signal swings before scaling for the original SDM, the
scaling factors used for each block, and the normalized swings after the scaling in each part
of the verification.

Table 10. Summary of the verification of swing scaling.

Original SDM First Part of Verification Second Part of Verification Third Part of Verification

Signal
Normalized

Swing before
Scaling

Scaling
Factor

Normalized
Swing after

Scaling

Scaling
Factor

Normalized
Swing after

Scaling

Scaling
Factor

Normalized
Swing after

Scaling

Integrator 1 output 1.6 F1 = 0.5 0.8 F1 = 1 1.62 F1 = 0.5 0.81
Integrator 2 output 3.4 F2 = 0.25 0.85 F2 = 1 3.42 F2 = 0.25 0.855
Integrator 3 output 2.95 F3 = 0.25 0.74 F3 = 1 2.98 F3 = 0.25 0.745
Integrator 4 output 3 F4 = 0.25 0.75 F4 = 1 3.11 F4 = 0.25 0.78

Quantizer input 1.25 Fq = 1 1.25 Fq = 0.7 0.93 Fq = 0.7 0.93

Figure 10 shows the spectrum of the output of the modulator before and after the
scaling in the first part of the verification. It is clear that the spectrum is identical in the
two cases. Comparing the SNDR before and after the scaling in this part, it remains around
89.5 dB. This means that the STF and NTF remain unchanged.
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Figure 11 shows the spectrum of the output of the modulator before and after the
scaling in the second part of the verification. Figure 12 shows the spectrum of the output of
the modulator before and after doing the scaling in the third part of the verification. From
these two parts, it is clear that the spectrum after scaling is identical to the unscaled version
except that the magnitude of the signal itself is decreased. Since the signal swing at the
input of the quantizer is scaled by 0.7 (−3 dB) (using Fq = 0.7), the STF magnitude is scaled
by the same value. As a result, the signal magnitude will decrease by 3 dB, which means
that the SNDR will degrade by 3 dB. Comparing the SNDR before and after performing
the scaling, the SNDR equals 86.5 dB after scaling in the second and in the third part
of the verification, whereas it was 89.5 dB before scaling. This agrees with the deduced
Equations (18) and (19).
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Figure 11. Modulator output spectrum in the second part of verification.
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Figure 12. Modulator output spectrum in the third part of verification.

4.5. Simulations and Verification of Integrator Non-linearity

In SDM, the first integrator is the most critical block for linearity, whereas the other
following integrators are less critical. This is because any error due to the non-linearity
of the second, third, and fourth integrators is divided by the gain of the previous stages
when referring to the input, making it negligible compared to the error resulting from the
first integrator.

In this part of the verification, the non-linearity effect of the first integrator is shown.
Different values (0.3, 0.4, 0.5, 0.6) of the non-linearity coefficient (α) of the first integrator
are simulated twice. The first simulation is performed using (F1 = 0.25), and the second
simulation is performed using (F1 = 0.5). The values of (F2), (F3), (F4), and (Fq) are kept at
0.25, 0.25, 0.25, and 0.7, respectively, during the two tests.

Figure 13 shows the SNDR of the SDM versus the non-linearity coefficient (α) of the
first integrator. The tradeoff between the non-linearity of the first integrator and its output
swing is shown. It can be concluded that as the output swing of the integrator becomes
smaller (F1 becomes smaller), the SNDR is better for the same value of the non-linearity
coefficient (α).
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5. Conclusions

This paper presents a systematic method for scaling the signal swings in the low-pass
continuous-time sigma-delta modulator. This method overcomes the limitations mentioned
in the previous reported methods. Moreover, a MATLAB and Simulink-based toolbox has
been included in this work. The toolbox can be easily used to simulate the continuous-time
sigma-delta modulators and to scale the signal swings. The analysis of the proposed method
was discussed in detail. Furthermore, a design example was discussed for illustration, and
the toolbox simulation results were presented.

In summary, Table 11 shows a comparison between this work and the previously
published research.

Table 11. Comparison between this work and the previously published research.

Point of Comparison [5] [6] [7] [30] This Work

SDM architecture
Either

feedforward or
feedback

Either
feedforward or

feedback
Feedback

Either
feedforward or

feedback

Generic architecture
(all possible

combinations of
coefficients are included)

R feedforward coeff. Yes Yes No Yes Yes

C feedforward coeff. No No No No Yes

R input feedforward coeff. No No No Yes Yes

C input feedforward coeff. No No No No Yes

R resonator Yes Yes No Yes Yes

C resonator No No No No Yes

Integrator model (1/S) (1/S) (1/S) (1/S) Multiple models

Includes adder block Yes Yes No Yes Yes

Includes scaling of the
quantizer input No No No No Yes

Includes toolbox for
the process automation No No No Yes Yes

Author Contributions: Conceptualization, B.M.Z.; Methodology, B.M.Z.; Validation, B.M.Z.; Formal
analysis, B.M.Z.; Investigation, B.M.Z.; Resources, B.M.Z.; Writing—original draft, B.M.Z. and M.A.H.;
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