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Abstract: An electrochemical photobioreactor with a packed bed containing transparent gel granules
and immobilized photosynthetic bacterial cells is shown with a one-dimensional two-phase flow and
transport model. We consider the biological/chemical events in the electrochemical photobioreactor,
the intrinsically connected two-phase flow and mass transport, and other factors. This model is based
on a system of nonlinear equations. This paper applies Akbari-Ganji’s and Taylor series methods
to find analytical solutions to nonlinear differential equations that arise in an immobilized-cell
electrochemical photobioreactor. Approximate analytical expressions of the concentration of glucose
and hydrogen are obtained in liquid and gas phases for different parameter values. Numerical
simulations are presented to validate the theoretical investigations.

Keywords: reaction-diffusion; immobilized-cell; mathematical modeling; analytical solution; akbari-
ganji method; taylor series method; electrochemical photobioreactor

1. Introduction

The packed bed reactor can apply to various processes, including adsorption, leaching,
ion exchange, and catalysis. Consequently, over the past ten years, one of the leading
research areas in chemical engineering has been mass transfer in packed beds. However,
only a few mass transfer studies have been made using electrochemical techniques. Han-
ratty [1–6] developed an electrochemical technique to study the mass transfer phenomena
in packed bed reactors. Mass transport, two-phase flow, and biological reactions interact
in an active photobioreactor. Therefore, a greater understanding of the complex transport
mechanism will encourage the use of photobioreactors.

Immobilized-cell bioreactors have been the subject of several mathematical models
research [7–10]. Nath and Chand’s [8] research looked at the steady-state mass transfer in
conjunction with the biological reaction in immobilized-cell-packed bed reactors. Using
Pseudomonas putida immobilized in calcium alginate beads, Banerjee et al. [9] provided a
mathematical model to analyze the mass transfer constraints in phenol biodegradation. In
addition, Palazzi et al. [11] developed a kinetic model in a continuous bioreactor for hydro-
gen production. They studied the effect of residence time and inlet glucose concentration
on the hydrogen production rate. Liao et al. [12] present a one-dimensional two-phase
flow and transport model for a packed bed photobioreactor with transparent gel granules
containing immobilized photosynthetic bacterial cells.
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This communication directs our attention to the analytical and numerical methods of
solving nonlinear equations in an immobilized-cell photobioreactor. We use Akbari-Ganji’s
method (AGM) and the renowned Taylor series method (TSM) to derive approximate
analytical expressions of substrate and product concentrations in liquid and gas phases for
various parameter values. This paper will present a profile of both approaches’ reliability,
efficiency, and convergence.

2. Formulation of the Problems

An immobilized-cell photo bioreactor packed with transparent gel-granules containing
immobilized PSB developed and modeled by Shirejini et al. [13] is illustrated in Figure 1i.
Figure 1ii shows a schematic diagram of mass transfer in a single gel granule, such that the
mass transfer of all reactants and products is dominated by diffusion. Using Fick’s law, the
mass transport equations for the substrate and the hydrogen inside the gel granules are
given by [12]:

DS
granule

[
1
r2

d
dr

(
r2

dCS
granule

dr

)]
= φS

granule (1)

DH2
granule

 1
r2

d
dr

r2
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 = φH2
granule (2)

φS
granule =
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µmaxCS

granule
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granule

(3)

where DS
granule and DH2

granule are the significant diffusion coefficients of glucose and hydrogen

in the gel granule, CS
granule and CH2

granule are the local concentrations of glucose and hydrogen

inside the gel granule, φS
granule is the consumption rate of glucose, φH2

granule is the generation
rate of hydrogen. The parameter α∗ represents the growth-associated kinetic constant for
hydrogen production, β is the non-growth-associated kinetic constant, Xcell is the initial
cell density, Y∗X/S is the cell yield, and KS is a Monod constant. Furthermore, µmax denotes
the maximum specific growth rate, and µ is the growth rate. The boundary conditions for
the above system of Equations (1) and (2) are given by

dCS
granule
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∣∣∣∣∣
r=0

=
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= 0, (4)
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where CS
l and CH2

g are bulk solutions, and R is the radius of the catalyst. The source terms
ϕs, ϕH2 , and ϕCO2 are defined by:

ϕs = αDs
granule

(
dCs

granule

dr

)
r=R

, ϕH2 = αDH2
granule

dCH2
granule

dr


r=R

,

ϕCO2 =
MCO2

2MH2
ϕH2 , (6)

where α is the specific area of the gel granule, the source terms of the liquid phase and gas
phase are expressed by:

m•l = −ϕs, m•g = ϕH2 + ϕCO2 (7)
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Here, the dot signifies differentiation with respect to time. By introducing the dimension-
less parameters
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l
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g
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,
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Xcellm R2
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l
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Xcellβ R2CS
l
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g
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Cs
l

, v =
CH2
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CH2
g

, α1 =
CS

l
KS

, (8)

Figure 1. Schematic of (i) a photobioreactor that contains granules of gel that have immobilised PSB
cells and (ii) a single gel granule [13].

Equations (1) and (2) take the dimensionless forms:

1
ζ2

d
dζ

(
ζ2 du(ζ)

dζ

)
=
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and the dimensionless boundary conditions are:

du(ζ)
dζ

=
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dζ
= 0 at ζ = 0 (11)

u(ζ) = v(ζ) = 1 at ζ = 1 (12)

The normalized steady-state source terms of liquid and gas phases are given by
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. (14)
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3. Analytical Expression of the Concentrations Using Akbari-Ganji’s Method

Nonlinear systems of equations usually have real-world physical applications. The
search for effective and reliable analytical asymptotic techniques to solve complex systems
has increased over the past three decades. The following methods have received significant
attention: the perturbation method (PM) [13], homotopy perturbation method (HPM) [14,15],
variation iteration method (VIM) [16,17], homotopy analysis method (HAM) [18,19], differ-
ential transform method (DTM) [20,21], and Adomian decomposition method (ADM) [22],
Taylor series method [23–25] and Akbari-Ganji’s method [26–29].

In this section, we use AGM to derive explicit expressions for the concentrations of
glucose and hydrogen. The AGM is a semi-analytical approach that has shown efficacy in
solving nonlinear equations [26–29]. The AGM procedure begins by assuming a solution
function with unknown constant coefficients, determined by solving a system of algebraic
equations constructed from the differential equations and the initial conditions.

3.1. Concentration of Glucose (Substrate)

Assume that the solution of Equation (9) is given by:

u(ζ) = a0 + a1ζ + a2ζ2, (15)

where a0, a1, and a2 are constants. The boundary conditions (11) and (12) imply

a0 + a1 + a2 = 1 and a1 = 0. (16)

Now define the function F as follows:

F(ζ) :
1
ζ2

d
dζ

(
ζ2 du(ζ)

dζ

)
− (ϕ1 + γ1)u(ζ) + γ2

(1 + α1u(ζ))
= 0 (17)

Then

F(ζ = 1) : 2a1 + 6a2 −
(ϕ1 + γ1)(a0 + a1 + a2) + γ2

(1 + α1(a0 + a1 + a2))
= 0. (18)

Using Equation (16) in Equation (18), we have

a2 =
ϕ1 + γ1 + γ2

6(1 + α1)
, a0 = 1− ϕ1 + γ1 + γ2

6(1 + α1)
. (19)

By substituting Equations (16) and (18) into Equation (15), the analytical expression for the
substrate becomes:

u(ζ) = 1 +
ϕ1 + γ1 + γ2

6(1 + α1)
(ζ2 − 1). (20)

3.2. Concentration of Hydrogen (Product)

Similar to Equation (15), we assume that the solution to Equation (10) has the form:

v(ζ) = b0 + b1ζ + b2ζ2. (21)

From boundary conditions (11) and (12), we obtain:

1 = b0 + b1 + b2, and b1 = 0. (22)

Define the G function by

G(ζ) :
1
ζ2

d
dζ

(
ζ2 dv(ζ)

dζ

)
− (ϕ2 + γ3)u(ζ) + γ4

(1 + α1u(ζ))
= 0, (23)

Then

G(ζ = 1) : 2b1 + 6b2 −
(ϕ2 + γ3)(a0 + a1 + a2) + γ4

(1 + α1(a0 + a1 + a2))
= 0, (24)
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Substituting Equation (22) into Equation (24) leads to

b2 =
ϕ2 + γ3 + γ4

6(1 + α1)
, b0 = 1− ϕ2 + γ3 + γ4

6(1 + α1)
, (25)

and substituting Equations (22) and (25) into Equation (16), the analytical expression for
the product is

v(ζ) = 1 +
ϕ2 + γ3 + γ4

6(1 + α1)
(ζ2 − 1). (26)

3.3. Normalized Steady-State Source Terms of Liquid and Gas Phases

The analytical expressions of normalized steady-state source terms of liquid and gas
phases are given by:

ψl = −
(ϕ1 + γ1 + γ2)

3(1 + α1)
, (27)

ψg =
(2 + ω)

2

(
(ϕ2 + γ3 + γ4)

3(1 + α1)

)
. (28)

The analytical expressions given by Equations (20) and (26) for the concentrations
of glucose and hydrogen, respectively, are identical to the expressions obtained by the
homotopy perturbation method [15].

4. Analytical Expression of the Concentrations Using Taylor Series Method

The three-century-old Taylor series method (TSM) has been recently revived and
exploited to accurately and efficiently solve many nonlinear differential equations rep-
resenting nonlinear models in various sciences and engineering applications [23–25]. In
this section, we employ TSM to find the concentration of glucose (substrate) and hydro-
gen (product).

4.1. Concentration of Glucose (Substrate)

First, we assume that
u(0) = m, (29)

where m is an unknown constant to be determined, steady-state nonlinear reaction–
diffusion equations can be written in the form:(

ζu′′ (ζ) + 2u′(ζ)
)
(1 + α1u(ζ)) = (ϕ1 + γ1)ζu(ζ) + γ2ζ. (30)

Taking the first three derivatives of Equation (30) with respect to ′ζ′ gives

(ζu′′′ (ζ) + 3u′′ (ζ))(1 + α1u(ζ)) +
(
ζu′′ (ζ) + 2u′(ζ)

)
α1u′(ζ) = (ϕ1 + γ1)

(
u(ζ) + ζu′(ζ)

)
+ γ2, (31)

(
ζu
′′′′
(ζ) + 4u′′′ (ζ)

)
(1 + α1u(ζ)) + 2(ζu′′′ (ζ) + 3u′′ (ζ))α1u′(ζ)+

(ζu′′ (ζ) + 2u′(ζ))α1u′′ (ζ) = (ϕ1 + γ1)(2u′(ζ) + ζu′′ (ζ))
(32)

(
ζu′V(ζ) + 5u

′′′′
(ζ)
)
(1 + α1u(ζ)) + 3

(
ζu
′′′′
(ζ) + 4u′′′ (ζ)

)
α1u′(ζ)

+3(ζu′′′ (ζ) + 3u′′ (ζ))α1u′′ (ζ) + (ζu′′ (ζ) + 2u′(ζ))α1u′′′ (ζ) = (ϕ1 + γ1)(3u′′ (ζ) + ζu′′′ (ζ))
(33)

For ζ = 0, Equations (31)–(33) give the following identities:

u′′ (0) = m(ϕ1+γ1)+γ2
3(α1m+1) , u′′′ (0) = 0, u

′′′′
(0) = (m(ϕ1+γ1)+γ2)(ϕ1+γ1−α1γ2)

5(α1m+1)3

, uv(0) = 0uvi(0) = (m(ϕ1+γ1)+γ2)(ϕ1+γ1−α1γ2)((ϕ1+γ1)(3−10α1m)−13α1γ2)
7(α1m+1)5 .

(34)
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The substrate concentration, the Taylor series, is expressed by the expansion

u(ζ) = u(0) + u′(0)
ζ

1!
+ u′′ (0)

ζ2

2!
+ u′′′ (0)

3ζ

3!
+ . . . = m + u1

ζ2

2!
+ u2

ζ4

4!
+ u3

ζ6

6!
, (35)

where

u1 =
m(ϕ1 + γ1) + γ2

3(α1m + 1)
, u2 =

(m(ϕ1 + γ1) + γ2)(ϕ1 + γ1 − α1γ2)

5(α1m + 1)3 ,

u3 =
(m(ϕ1 + γ1) + γ2)(ϕ1 + γ1 − α1γ2)((ϕ1 + γ1)(3− 10α1m)− 13α1γ2)

7(α1m + 1)5 (36)

Using the boundary conditions ζ = 1, u(ζ) = 1 in Equation (35) implies that

m + u1
1
2!

+ u2
1
4!

+ u3
1
6!

= 1, (37)

from which the unknown constant m can be obtained. For the fixed values of the parameters:
ϕ1 = 5, γ1 = 0.1, γ2 = 0.1 and α1 = 5, the numerical value of m is found to be

m = 0.85803, and from Equation (36), we obtain u1 = 0.141015, u2 = 0.001159 and
u3 = −0.000207, and thus, from Equation (35), we obtain the analytical expression of
the concentration of glucose (substrate) expressed by

u(ζ). = 0.85803 + 0.141015
ζ2

2!
+ 0.001159

ζ4

4!
− 0.000207

ζ6

6!
. (38)

4.2. Concentration of Hydrogen (Product)

Similar to the approach in Section 4.1, we begin by assuming that

v(0) = l, (39)

where l is an unknown constant to be determined, and by direct differentiation of v(ζ),
we obtain,

v′′ (0) =
m(ϕ2 + γ3) + γ4

3(1 + α1m)
, v′′′ (0) = 0 , v

′′′′
(0) =

(m(ϕ1 + γ1) + γ2)(ϕ2 + γ3 − α1γ4)

5(1 + α1m)3 , vv(0) = 0,

vvi(0) =
(m(ϕ‘1 + γ1) + γ2)(ϕ2 + γ3 − α1γ4)((ϕ1 + γ1)(1− α1m)− 2α1γ2)

7(1 + α1m)5 . (40)

Now, the product concentration is readily obtained using the Taylor series as follows:

v(ζ) = v(0) + v′(0)
ζ

1!
+ v′′ (0)

ζ2

2!
+ v′′′ (0)

ζ3

3!
+ . . . , (41)

Using the boundary condition, v(1) = 1, in Equation (41), gives the numerical value of l.
For the fixed values of the parameters ϕ1 = 1, γ1 = 1, γ2 = 1, ϕ2 = 5, γ3 = 0.1, γ4 = 0.1,
α1 = 5 and m = 0.915769, we obtain l = 0.8563317. The analytical expression for the
product concentration takes on the form

v(ζ) = 0.8563317 + 0.1425122
ζ2

2!
+ 0.0011589

ζ4

4!
− 0.0000581

ζ6

6!
(42)

4.3. Normalized Steady-State Source Terms of Liquid and Gas Phases

The analytical expression of the normalized steady-state source terms of liquid phases
(ψl) is obtained from the Equation,

−ψl = u1 + u2
1
6
+ u3

1
120

. (43)
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When using the values u1 = 0.141015, u2 = 0.001159, and u3 = −0.000207, we obtain
−ψl = 0.141207. The analytical expression of normalized steady-state terms of gas phases,
ψg, is given by

ψg =
2 + ω

2

[
v1 + v2

1
6
+ v3

1
120

]
, (44)

where ψg = 0.214057 when ω = 1.

5. Comparison of Analytical Results with Previous Analytical Results and
Numerical Simulation

According to Shirejini’s study [15], the homotopy perturbation approach and Praveen
et al. [30] Adomian decomposition method can be utilized to successfully solve the nonlin-
ear Equations (9) and (10). The analytical expression obtained by Shirejini et al. [15] using
the HPM method or Praveen et al. [30] using the ADM method and the analytical result
reported in this paper utilizing AGM are both identical as shown in Tables S1–S8 in the Sup-
plementary Information. For large values of the parameter, HPM, ADM, and AGM don’t
necessarily produce a continuous family of solutions. However, depending on the number
of terms included, Taylor’s series method enables remarkably precise approximations of a
function. As a result, we use the Taylor series approach to directly address the issue in our
work. As previously stated, the technique described in studies [23–25] demonstrates the
accuracy of our computations.

To examine the accuracy of the two proposed analytical approaches, we compared
their results with numerical results obtained by implementing the MATLAB pdex1 function
(Appendix A) and the analytical results of other methods available in the literature. The
approximate analytical and numerical concentrations of substrate and product for various
parameters are summarized in Tables S1–S6. Even though both methods gave satisfactory
results, TSM is notably more accurate. The Table shows that the maximum relative average
error is 0.6% for the TSM and 5% for the AGM. Comparisons of normalized steady-state
source terms of both liquid and gas phases for various values of parameters ϕ1, ϕ2 and α1
are given in Tables S7 and S8.

6. Discussion

Nonlinear equations in the immobilized-cell photobioreactor are analytically solved.
The Taylor series and Akbari-Ganji methods are used to get close analytical expressions
of the concentrations of glucose and hydrogen inside the gel and granule. The homotopy
perturbation method [12] and Adomian decomposition method [30] solved the reaction-
diffusion equations representing the packed bed photobioreactor with immobilized cells
[Interestingly, the semi-analytical expressions of the concentrations of substrate and product
obtained using the HPM, ADM, and AGM were identical for all values of parameters.

The steady-state normalized substrate and product concentration profiles in the spher-
ical gel granule are shown in Figures 2 and 3 as functions of reaction-diffusion parameters.
ϕ1, ϕ2, γ1, γ2, γ3, γ4, and saturation parameter α1 respectively. The mass transfer in gel
granules depends on both diffusion and kinetics so that the reaction-diffusion parameters
ϕ1, ϕ2 described the competition between diffusion and reaction in the spherical gel granule.
Reaction-diffusion parameters depend upon the radius of the gel-granule R, cell density
Xcell, the maximum specific growth rate mmax, diffusion coefficient of substrate Ds granule,
and Monod constant Ks (refer Equation (8)).

When ϕ1, ϕ2 possess small values, both diffusion of substrate and product are faster
than the biochemical reaction that the overall uptake of the substrate in the gel-granule
is controlled by kinetic. Under these conditions, the substrate and product normalized
concentration profiles across the gel granule are uniform. When the reaction-diffusion
parameters are large, diffusion limitations are the principal determining factors. In addition,
the saturation parameter α1 is an index quantifying the saturation degree of the reaction
kinetics, which describes the ratio of the substrate concentration within the gel granule to
the Monod constant.
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Figure 2. Plot of substrate concentration for various values of parameters (a) ϕ2 (b) γ1 (c) γ2 (d) α1

using Equations (20) and (35).

Figure 3. Cont.
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Figure 3. Plot of product concentration v(ζ) for various values of the parameters (a) φ2 (b) γ3 (c) γ4

(d) α1 (e) φ1 (f) γ1 and (g) γ2 using Equations (26) and (41).

From Figure 2a–c, it is evident that when ϕ1, γ1 and γ2 possess small values (<<0.1), the
substrate concentration does not change significantly with radial direction. This is generally
because, in such circumstances, the substrate diffusion rate is substantially larger than the
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rate of the biodegradation reaction. As a result, the gel granules mixing action improves,
and the substrate concentration there is about uniform. In addition, Figure 2d shows that
the substrate concentration dropped as the saturation value increased, indicating that more
substrate was utilized. Also, from Equation (20), it is observed that the concentration
substrate reaches the minimum value of 1− ϕ1+γ1+γ2

6(1+α1)
at ζ = 0.

Figure 3a–g displays the normalized product concentration, v, along the radial direc-
tion. Comparing Figure 3a–d, it can be concluded that decreasing the value of ϕ2,γ2, γ4
and increasing the saturation parameter α1 results in high values of product concentration.
From Figure 3e–g, it is observed that there is no significant difference in substrate concen-
tration for the parameter ϕ1, γ1, and γ2. Additionally, it can be seen from Equation (26)
that the concentration product approaches the minimal value 1− ϕ2+γ3+γ4

6(1+α1)
at ζ = 0.

Table S7 illustrates the source term profile of the liquid phase for various values of ϕ1
ϕ2 and αi. From these Tables, it is seen that the values of αi decreases and ϕ1 increases, the
absolute values of the liquid phase source term increases. Table S8 represents the source
term of the gas phase. As these figures reveal, it can be seen that the value of the source
term in the gas phase decreases as the values of ϕ2, decreases and αi increases. Therefore, it
follows from Tables S7 and S8 that in order to achieve a high mass transfer rate between
the gas and liquid phases, the reaction-diffusion parameter’s values should be increased
while the saturation parameter’s values should be decreased.

From our analytical results, glucose consumption efficiency (µ) and hydrogen produc-
tion rate (HPR) can be obtained using the following expression.

µ =

[
glucose concentration at the inlet− glucose concentration at the outlet

glucose concentration at the inlet

]
100

HPR =

[
Amount of H2 Produced

(H2 evolution time)(photobioreactor volume)

]
Employing the glucose consumption efficiency and hydrogen production rate, the

immobilized-cell photobioreactor’s performance can be investigated.

7. Conclusions

The objective of this research is multi-fold. First, we successfully employed two
widely used analytical methods (AGM and TSM) to solve two reaction-diffusion equations
representing the packed bed photobioreactor with immobilized cells. We also derived
simple semi-analytical expressions of the substrate and product concentrations in liquid and
gas phases. Second, we studied the effect of the reaction-diffusion parameters on substrate
and product concentrations. Third, we added helpful information to the literature about
exploiting widely used methods, particularly the AGM and TSM. As both methods are
effective and reliable in solving nonlinear systems, the AGM is more or less a modification
of the Adomian decomposition method, and hence, it is likely to involve some tedious
algebraic computations. The TSM, on the other hand, requires fewer algebraic calculations,
produces more accurate solutions, and ensures convergence if Taylor theorem criteria
are satisfied.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/electrochem4040029/s1, Table S1: Comparison between numerical
(Num.) and analytical results for dimensionless concentration of substrate u(ζ) for various values
of parameter ϕ1 when γ1 = γ2 = 0.1 and α1 = 5; Table S2: Comparison between numerical and
analytical results for dimensionless concentration of substrate u(ζ) for various values of parameter
γ1 when ϕ1 = γ2 = 0.1 and α1 = 5; Table S3: Comparison between numerical and analytical
results for dimensionless concentration of substrate u(ζ) for various values of parameter γ2 when
γ1 = ϕ1 = 0.1 and α1 = 5; Table S4: Comparison between numerical and analytical results for
dimensionless concentration of product v(ζ) for various values of parameter ϕ2 when γ1 = 1, γ2 = 1,
γ3 = 0.1, γ4 = 1, α1 = 5 and m = 0.9158; Table S5: Comparison between numerical and analytical

https://www.mdpi.com/article/10.3390/electrochem4040029/s1
https://www.mdpi.com/article/10.3390/electrochem4040029/s1
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results for dimensionless concentration of product v(ζ) for various values of parameter γ3 when
γ1 = 1, γ2 = 1, ϕ1 = 0.1, γ4 = 1, α1 = 10 and m = 0.9542; Table S6: Comparison between numerical
and analytical results for dimensionless concentration of product v(ζ) for various values of parameter
γ4 when γ1 = 1, γ2 = 1, γ3 = 0.1, ϕ1 = 1, α1 = 5 and m = 0.915769; Table S7: Comparison between
numerical and analytical normalized steady-state source terms of liquid phase ψl for various values
of parameter ϕ1 and α1 when γ1 = γ2 = 0.1; Table S8: Comparison between numerical and analytical
normalized steady-state source terms of gas phase ψg for various values of parameter ϕ2 and α1
when γ1 = γ2 = 1, γ3 = γ4 = 0.1, ϕ1 = 1 and ω = 1.
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List of Symbols

Symbols Description Units
C Local substrate concentration kg/m3

R Radius of the gel granule m
D Diffusion coefficient m2/s
K Absolute permeability m2

M Molecular weight kg mol−1

H Photobioreactor height m
m Maintenance coefficient h−1
.

m Source item in mass conservation equation kgm−1s−1

ϕ Source item in species conservation equation kgm−1s−1

α Specific area m2/kg
α∗ Growth associated kinetic constant for hydrogen production None
β Non- growthassociated kinetic constant h−1

µ Specific growth rate h−1

µmax Maximum specific growth rate h−1

u(ζ) Dimensionless substrate concentration None
v(ζ) Dimensionless product concentration None
α1 Dimensionless parameter None
γ1, γ2, γ3, γ4 Dimensionless parameter None
ϕ1, ϕ2 Dimensionless parameter None
ψl , ψg Dimensionless parameter None
ω Dimensionless parameter None
ζ Dimensionless distance None
Superscripts
S Substrate
H2 Hydrogen
CO2 Carbon dioxide
Subscripts
G Gas phase
l Liquid phase
Abbreviation
AGM Akbari-Ganji’s method
ADM Adomian decomposition method
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TSM Taylor series method
HPM homotopy perturbation method
PM perturbation method

Appendix A. MATLAB Code for Numerical Solution of the Nonlinear Equations (9)
and (10)

function pdex4
m = 2;
x = linspace(0,1);
t = linspace(0,10);
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);
%------------------------------------------------------------------
figure
plot(x,u1(end,:))
title(‘u1(x,t)’)
xlabel(‘Distance x’)
ylabel(‘u1(x,1)’)
%------------------------------------------------------------------
figure
plot(x,u2(end,:))
title(‘u2(x,t)’)
xlabel(‘Distance x’)
ylabel(‘u2(x,2)’)
% -----------------------------------------------------------------
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [1; 1].* DuDx;
a1 = 10; p1 = 30; p2 = 0.1; r1 = 0.1; r2 = 0.1; r3 = 0.1; r4 = 0.1; %
F1 = −(((p1+r1)*u(1) + r2)/(1 + a1*u(1)));
F2 = −(((p2+r3)*u(1) + r4)/(1 + a1*u(1)));
S = [F1; F2];
% -----------------------------------------------------------------
function u0 = pdex4ic(x)
u0 = [0; 0];
% -----------------------------------------------------------------
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [ul(1)-0; ul(2)-0];
ql = [1; 1];
pr = [ur(1)- 1; ur(2)-1];
qr = [0; 0];
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