
Citation: Koch, D.; Cutugno, M.;

Patel, S.; Wessing, L.; Alsing, P.M.

Variational Amplitude Amplification

for Solving QUBO Problems.

Quantum Rep. 2023, 5, 625–658.

https://doi.org/10.3390/

quantum5040041

Academic Editors: Yousef Fazea and

Lev Vaidman

Received: 31 July 2023

Revised: 28 August 2023

Accepted: 22 September 2023

Published: 1 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

quantum reports

Article

Variational Amplitude Amplification for Solving
QUBO Problems
Daniel Koch *, Massimiliano Cutugno, Saahil Patel, Laura Wessing and Paul M. Alsing

Air Force Research Laboratory Information Directorate, Rome, NY 13441, USA
* Correspondence: daniel.koch.13@us.af.mil

Abstract: We investigate the use of amplitude amplification on the gate-based model of quantum
computing as a means for solving combinatorial optimization problems. This study focuses primarily
on quadratic unconstrained binary optimization (QUBO) problems, which are well-suited for qubit
superposition states. Specifically, we demonstrate circuit designs which encode QUBOs as ‘cost oracle’
operations UC, which distribute phases across the basis states proportional to a cost function. We then
show that when UC is combined with the standard Grover diffusion operator Us, one can achieve
high probabilities of measurement for states corresponding to optimal and near optimal solutions
while still only requiring O( π

4

√
2N/M) iterations. In order to achieve these probabilities, a single

scalar parameter ps is required, which we show can be found through a variational quantum–classical
hybrid approach and can be used for heuristic solutions.

Keywords: quantum computing, amplitude amplification

1. Introduction

Amplitude amplification is a quantum algorithm strategy that is capable of circum-
venting one of quantum computing’s most difficult challenges: probabilistic measurements.
Originally proposed by Grover in 1996 [1], and later shown to be optimal [2,3], the com-
bination of his oracle UG and ‘diffusion’ Us operators is able to drive a quantum system
to a superposition state where one (or multiple) basis state(s) has nearly 100% probability
of being measured. Since then, many researchers have contributed to the study of UG
and Us [4–9], seeking to better understand how the fundamental nature of amplitude
amplification is dependent on these two operators. Similarly, the aim of this study is to
further extend the capabilities of amplitude amplification as a means for solving combi-
natorial optimization problems using gate-based quantum computers. In particular, we
focus on amplitude amplification’s ability to solve QUBO (quadratic unconstrained binary
optimization) problems. The best quantum algorithm for solving this problem is an open
question, with notable research efforts in variational approaches [10–12] and quantum
annealing [13–16], as well as within amplitude amplification [17,18].

This study is a continuation of our previous work [19], in which we demonstrated
an oracle design which was capable of encoding and solving a weighted directed graph
problem. The motivation for this oracle was to address a common criticism of UG [18,20–23],
namely, that the circuit construction of oracles too often hardcodes the solution it aims
to find, negating the use of quantum entirely. Similar to other recent studies [24–27], we
showed that this problem can be solved at the circuit depth level by avoiding gates such as
control-Z for constructing the oracle and instead using phase and control-phase gates (P(θ)
and CP(θ)). However, simply changing the phase produced from UG to something other
than π is not enough [28–33]. Our oracle construction applies phases to not only a desired
marked state(s), but all states in the full 2N Hilbert Space. The phase each basis state
receives is proportional to the solutions of a weighted combinatorial optimization problem,
for which the diffusion operator Us can be used to boost the probability of measuring states
that correspond to optimal solutions.
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The consequence of using an oracle operation that applies phases to every basis state
is an interesting double-edged sword. As we show in Sections 2–4, and later in Section 7,
the use of phase gates allows for amplitude amplification to encode a broad scope of
combinatorial optimization problems into oracles, which we call ‘cost oracles’ Uc. In partic-
ular, we demonstrate the robustness of amplitude amplification for solving these kinds of
optimization problems with asymmetry and randomness [34–36]. However, the tradeoff
for solving more complex problems is twofold. First, in contrast to Grover’s oracle, when
using Uc it is only able to achieve peak measurement probabilities up to 70–90% for prob-
lems composed of 20–30 qubits. In Section 6 we show that these probabilities are high
enough for quantum to reliably find optimal solutions, which notably are achieved using
the same O( π

4

√
N/M ) iterations as standard Grover’s [1–3] (wher N is the total number

of superposition states and M is the number of marked states).
The second and more challenging tradeoff when using Uc is that the success of am-

plitude amplification is largely dependant on the correct choice of a single free parameter
ps [19]. This scalar parameter is multiplied into every phase gate for the construction of Uc
(P(θ · ps) and CP(θ · ps)), and is responsible for transforming the numeric scale of a given op-
timization problem to values which form a range of approximately 2π. This in turn is what
allows for reflections about the average amplitude via Us to iteratively drive the probability
of desired solution states up to 70–90%. The significance of ps, and the challenges in deter-
mining it experimentally, are a major motivation for this study. In particular, the results in
Section 5 demonstrate that there is a range of ps values for which many optimal solutions
can be made to become highly probable. Importantly, this allows our approach to be used
as a heuristic quantum algorithm, similar to other leading strategies [10–12,17]. Even better,
in Section 5 we show that there is an observed correlation between the ranked order of
solutions and the ps values at which they achieve peak probabilities. This underlying
correlation is a core finding of this study, and in Section 6 we discuss how it can be used to
construct a hybrid classical–quantum algorithm. This promising result indicates that our
amplitude amplification strategy can be synergized with classical computing techniques, in
particular greedy algorithms [37,38].

Layout

The layout of this study is as follows. Section 2 begins with the mathematical for-
malism for the optimization problem we seek to solve using amplitude amplification.
Sections 3 and 4 discuss the construction of the problem as a quantum circuit, the varying
degrees of success to be expected from optimization problems generated using random
numbers, and the conditions for which these successes can be experimentally realized.
In Section 5, we explore the role of ps from a heuristic perspective, whereby we demon-
strate that many near optimal solutions are capable of reaching significant probabilities of
measurement. Section 6 is a primarily speculative discussion, theorizing about how the
collective results presented in Section 5 could coalesce into a hybrid quantum–classical
variational algorithm. Finally, Section 7 completes the study with additional optimization
problems that can be constructed as oracles and solved using amplitude amplification.

2. QUBO Definitions

We begin by outlining the optimization problem which serves as the focus for this
study: QUBO (quadratic unconstrained binary optimization). The QUBO problem has
many connections to important fields of computer science [39–43], making it relevant for
demonstrating quantum’s potential for obtaining solutions. To date, the two most successful
quantum approaches to solving QUBOs are annealing [13–16] and QAOA [10,11,44,45],
with a great deal of interest in comparing the two [46–48]. Shown below in Equation (1) is
the QUBO cost function, C(X), which we seek to solve using our quantum algorithm.

C(X) =
N

∑
i

Wixi + ∑
{i,j}∈S

wijxixj (1)



Quantum Rep. 2023, 5 627

The function C(X) evaluates a given binary string X of length N composed of individual
binary variables xi. Together, the total number of unique solutions to each QUBO is 2N ,
which is the number of quantum states producible from N qubits. Throughout this study,
we use the subscripts Xi and C(Xi) when referring to individual solutions and C(X) when
discussing a cost function more generally.

As shown in Equation (1), a QUBO is defined by two separate summations of weighted
values. The first summation evaluates weights Wi associated with each individual bi-
nary variable, while the second summation accounts for pairs of variables which share a
weighted connection wij. In this study, we adopt the typical interpretation of QUBOs as
graph problems, whereby each binary variable xi represents a node. We can then define the
connectivity of a QUBO graph using the set S, which itself is a collection of sets that describe
each pair of nodes xi and xj that share a connection. See Figure 1 below for an example.

Figure 1. (top) An example 3-qubit linear QUBO with weighted nodes and edges. (bottom) The set S
containing the complete connectivity of the QUBO.

The interest of this study is to use a quantum algorithm to find either Xmin or Xmax,
which are the solutions which minimize/maximize the cost function C(X), respectively.
For all QUBOs analyzed in the coming sections, the weight values Wi and wij are re-
stricted to integers randomly selected from a uniform distribution, as shown below in
Equations (2) and (3).

Wi, wij ∈ Z (2)

Wi, wij ∈ [−100, 100] (3)

In Section 5, we discuss the consequences of choosing weight values in this manner
and its advantage for quantum. However, nearly all of the results shown throughout this
study are applicable to the continuous cases for Wi and wij as well, with the one exception
being the results in Section 5.4.

Linear QUBO

The cost function provided in Equation (1) is applicable to any graph structure S as
long as every node and edge is assigned a weight. For this study, we focus on one specific
S, which we refer to as a ‘linear QUBO’. The connectivity of these graphs is as follows:

S = {{n, n + 1} | 1 ≤ n ≤ N − 1} (4)

As the name suggests, linear QUBOs are graphs for which every node has connectivity
with exactly two neighboring nodes excepting the first and final nodes. The motivation for
studying QUBOs of this nature is their efficient realizability as quantum circuits, which is
discussed in the next section.

3. Amplitude Amplification

The quantum strategy for finding the optimal solutions to C(X) investigated in this
study is amplitude amplification [4–9], which is the generalization of Grover’s algorithm [1].
The full algorithm is shown below in Algorithm 1, which is almost identical to Grover’s
algorithm except for the replacement of Grover’s oracle UG with our cost oracle Uc.
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Algorithm 1 Amplitude Amplification Algorithm

Initialize Qubits: |Ψ〉 = |0〉⊗N

Prepare Equal Superposition: H⊗N |Ψ〉 = |s〉
for k ≈ π

4

√
2N do

Apply Uc|Ψ〉 (Cost Oracle)
Apply Us|Ψ〉 (Diffusion)

end for
Measure

By interchanging different oracle operations into Algorithm 1, various problem types
can be solved using ampltitude amplification. For example, Grover’s original oracle solves
an unstructured search, whereas here we are interested in optimal solutions to a cost
function. Later, in Section 7, we discuss further oracle adaptations and the problems that
they solve. For all oracles, we use the standard diffusion operator Us provided below in
Equation (5).

Us = 2|s〉〈s| − I (5)

This operation achieves a reflection about the average amplitude whereby every basis
state in |Ψ〉 is reflected around their collective mean in the complex plane. This operation
causes states’ distance from the origin to increase or decrease based on their location
relative to the mean, which in turn determines their probability of measurement. Therefore,
a successful amplitude amplification is able to drive the desired basis state(s) as far from
the origin as possible up to a maximum distance of 1 (a measurement probability of 100%).

3.1. Solution Space Distribution

A prerequisite for the success of amplitude amplification as demonstrated in this study
is an optimization problem’s underlying solution space distribution, that is, the manner
in which all possible solutions to the problem are distributed with respect to one another;
for QUBOs, these are the 2N possible C(Xi) cost function values. Shown below in Figure 2
is a histogram of one such solution space distribution for the case of a linear QUBO with
length 20 according to Equations (1)–(4). The x-axis represents all possible cost function
evaluations and the y-axis is the corresponding number of unique Xi solutions that result
in the same C(Xi) value.

Depicted in Figure 2 are all 220 possible solutions to an example linear QUBO. Be-
cause this QUBO was generated from randomized weights, the combination of the Law of
Large Numbers [49] and Central Limit Theorem [50] predicts that its underlying solution
space should be approximately Gaussian [51] in shape, as provided by Equation (6).

G(x) = αe
(x−µ)2

2σ2 (6)

Indeed, the histogram is approximately Gaussian; importantly, however, it has imper-
fections resulting from the randomized weights. At large enough problem sizes (around
N ≥ 20), these imperfections have minimal impact on a problem’s aptitude for amplitude
amplification, which is one result from our previous study [19]. Similarly, another recent
study [26] has demonstrated that, in addition to symmetric Gaussians, solution space dis-
tributions for both skewed Gaussians and exponential profiles lead to successful amplitude
amplifications. The commonality between these three distribution shapes is that they all
possess large clusters of solutions that are sufficiently distanced from the optimal solutions
that we seek to boost. This can be seen in Figure 2 as the location of Xmin and Xmax as
compared to the central peak of the Gaussian. When appropriately encoded as an oracle
Uc, these clusters serve to create a mean point in the complex plane which the optimal
solution(s) use to reflect about and increase in probability.
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Figure 2. Example of a solution space distribution for a linear QUBO with 20 nodes and with weights
according to Equations (2) and (3).

3.2. Cost Oracle Uc

In order to use Algorithm 1 to find the optimal solution to a given cost function, we
must construct a cost oracle Uc which encodes the weighted information and connectivity of
the problem. In our previous study, we referred to this operation as a ‘phase oracle’ UP [19],
and it has similarly been called a ‘subdivided phase oracle’ SPO [25,26] or ‘non-Boolean
oracle’ [27]. Although how one constructs Uc is problem-specific, the general strategy is to
primarily use two quantum gates, as shown below in Equations (7) and (8).

P(θ) =

[
1 0
0 eiθ

]
(7)

CP(θ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

 (8)

The single and two-qubit gates P(θ) and CP(θ) are referred to as phase gates, sometimes
known as Rz(θ) and CRz(θ) due to their effect of rotating a qubit’s state around the z-axis
of the Bloch sphere. Mathematically, they are capable of applying complex phases, as
shown below.

P(θ)|1〉 = eiθ |1〉 (9)

CP(θ)|11〉 = eiθ |11〉 (10)

Applying P(θ) to a qubit only affects the |1〉 state, leaving |0〉 unchanged, and similarly
only |11〉 for CP(θ). However, this is exactly what we need in order to construct C(X) from
Equation (1). When evaluating a particular binary string Xi classically, only instances where
the binary values xi are equal to 1 yield non-zero terms in the summations. For quantum,
each binary string Xi is represented by one of the 2N basis states |Xi〉. Thus, our quantum
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cost oracle Uc can replicate C(X) by using P(θ) and CP(θ) to only effect basis states with
qubits in the |1〉 and |11〉 states.

Shown above in Figure 3 is an example of a 4-qubit QUBO cost oracle, where the
weighted values Wi and wij are used as the θ parameters for the various phase gates.
This quantum circuit can be generalized to encode any QUBO as defined in Equation (1):
single qubit P(θ) gates for the summation of Wixi terms and two-qubit CP(θ) gates for the
summation of wijxixj terms. If we wish to go beyond quadratic cost function terms in
C(X), then we can use N-qubit control phase gates to encode weights which depend on N
binary variables.

Figure 3. (top) Example of a 4-qubit linear QUBO with weighted nodes and edges and (bottom) the
same QUBO encoded into a cost oracle Uc without scaling. Each unitary in the circuit is P(θ) (single
qubit gate) or CP(θ) (2-qubit gate).

Although incomplete (see the next section), we can use this oracle circuit to demon-
strate quantum’s ability to encode a cost function C(X). For example, consider the binary
solution Xi = 1101 and the corresponding quantum basis state |1101〉. The classical evalua-
tion of this solution is as follows:

C(1101) = −8 + 18− 22− 12

= −24 (11)

Now, let us compare this to the phase of |1101〉 after applying Uc:

Uc|1101〉 = ei(−8+18−22−12)|1101〉
= e−24i|1101〉 (12)

The phase acquired in Equation (12) is equivalent to the classical evaluation shown
in (11), which means that Uc is an accurate encoding of C(X). If we were to now apply Uc to
the equal superposition state |s〉 (Step 2 in Algorithm 1), all 2N basis states would receive
phases equal to their cost function value. This is the advantage that quantum has to offer:
simultaneously evaluating all possible solutions of a cost function through superposition.

3.3. Scaling Parameter ps

While the cost oracle shown in Figure 3 is capable of reproducing C(X), its use in
Algorithm 1 does not yield the optimal solution Xmin or Xmax. This is because quantum
phases are 2π modulo, which is problematic if the numerical scale of C(X) exceeds a range
of 2π. Consequently, if two quantum states receive phases that differ by a multiple of 2π,
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then they both undergo the amplitude amplification process identically. If this happens
unintentionally via Uc, then our cost oracle cannot be used to minimize or maximize C(X).

In order to construct Uc such that it is usable for amplitude amplification, a scalar
parameter ps must be included in all of the phase gates. While the value of ps is problem-
specific, its role is always the same: scaling the cumulative phases applied by Uc down (or
up) to a range where [C(Xmin) , C(Xmax)] is approximately [x , x + 2π]. This range does not
have to be [0 , 2π] exactly, as long as the phases acquired by |Xmin〉 and |Xmax〉 are roughly
2π different; see Figure 4 below for an example of ps in the construction of Uc.

Figure 4. The 4-qubit linear QUBO cost oracle Uc from Figure 3, now scaled by ps.

Using the scaled oracle shown in Figure 4 above, we can now show how this new Uc
acts on the basis state |1101〉 from before.

Uc|1101〉 = ei(−8·ps+18·ps−22·ps−12·ps)|1101〉
= ei(−8+18−22−12)·ps |1101〉
= e−24i·ps |1101〉 (13)

As shown in Equation (13) above, multiplying ps into every phase gate has the net
effect of scaling the cumulative phase applied by Uc: e−24i → e−24i·ps . Note that this is not a
global phase, which would have an additive effect on all states rather than a multiplicative
one as shown above.

Finding the optimal ps value for boosting Xmin or Xmax is non-trivial, and was a major
focus of our previous study [19] as well as this one. In general, the scale of ps needed for
finding the optimal solution can be obtained using Equation (14) below, which scales the
numerical range of a problem [C(Xmin) , C(Xmax)] to exactly [x , x + 2π].

ps =
2π

C(Xmax)−C(Xmin)
(14)

Although Equation (14) above is guaranteed to solve the 2π modulo phase problem
mentioned previously, it is almost never the ps value which can be used to find Xmin or
Xmax. Only in the case of a perfectly symmetric solution space distribution is Equation (14)
the optimal ps value, in which case the states |Xmin〉 and |Xmax〉 undergo the amplitude
amplification process together. However, realistic optimization problems can be assumed to
have a certain degree of randomness or asymmetry to their solution space. For this reason,
Equation (14) is better thought of as the starting point for finding the true optimal ps, which
we discuss later in Section 4.2. For now, Equation (14) is sufficient for demonstrating the
role of ps in creating an average amplitude suitable for boosting |Xmin〉 or |Xmax〉, as shown
in Figure 5.

The bottom plot in Figure 5 shows |Ψ〉 after the first application of Uc in Algorithm 1.
Note the location of the average amplitude (red ‘x’), which is only made possible by
the majority of quantum states which recieve phases near the center of the Gaussian
in the top plot. The optimal amplitude amplification occurs when the desired state for
boosting is exactly π phase different with the mean [2,3], which is very close to the situation
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seen in Figure 5. However, because this Uc is derived from a QUBO with randomized
weights, the ps value provided from Equation (14) does not exactly produce a π phase
difference between the optimal states (the black star) and the mean amplitude (the red ‘x’).
Consequently, the state(s) which become highly probable from amplitude amplification
for this particular ps are not |Xmin〉 and |Xmax〉, which is the subject of the following
two sections.

Figure 5. (top) The 20-qubit linear QUBO histogram from Figure 2, scaled by ps according to
Equation (14). (bottom) All 220 quantum states after applying Uc|s〉, plotted in amplitude space (the
complex plane). The red–blue color scale shows the density of quantum states in the bottom plot,
corresponding to the y-axis of the top histogram. The states |Xmin〉 and |Xmax〉 are marked with a
black star, the origin with a black ‘+’, and the average amplitude with a red ‘x’.

4. Gaussian Amplitude Amplification

The amplitude space plot depicted at the bottom of Figure 5 is useful for visualizing
how a Gaussian solution space distribution can be used for boosting; however, the full
amplitude amplification process is far more complicated. This is especially true for the
QUBOs in this study, which are generated with randomized weights. Consequently, all of
the results which follow throughout the remainder of this study are produced from classical
simulations of amplitude amplification using cost oracles derived from linear QUBOs
according to Equations (1)–(4). For a deeper mathematical insight into these processes,
please see [24–26].
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4.1. Achievable Probabilities

Amplitude amplification is an appealing quantum algorithm because it solves one
of the most fundamental problems of quantum computing: measurement probability.
For example, a single marked state using Grover’s oracle with 30 qubits is capable of
achieving a final probability that is only less than 100% by one billionth of a percent [1].
Thus, a natural question to ask when using Uc is what kinds of probabilities can it produce
for |Xmin〉 or |Xmax〉? To answer this, we conducted a statistical study of linear QUBOs
ranging from length N = 17 to 27. For each N, we generated numerous QUBOs according to
Equations (1)–(4), with the totals provided in Appendix A. We then let a classical simulator
find the ps value that maximized the probability of measuring |Xmin〉 for each QUBO, and
for certain cases the optimal ps for |Xmax〉 as well. The results for each problem size are
shown below in Figure 6.

Figure 6. Results from studying randomly generated linear QUBOs of various sizes N. The number
of QUBOs studied per N is provided in Appendix A. For each QUBO, the optimal ps value for
producing the highest probability of measurement for |Xmin〉 was used to record three trends: the
average probability of |Xmin〉 (black triangle), the highest recorded probability (red star), and the
average scaled standard deviation (blue circle). Error bars showing one standard deviation of each σ’
are provided as well.

µ =
1

2N

2N

∑
i

C(Xi) (15)

σ =

√
∑2N

i (C(Xi)− µ)2

2N (16)

σ′ = σ · ps (17)

Figure 6 tracks three noteworthy trends found across the various QUBO sizes: the
average peak probability achievable for |Xmin〉 (the black triangle), the highest recorded
probability for |Xmin〉 (the red star), and the average scaled standard deviation σ′ (the blue
circle). For clarity, the derivation of σ′ is provided by Equations (15)–(17). This quantity is
the standard deviation of a QUBO’s solution space distribution after being scaled by ps,
making it a comparable metric for all QUBO sizes. In our previous study, we demonstrated
a result in agreement with Figure 6, which is the correlation between higher achievable
probabilities for |Xmin〉 (the red star) and smaller scaled standard deviations σ′ (the blue
circle) [19]. The latter is responsible for increasing the distance between |Xmin〉 and the
average amplitude, as shown in Figure 5.



Quantum Rep. 2023, 5 634

4.2. Solution Space Skewness

The relation between N, σ′, and the highest prob.(|Xmin〉) from Figure 6 can be summa-
rized as follows: larger problem sizes tend to produce smaller standard deviations, which
in turn lead to better probabilities produced from amplitude amplification. However, there
is a very apparent disconnect between the probabilities capable of each problem size (the
red stars) versus the average (the black triangle). To explain this, we must first introduce
the quantity X∆ provided in Equation (18) below.

X∆ = 2µ− (C(Xmax) + C(Xmin)) (18)

The quantity X∆ from Equation (18) is the difference between C(Xmin) and µ (the
mean) minus the difference between µ and C(Xmax). A positive value for X∆ indicates that
the mean is closer to C(Xmax), and vice versa for a negative valued X∆. In essence, it is a
measure of skewness that describes the assymetry of a solution space distribution. Figure 7
shows example QUBO distributions for three cases of X∆ for N = 25, demonstrating the
impact X∆ has on the ability to boost |Xmin〉 versus |Xmax〉. While σ′ is a strong indicator of
a problem’s overall aptitude for amplitude amplification, X∆ determines whether or not
the optimal minimum or maximum solution is boostable. Further evidence of this can be
seen in Figure 8, which shows 1000 randomly generated linear QUBOs of length N = 23
and the peak probabilities achievable for |Xmin〉 and |Xmax〉 as a function of X∆.

If we compare the average peak probabilites for |Xmin〉 from Figure 6 with the full
data of the QUBOs shown in Figure 8, we can see why the average peak probability is
significantly lower than the highest recorded. Across the 1000 QUBOs studied, it is clear
that X∆ = 0 is a dividing point for whether |Xmin〉 or |Xmax〉 is capable of reaching a
significant probability of measurement through amplitude amplification. For N = 23,
the average prob.(|Xmin〉) reported in Figure 6 is approximately 64%; however, if we instead
consider only the QUBOs with X∆ > 0 from Figure 8, then the average peak probability for
|Xmin〉 is around 86%, and likewise for |Xmax〉 when X∆ < 0.

Together, Figures 7 and 8 demonstrate the significance of knowing X∆ from an experi-
menter’s perspective. Depending on the optimization problem of interest, it is reasonable to
assume that an experimenter may be interested in finding only Xmin or only Xmax. Without
any a priori knowledge of a problem’s underlying solution space, specifically, X∆, the ex-
perimenter may unknowingly be searching for a solution which is probabilistically near
impossible to find through amplitude amplification. For example, considering the QUBO
distribution illustrated in the top plot of Figure 7, and the peak probability for boosting
|Xmax〉: 0.16%, although it is ideal to have insight into a particular problem’s X∆ before
using amplitude amplification, as we demonstrate in Section 5, information about X∆ can
be inferred through measurement results.
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Figure 7. Three randomly generated QUBO distributions for N = 25, illustrating X∆ cases for largely
positive (top), largely negative (middle), and near zero (bottom). In all three plots, the exact X∆ value
is reported along with the highest achievable probability for |Xmin〉 and |Xmax〉, each from a different
ps value. Additionally shown in each plot are the values for C(Xmin) and C(Xmax) along with their
numerical distance to the mean µ (the red-dashed line).
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Figure 8. A total of 1000 randomly generated linear QUBOs of size N = 23. For each QUBO,
the highest achievable probability for |Xmin〉 (black circle) and |Xmax〉 (red triangle) are plotted as a
function of X∆. The top plot includes both data points per QUBO, while the bottom plot shows only
the higher of the two values.

4.3. Sampling for ps

If a particular optimization problem is suitable for amplitude amplification, then the
speed of the quantum algorithm outlined in this study is determined by how quickly the
optimal ps value can be found. Here, we show that sampling a cost function C(X) can
provide reliable information for approximating ps from Equation (14), which can then be
used to begin the variational approach outlined in 347 s Sections 5 and 6. Importantly,
the number of cost function evaluations needed is significantly less than either a classical
or quantum solving speed. The strategy outlined in Equations (19)–(29) below can be
used for approximating ps when the experimenter is expecting an underlying solution
space describable by a Gaussian function (Equation (6)). If another type of distribution is
expected, then the function used in Equation (22) could in principle be modified accordingly
(for example, sinusoidal, polynomial, exponential [26]).

Suppose we sample a particular cost function C(X) M times, where M << 2N . We
define the set M as the collection of values C(Xi) obtained from these samples.

M = {C(X1), C(X2), . . . , C(XM)} (19)

Using these M values, we can compute an approximate mean and standard deviation.

µ̃ =
1
M ∑

c∈M
c (20)

σ̃ =

√
∑c∈M (c− µ̃)2

M
(21)
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In order to use Equation (14) to obtain ps, we need approximations for C(Xmin) and
C(Xmax). If we assume an underlying Gaussian structure to the problem’s solution space,
then we can write the following equation to describe it:

2N =
∫ ∞

−∞
α̃e

(x−µ̃)2

2σ̃2 dx (22)

= −α̃ σ̃

√
π

2
erf
(

µ̃− x√
2σ̃

)∞

−∞
(23)

= −α̃ σ̃

√
π

2
· [−1− 1] (24)

where erf() is the Gaussian error function. Using Equation (24), we can rearrange terms
and solve for an approximation to the height of the Gaussian.

α̃ =
2N−1

σ̃
√

π
2

(25)

With the values µ̃, σ̃, and α̃ obtained from sampling, we can now approximate C(Xmin)
and C(Xmax) using Equation (26) below.

G̃(x) = α̃e
(x−µ̃)2

2σ̃2 = 1 (26)

Solving for x yields the following two values

x± = µ̃± σ̃

√
−2ln

(
1
α̃

)
(27)

which can be expressed in terms of the two quantities originally derived from sampling

x± = µ̃± σ̃

√√√√−2ln

(
σ̃
√

π/2
2N−1

)
(28)

Finally, the solutions x± can be used to obtain ps.

p̃s =
2π

x+ − x−
(29)

The reason we set Equation (26) equal to 1 and the integral in Equation (22) equal to 2N

is because G̃(x) is modeling the histogram of a QUBO’s solution space, as shown in Figure 2.
This means that the total number of solutions to C(X) is 2N , and similarly the minimum
number of distinct C(Xi) solutions for a given cost function is 1. Therefore, after setting the
integral in Equation (22) equal to 2N , solving G̃(x) = 1 yields approximations for C(Xmin)
and C(Xmax) on the tails of the Gaussian.

To demonstrate how well sampling is able to approximate Equation (14), we tested the
strategy outlined above against the 1000 QUBOs from Figure 8 (N = 23). For four values
of M (100, 500, 1000, and 2000), each QUBO was used for 50 trials of random sampling to
produce approximate p̃s values. These values were then compared to the true value of ps
from Equation (14) as provided by Equation (30) below and finally averaged together to
produce Table 1.

p̃s Error =
| p̃s − ps|

ps
(30)
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Table 1. Average error in approximating ps using Equations (19)–(29). Each value comes from
50,000 independent sampling trials on linear QUBOs of size N = 23.

M 100 500 1000 2000

Average p̃s Error 7.28% 6.37% 6.31% 6.29%

The significant result from Table 1 is that sampling 100–500 times on a cost function
of 223 solutions is accurate enough to produce an approximate p̃s value with an expected
error of only 7%. As we show in the next section, this is sufficient accuracy to use for either
a heuristic or variational approach for finding optimal solutions.

5. Variational Amplitude Amplification

The results of Sections 2–4 demonstrate quantum’s aptitude for encoding and solving a
QUBO problem using amplitude amplification. In this section, we discuss how this potential
can be realized from an experimental perspective. In particular, we focus on the ability
of amplitude amplification to find optimal solutions under realistic circumstances with
limited information. The results in this section are then used to motivate Section 6, in which
we discuss how amplitude amplification can be used in a hybrid classical–quantum model
of computing similar to other successful variational approaches [10–12].

5.1. Boosting Near-Optimal Solutions

The results shown in Figures 6–8 focus on quantum’s potential for finding |Xmin〉
and |Xmax〉, the optimal solutions which minimize/maximize a given cost function C(X).
However, in order to understand how amplitude amplification can be used in a variational
model, it is equally as important that non-optimal |Xi〉 states are capable of boosting.

As discussed in the conclusion of our previous study [19] as well as in Sections 3.3
and 4.3, the most difficult aspect of using Algorithm 1 from an experimental standpoint
is finding ps. More specifically, finding an optimal ps for boosting |Xmin〉 or |Xmax〉 is a
challenge due to the limited amount of information that can be learned through measure-
ments alone. An example of this can be seen in Figure 9, which shows the peak achievable
probabilities of the three lowest |Xi〉 states as a function of ps (|Xmin〉 and the next two
minimum solutions) for the QUBO corresponding to X∆ = 331.5 from Figure 7.

The challenge presented in Figure 9 is the narrow range of ps values for which each
|Xi〉 state is able to achieve meaningful probabilities of measurement. From an experimental
perspective, the ps regions outside these bands are only capable of producing quantum
superposition states which are slightly better than |s〉, the equal superposition starting state.
Thus, an experimenter could use a ps value that is incredibly close to optimal, but only see
seemingly random measurement results through repeat implementations of Algorithm 1.

Our proposed solution to the ps problem as described above is twofold: (1) we must
widen our view of useful ps values and see where other |Xi〉 states become highly probable,
and (2) we must place less burden on quantum to find optimal solutions alone when an
assisting classical approach may be more suitable. In this section, we focus on addressing
(1), which then motivates (2) in Section 6.
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Figure 9. Plots of the |Xi〉 state probability from amplitude amplification as a function of ps, for |Xmin〉
(blue-solid) and the next two minimal solutions (black and red-dashed). Cost function values C(Xi)
are reported next to each state’s plot, and correspond to the QUBO from the top plot in Figure 7.
The bottom plot is a zoomed-in scale of the top plot depicting the same data points.

Suppose that we are not solely interested in using quantum to find the exact optimal
solution C(Xmin), and instead are content with any Xi within the best 50 answers (the
50 lowest C(X) values). In order for amplitude amplification to be viable in this heuristic
context, it requires significant probabilities of measurement for these non-optimal solution
states, similar to Figure 9. Additionally, an experimenter must be able to quickly and
reliably find the ps values which produce them. Shown below in Figure 10 is a plot which
provides insight into the feasibility of both of these questions, for the QUBO corresponding
to Figure 9.

Figure 10 shows the full ps range for which an experimenter could find the 50 best
solutions for minimizing C(X) via quantum measurements. The black circles on the x-axis
indicate the ps values where each |Xi〉 state (or multiple states) is maximally probable,
aligning with its corresponding C(Xi) value along the y-axis. Numeric values for peak
probabilities of the best 20 solutions are provided in the table below the plot along with a
linear regression best fit (the red-dotted line) for the overall 50 data points. The reported R
correlation value is provided by Equation (A5) in Appendix B.
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Figure 10. (top) A plot of the 50 lowest C(Xi) values as a function of ps, for the X∆ = 331.5 QUBO
from Figure 7. Each data point represents the ps value at which the |Xi〉 state(s) is most probable.
A linear regression best fit is shown by the red-dotted line, with its R correlation value reported at
the top (Equation (A5) from Appendix B). (bottom) A table of values for the 20 best solutions. Each
entry reports the cost function value C(Xi), the peak probability for the |Xi〉 state(s), and the number
of unique Xi solutions that result in the same C(Xi) value.

There are several significant results displayed in Figure 10, the first of which requires
returning to Equation (2). By limiting the allowed weighted values for Wi and wij to
integers, all solutions to C(X) are consequently integers as well. This means that the linear
correlation shown in the figure can in principle be used to predict ps values at which integer
C(Xi) solutions must exist. If Wi and wij are instead allowed to take on float values, which
is more generally the case for realistic optimization problems, the linearity of solutions
such as those shown persists, but cannot be used as reliably for predictions of allowed
C(X) values.

The linear best fit shown in Figure 10 is accurate for the top 50 solutions; however, ex-
tending the ps scale further reveals that it is only an approximation applicable to a small
percentage of states. This is shown in Figure 11 below, which again is a ps vs. C(X) plot
for the same QUBO, except now for the best 400 minimizing solutions. It is clear from
the data in this figure that the top 400 solutions are in no way linearly aligned, which is
a more expected result considering the complicated nature of these imperfect Gaussian
distributions undergoing amplitude amplification. However, although the data are not
linear, there is very clearly a curved structure that could be utilized to predict ps values in
the same manner as described above.

It is important to note that in both Figures 10 and 11 the manner in which the solution
states |Xi〉 are found to be most probable is sequential. This means that if a particular state
|Xi〉 is most probable at a certain value ps = x, then all solutions C(Xj) < C(Xi) will have
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peak probabilities at values ps < x. However, the bottom plot in Figure 11 shows that the
further a solution state is from |Xmin〉, the lower its achievable peak probability; this means
that there is a limit to how many solutions are viable for amplitude amplification to find.
As we discuss in the coming sections, these are the key underlying features that must be
considered when constructing a variational amplitude amplification algorithm.

Figure 11. (top) A plot of the 400 lowest C(Xi) values as a function of ps for the X∆ = 331.5 QUBO
from Figure 7. Each data point represents the ps value at which the |Xi〉 state(s) is most probable.
The red box in the lower left corner represents the ps region depicted in Figure 10. (bottom) The
probabilities achieved for these 400 lowest |Xi〉 states using the ps values are shown in the top plot.
Each state is plotted in order of its rank from 1 (Xmin) to 400 (the 400th lowest C(Xi) solution).

5.2. Constant Iterations

In order to construct an algorithm which capitalizes on the structure and probabilities
shown in Figure 11, we must consider an additional piece of information not illustrated in
the figure: step 3 of Algorithm 1, iterations k. The data points in the figure are indeed the
ps values which produce the highest probabilities of measurements; unfortunately, they are
achieved using different iteration counts. In principle, this means that an experimenter must
decide both ps and k before each amplitude amplification attempt, further complicating the
information learned from measurement results.
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Unlike ps, which is difficult to learn because it depends on the collective 2N solutions
to C(X), approximating a good iteration count k is easier. It turns out that the standard
number of Grover iterations kG = π

4

√
N/M, where N is the total number of quantum states

and M is the number of marked states, is equally applicable when using Uc as well. If an
experimenter can use k ≈ kG iterations for a cost oracle Uc and find significant probabilities
of measurement, then a variational amplitude amplification strategy can be reduced to a
single parameter problem: ps. Figure 12 demonstrates that this is indeed viable, showcasing
|Xi〉 solution state probabilities as a function of ps for three different choices of k.

Figure 12. Plots of |Xi〉 state probabilities as a function of ps for the N = 25 QUBO shown in
Figures 10 and 11. The top three panels show individual state probabilities as different colored-solid
lines (for visual clarity to distinguish different states) for three different constant k iterations (1000,
2000, and 3000) across the ps region depicted on the x-axis. An additional black-dashed line is shown
which records the cumulative probability of the five most probable solutions |Xi〉 at any given ps

value. These cumulative probabilities are replotted in the bottom panel for comparison.

The QUBO corresponding to Figure 12 is the same N = 25 example for Figures 10 and 11.
For instances where multiple states correspond to the same numerical solution
(C(Xi) = C(Xj)), the solid-color line shown represents their joint probability: prob.( |Xi〉 ) +
Prob.( |Xj〉) (note that these individual probabilities are always equal). Examples of this
can be seen in the table included in Figure 10. Additionally, a black-dashed line is shown in
the top three plots that tracks the collective probability of the five most probable solutions
at any given ps. These three lines are then replotted in the bottom panel for comparison.

The ps region shown in Figure 12 was chosen to illustrate a scenario where variational
amplitude amplification is most viable. For ps > 0.00291, nearly every possible integer
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solution C(Xi) ≥ −1497 exists via some binary combination for this particular QUBO
problem. The exceptions where certain integer solutions do not exist can be seen clearly
in the ps regions with very low probability, for example, 0.0029065 ≤ ps ≤ 0.002907.
Contrasting this to the region shown in the figure, when ps becomes closer to where |Xmin〉
is maximally probable, the measurement probabilities become more akin to Figure 9. Thus,
it is more strategic for a hybrid algorithm to start in a ps region such as in Figure 12, where
measurement results can consistently yield useful information.

5.3. Information through Measurements

From an experimental perspective, a significant result from Figure 12 consists of the
black-dashed lines shown in the top three plots. At k = 3000 (kG ≈ 4500 for 25 qubits,
M = 1), the black-dashed line is almost entirely composed of the single most probable
solution state(s). With probabilities around 70–80% for many of the states shown, it is
realistic that the same |Xi〉 state could be measured twice in only two to four amplitude
amplification attempts. Two measurements yielding the same C(Xi) value (possibly from
different Xi) is a strong experimental indicator that the ps value used is very close to optimal
for that solution, corresponding to the data points from Figures 10 and 11. Confirming
three to four different data points in this manner can then be used to approximate the
underlying curved structure of these figures, which in turn can be used to predict ps values
where |Xmin〉may exist.

While using k closer to kG is good for getting the maximal probability out of solution
states, the k = 1000 and 2000 plots in Figure 12 support a different strategy for quantum.
At k = 2000, the black-dashed line remains primarily composed of the single most probable
|Xi〉 state(s); critically, however, it does not have the same dips in probability between
neighboring solutions. Instead, the cumulative probability stays just as high for these
in-between ps regions, and sometimes even higher! If we now look at the k = 1000 plot,
this trend becomes even more prevelant, whereby the cumulative probability plot is on
average 20–30% higher than any individual |Xi〉 state. Interestingly, the bottom panel of
Figure 12 shows that cumulative probability plot for k = 1000 is higher than the k = 3000
line in many regions. Thus, if the role of quantum is to simply provide a heuristic answer ,
not necessarily |Xmin〉, then using lower k values is favorable for a few reasons. First, we
can anticipate solutions in a ps region where multiple states share the same cost function
value, and as such can expect M > 1 more frequently when using kG = π

4

√
N/M. Second,

the amplitude amplification process itself is faster due to smaller k, which makes it more
achievable on noisy qubits due to shallower circuit depths.

The optimal use of k is a non-trivial challenge to an experimenter. However, as illus-
trated in Figure 12, amplitude amplification can be effective with a wide range of different k
values. To further demonstrate this, Figure 13 shows three plots of simulated measurements
over the ps range depicted in Figure 12. Using the k values 1000, 2000, and 3000, each plot
shows data points representing probabilistic measurements at regular intervals of ps. In or-
der to compare the k value’s effectiveness more equally, the number of measurements taken
per ps value, t, was chosen such that t · k = 12,000 is consistent across all three experiments.
Thus, each of the three plots in Figure 13 represents the same total number of amplitude
amplification iterations divided among t experimental runs.

The data points shown in Figure 13 are separated into two categories, which are
easily recognizable from an experimental perspective. Measurements which yielded
C(Xi) < −1350 are plotted as red circles, while all other measurements are plotted as
black triangles. As illustrated for all three values of k, the red data points can be seen
as producing near-linear slopes, all of which would signal to the experimenter that these
measurement results are leading to Xmin. The motivation behind Figure 13 is to demon-
strate that the same underlying information can be experimentally realized using different
k values. Thus, when to use k = 3000 versus k = 1000 is a matter of optimization, which
we discuss in Section 6 in the role of a classical optimizer for a hybrid model.
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5.4. Quantum Verification

The results of the previous subsections demonstrate the capacity for amplitude am-
plification as a means of finding a range of optimal Xi solutions. However, regardless
of whether these solutions are found via quantum or classical, a separate problem lies
in verifying whether a given solution is truly the global minimum Xi = Xmin. If it is
not, then Xi is referred to as a local minimum. Classically, evolutionary (or genetic) al-
gorithms [37,38,52,53] are one example strategy for overcoming local minima. Similarly,
quantum algorithms have demonstrated success in this area for both annealing [54,55] and
gate-based approaches [56–58].

Figure 13. Simulated measurement results corresponding to the probabilities shown in Figure 12,
produced by amplitude amplification for various values of ps (x-axis) and k (1000, 2000, and 3000).
At each of the simulated ps values, the number of measurements per experiment t was chosen based
on k as follows (t, k): (4, 3000) , (6, 2000) , (12, 1000), such that t · k = 12,000. Measurement results
which yielded C(Xi) < −1350 are plotted as red circles, and otherwise as black triangles. Blue lines
for C(Xmin) and C(Xmax) are plotted as well.

The strategy for verifying a local versus global minimum using amplitude amplifi-
cation can be seen by comparing the region 0.0029 ≤ ps ≤ 0.00291 in Figures 12 and 13.
For the linear QUBO corresponding to these figures, there exists a solution C(Xi) = −1497
which becomes maximally probable at ps ≈ 0.002914, followed by the next lowest solution
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C(Xi) = −1491 at ps ≈ 0.002892. Because there are no binary combinations Xi that can
produce values −1492 ≥ C(Xi) ≥ −1496, the ps region that would correspond to their
solutions instead produces nothing measurably significant. This can be seen by the low
cumulative probabilities in Figure 12, as well as experimentally in Figure 13 as a gap in the
red data points for this ps region across all three simulations.

The ability of quantum to determine whether an Xi solution is a local or global mini-
mum is achieved by searching past the ps value corresponding to the solution. Doing this
results in one of two outcomes: either a lower C(Xj) value is be found probabilistically,
confirming that Xi was a local minimum, or the experimenter finds only random measure-
ment results, confirming that Xi was the global minimum. Examples of this can be seen in
Figure 14, showcasing simulated measurement results as an experimenter searches past the
optimal ps value for |Xmin〉.

Figure 14. Simulated measurement results for ps regions above and below the optimal point for
finding |Xmin〉. Each plot corresponds to a different linear QUBO of size N = 25, k = 4000, with X∆

values reported for each (the top plot corresponds to the QUBO from Figures 9–13). The point where
Xmin is measured is indicated in both plots by the intersection of the blue (horizontal) and grey (verti-
cal) lines. The red-circle data points represent measurement results within the best 30 minimizing
solutions to C(X); the other results are shown as black triangles.

The simulated experiments shown in Figure 14 were chosen to highlight both favor-
able (bottom) and unfavorable (top) cases for quantum. The commonality between both
experiments is that there is a clear point in ps (grey line) in which decreasing ps any further
results in only noisy random measurements. However, determining this cutoff point using
measurement results alone is challenging. The top plot corresponds to the QUBO from
Figures 10–12, which is the non-ideal situation in which there are significant gaps in solu-
tions between the best 20 minimizing C(Xi). Experimentally, this manifests as numerous ps
regions that could be wrongly interpreted as the Xmin cutoff point. Conversely, the bottom
plot represents the ideal case, where the best minimizing C(Xi) solutions are all closely
clustered together. This leads to a much more consistent correlation of measurement results,
leading to Xmin, followed by an evident switch to randomness.

The significance here is that amplitude amplification has an experimentally verifiable
means for identifying the global minimum Xmin of a cost function. Similarly, the same
methodology can in principle be used to check for the existence of an Xi solution correspond-
ing to any given cost function value, which we discuss further in Section 7.3. However,
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the obvious drawback is that this verification technique relies on numerous amplitude
amplification measurements finding nothing, which costs further runtime as well as being
probabilistic. As we discuss in the next section, a more realistic application of this quantum
feature is to help steer a classical algorithm past local minima, leaving the verification of
Xmin as a joint effort between quantum and classical.

6. Hybrid Solving

The results of Section 5 were all features of amplitude amplification using Uc found
through classical simulations of quantum systems. They represent the primary motivation
of this study, which is to demonstrate amplitude amplifaction’s potential and the conditions
for which it can be experimentally realized. By contrast, the discussions here in Section 6
are more speculative. Considering all of the results from Sections 3–5, we now discuss
how the strengths and weaknesses of amplitude amplification synergize with a parallel
classical computer.

The plots shown in Figures 13 and 14 represent a very non-optimal approach to finding
Xmin, functionally a quantum version of an exhaustive search. If the ultimate goal is to
solve a cost function problem as quickly as possible, then it is in our best interest to use any
and all tools available. This means using a quantum computer when it is advantageous
while similarly recognizing when the use of a classical computer is more appropriate.
In this section, we discuss this interplay between quantum and classical as well as the
situations in which an experimenter may favor one or the other. Shown below in Figure 15
is the general outline of a variational amplitude amplification model which relies solely on
quantum to produce Xmin.

Figure 15. The general outline of a variational amplitude amplification workflow. Information from
amplitude amplification in the form of measurements is fed to a classical optimizer between runs.
The optimizer then processes this information to supply the quantum computer with the next set of
values ps and k, repeating this process until Xmin or another suitable solution is found.

In light of the current state of qubit technologies [59–61], performing one complete
amplitude amplification circuit should be considered a scarce resource. As such, it is the
role of a classical optimizer to determine the most effective use of this resource, choosing
ps and k values which probabilistically lead to the greatest value out of each attempt.
Determining optimal values to adjust a quantum circuit is the typical hybrid strategy found
among other popular variational models of quantum computing [10–12]. The majority
of the computational workload is placed on the QPU (quantum processing unit), while
a classical optimizer is used in between runs to adjust the quantum circuit parameters
accordingly. As evidenced by Figures 13 and 14, this model is possible for amplitude
amplification as well. However, there is a different model of hybrid computing which
better utilizes both quantum and classical’s strengths, shown below in Figures 16 and 17.
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Figure 16. Workflow of a hybrid model of computing utilizing both a quantum and classical computer.
The QPU and CPU are run in parallel, and the information obtained from both is fed into the same
classical optimizer, which in turn determines the most effective use for each processor.

Figure 17. Workflow for a hybrid model of computing between quantum amplitude amplification
and a classical greedy algorithm. The full strategy is broken up into three phases: (1) amplitude
amplification provides the first heuristic solution Xi; (2) a classical greedy algorithm uses Xi to find
a more optimal solution X′i while other near-optimal solutions Xj are simultaneously used to assist
amplitude amplification in determining a ps vs. C(X) correlation (see Figures 10–13); (3) the correlation
best fit is used to predict ps values where solutions C(Xj) < C(X′i) must exist (or C(Xj) > C(X′i) for
maximization problems). Amplitude amplification attempts for these ps values will either produce a
new best Xj for the greedy classical algorithm to use or confirm X′i = Xmin.
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The advantage of hybrid computing using the model shown in Figure 16 is that both
processors are working in tandem to solve the same problem utilizing information gained
from one another. Information obtained through amplitude amplification measurements
can be used to speed up a classical algorithm and vice versa. As we discuss further in the
next section, this pairing of quantum and classical is maximally advantageous when the
strengths of both computers complement each other’s weaknesses.

Supporting Greedy Algorithms

One notable strength of classical computing is ‘greedy’ algorithms, which provide
heuristic solutions for use cases ranging from biology and chemistry [62] to finance [63].
Greedy algorithms are particularly viable for problems that possess certain structures that
can be exploited [64]. The key feature to these algorithms is that they focus on making
locally optimal decisions that yield the maximal gain towards being optimal. Consequently,
while they are very good at finding near-optimal solutions quickly, they are prone to
becoming bottlenecked in local minima [65].

The motivation for pairing amplitude amplification with a classical greedy algorithm
is best exemplified by Figures 12 and 13. The quantum states illustrated in these figures
represent |Xi〉 states, which rank as the 30th–80th best minimizing solutions to C(X). Un-
der the right conditions, it is reasonable to expect that a quantum computer could yield a
solution in this range within one to five amplitude amplification attempts. The question
then becomes how quickly a classical greedy algorithm could achieve the same feat? With-
out problem-specific structures to exploit, and as problem sizes scale with 2N , it becomes
increasingly unlikely that classical can compete heuristically with quantum, which we
argue is quantum’s first advantage over classical in a hybrid model.

Now, supposing that amplitude amplification does yield a low C(Xi) solution faster
than classical, the problem then flips back to being classically advantageous. This is because
the Xi solution provided by quantum is now new information available to the classical
greedy algorithm. As such, beginning the greedy approach from this new binary string is
likely to yield even lower C(Xi) solutions in a time frame faster than amplitude amplification.
For example, this is the exact scenario in which genetic algorithms shine [37,38,52,53,63],
where a near-optimal solution is provided from which they can manipulate and produce
more solutions. If a fast heuristic solution is all that is needed, then quantum’s job is
done, and the best minimal solution found by the classical greedy algorithm completes the
hybrid computation.

However, if a heuristic solution is not enough then we can continue to use a hybrid
quantum–classical strategy to find Xmin. Referring back now to Figures 13 and 14, the strat-
egy for quantum is to use multiple amplitude amplification trials and measurements to
approximate the underlying correlation from Figures 10 and 11. The fastest means of
achieving this is to work in a ps region analogous to Figure 12, where one has the highest
probabilities of measuring useful information experimentally. Simultaneously, the classical
greedy algorithm can find Xi solutions in this area as it searches for Xmin. Knowledge of
these Xi solutions can be directly fed back to quantum, which can be used to predict ps
values where solutions are known to exist, speeding up the process of determining a ps
vs. C(X) correlation. Thus, after quantum initially aids classical, subsequent information
obtained from classical can then be used to speed up quantum.

In the time it takes for quantum to experimentally verify enough ps and C(Xi) values
to create a predictive correlation, we expect the classical algorithm to find a new lowest
C(Xi) solution, which is labeled as X′i in Figure 17. After investing additional trials into
the amplitude amplification side of the computation, it is now time for quantum’s second
advantage: verifying local versus global minima. Using an approximate ps vs C(X) best fit,
the quantum computer can skip directly to the ps value corresponding to best currently
known X′i solution. As discussed in Section 5.4, searching past this ps value results in one
of two outcomes: either the quantum computer finds a new best solution C(Xj) < C(X′i),
or it confirms that X′i is indeed the global minimum Xmin. In the former case, the greedy
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algorithm now starts again from the new lowest solution Xj, repeating this cycle between
quantum and classical until Xmin is found. Figure 17 below shows a workflow outline of
this hybrid strategy.

The biggest advantage of using a hybrid model such as the one shown in Figure 17 is
that it can be adapted to each problem’s uniqueness. Problems with known fast heuristic
techniques can lean on the classical side of the computation more heavily [66,67], while
classically difficult problems can place more reliance on quantum [68,69]. Above all, this
model of computation incorporates and synergizes the best known classical algorithms
with quantum rather than competing against them.

7. More Oracle Problems

All of the results from Sections 3–5 were derived from linear QUBOs according to
Equations (1)–(4). However, these results can be applied to more challenging and realistic
optimization problems provided that (1) all possible solutions can be encoded via phases by
an appropriate oracle operation Uc and (2) the distribution of all possible answers is suitable
for boosting the solution we seek (Gaussian, polynomial, exponential, etc. [26]). Here, we
briefly note a few additional optimization problems which meet both of these criteria.

7.1. Weighted and Unweighted Max-Cut

The Maximum Cut problem (‘Max-Cut’) is famously NP-Hard [68], where the objective
is to partition every vertex in a graph S into two subsets P1 and P2 such that the number
of edges between them is maximized. In the weighted Max-Cut version of the problem,
each edge is assigned a weight wij and the goal is to maximize the sum of the weights
contained on edges between P1 and P2. The unweighted Max-Cut problem has already
been demonstrated as a viable use for amplitude amplification [25], which we build upon
further here via the weighted version. Equation (31) below is the cost function C(X) for the
weighted Max-Cut problem, which can be converted to the unweighted case by setting
every edge weight wij = 1. The binary variables xi here represent being partitioned into P1
or P2.

C(X) = ∑
{i,j}∈S

wij |xi − xj| (31)

Shown in Figure 18 is an example graph S and one of its solutions. This example graph
is composed of 10 vertices, labeled 1–10, and a total of 15 connecting edges. Encoding this
graph requires one qubit per vertex, where the basis states |1〉 and |0〉 represent belonging
to the subsets P1 and P2, respectively. See the bottom graph in Figure 18 for an example
solution state.

The cost oracle Uc for solving Max-Cut must correctly evaluate all 2N solution states
|Xi〉 based on the edges of S according to Equation (31). For example, if vertices 1 and 2 are
partitioned into different sets, then Uc needs to affect their combined states |Q1Q2〉 = |01〉
and |10〉 with the correct phase, either weighted or unweighted. Just as in Figure 3 from
earlier, we can achieve this with a control-phase gate CP(θ), with the intent of scaling by
ps later (see Figure 4). The caveat here is that we need this phase on |01〉 and |10〉, not
|11〉, which means that additional X gates are required for the construction of Uc, as shown
below in Equation (32).

X =

[
0 1
1 0

]
(32)
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Figure 18. (top) A graph S composed of 10 nodes and 15 connections. Each node is labeled 1–10,
corresponding to the qubits Q1–Q10 shown below. (bottom) An example Max-Cut solution Xi,
along with its quantum state representation |Xi〉. Nodes colored red correspond to the partition P1,
quantum state |1〉, while nodes colored white correspond to partition P2, quantum state |0〉. ‘Cuts’
are represented in the graph as dashed lines, totaling 8 for this example.

For the complete Uc quantum circuit which encodes the graph S in Figure 18, please
see Appendix C. When properly scaled by ps, the solutions that are capable of boosting
are determined by the underlying solution space distribution of the problem, which can be
seen in Figure 19 below. The histogram in this figure shows all 210 C(Xi) solutions to the
graph S from Figure 18. Even for a 10 qubit problem size such as this, it is clear that the
underlying solution space distribution shows a Gaussian-like structure.

Figure 19. The histogram of all 210 solutions for unweighted Max-Cut on graph S from Figure 18.

One interesting feature of Max-Cut is that all solutions come in equal and oppo-
site pairs. For example, the optimal solutions to S from Figure 19 are |0100101110〉 and
|1011010001〉, which both yield 13 ‘cuts’. Mathematically, there is no difference between
swapping all vertices in P1 and P2, while physically it means that there are always two
optimal solution states. Consequently, these states always share the effect of amplitude
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amplification together, which is something that an experimenter must be aware of when
choosing iterations k.

Finally, moving from the unweighted to the weighted version of Max-Cut increases
the problem’s difficulty, though it notably does not change the circuit depth of Uc. Rather
than using θ = 1 for all of the control-phase gates, each θ now corresponds to a weighted
edge wij of the graph. Similar to the QUBO distributions shown in Figure 7, this increase in
complexity allows for more distinct C(Xi) solutions, and consequently more variance in
features such as σ′ and X∆.

7.2. Graph Coloring

A similar optimization problem to Max-Cut is Graph Coloring, sometimes known
as Vertex Coloring [68], which extends the number of allowed partition sets Pi up to any
integer number k (k = 2 is equivalent to Max-Cut). For a given graph of vertices and edges
S, the goal is to assign every vertex to a set Pi such that the number of edges between
vertices within the same sets is minimized. Shown below in Equation (33) is the cost
function C(X) for a k-coloring problem, where the values of each vertex xi are no longer
binary and can take on k different integer values. The quantity inside the parentheses is
equal to 1 if xi = xj and 0 for all other combinations xi 6= xj. Just as with Max-Cut, setting
all wij = 1 is the unweighted version of the problem.

C(X) = ∑
{i,j}∈S

wij

(
1−

⌈ |xi − xj|
k

⌉)
(33)

The name ‘coloring’ is in reference to the problem’s origins, whereby the sets Pi all
represent different colors to be applied to a diagram, such as a map. Shown below in
Figure 20 is an example picture composed of overlapping shapes, where each section must
be assigned one of k colors such that the number of adjacent sections with the same color is
minimized. Example solutions for k = 3 and k = 4 are shown along with their vertex and
quantum state representations of the problem.

In order to encode graph coloring as an oracle Uc, the choice of k determines whether
qubits or another form of quantum computational unit is appropriate. While qubits are
capable of producing superposition between two quantum states, qudits are the generalized
unit of quantum information capable of achieving superposition between d states [70–73].
To see why this is necessary, let us compare the k = 3 and 4 examples from Figure 20
and the quantum states needed to represent partitioning each vertex.

For k = 4, we need four distinct quantum states to represent a vertex belonging to
one of the Pi partitions. While a single qubit cannot do this, a pair of qubits can. Thus,
every vertex in S can be encoded as a pair of qubits, letting the basis states |00〉, |01〉, |10〉,
and |11〉 each represent a different color. Alternatively, we could use a d = 4 qudit to
represent each vertex, assigning each partition a unique basis state: |0〉, |1〉, |2〉, or |3〉, such
as the state shown in Figure 20. Mathematically, the two encodings are identical; thus, the
choice of whether to use qubits or qudits is a matter of experimental realization, i.e. which
technology is easier to implement.

For k = 3 however, two qubits is too many states, while a single qubit is not enough.
Thus, in order to represent three colors exactly in quantum, the appropriate unit is a
‘qutrit’ (the common name for a d = 3 qudit). Similarly, all prime numbers d can only
be encoded as their respective d-qudits, while all composite values can be built up from
combinations of smaller qudits. When an appropriate mixed-qudit quantum system is
determined, constructing Uc is the same as the Max-Cut problem from earlier, now with
k state–state interactions. For an example of qudit quantum circuits and their use for
amplitude amplification, please see Wang et al. [70] and our previous work on the Traveling
Salesman problem [19].
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Figure 20. (top) On the left, a two-dimensional bounded picture with overlapping geometric shapes.
On the right, a graph S representing the 12 distinct regions of the picture as nodes. Connections
between nodes in S represent regions in the picture which share a border, not counting adjacent
corners. (middle) A k = 3 coloring example with a corresponding d = 3 qudit state representation.
(bottom) A k = 4 coloring example with a corresponding d = 4 qudit state representation.

7.3. Subset Sum

For all of the oracles discussed previously, the circuit depth and total gate count for Uc
are determined by the size and connection complexity of S, i.e, the graphical representation
of the problem. By contrast, the simplest possible quantum circuit that can be used as Uc
corresponds to the Subset Sum problem [68]. The cost function for this problem is provided
in Equation (34).

C(X) =
N

∑
i

Wi xi (34)

Rather than optimizing Equation (34), which is trivial, in the Subset Sum problem
we seek to determine whether there exists a particular combination such that C(Xi) = T,
where T is some target sum value. The boolean variables xi represent which Wi values to
use as contributors to the sum. Figure 21 below shows an N = 10 example. Note that this
problem is equally applicable to any of the other oracles discussed previously, whereby we
can ask whether a target value T exists for some graph S.
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Figure 21. (top) A set of 10 integer values, shown in ascending order, with which we are interested in
solving the Subset Sum problem for T = 22. (bottom) An example solution state |Xi〉 corresponding
to the cost function value C(X) = 22.

The reason why Equation (34) is the simplest Uc oracle that can be constructed is
because the cost function does not contain any weights wij that depend on two variables.
Consequently, the construction of Uc does not use any 2-qubit phase gates CP(θ), instead
only requiring a single qubit phase gate P(θ) for every qubit. In principle, all of these single
qubit operations can be applied in parallel, such as in Figure 3, which means that the circuit
depth of Uc is exactly one.

Although this is the most gate-efficient Uc, using it to solve the Subset Sum problem
comes with limitations. First, it can only solve for T values within a limited range. This
is illustrated by the results of Figure 11, which demonstrate that amplitude amplification
can only produce meaningful probabilities of measurement up to a certain threshold away
from Xmin or Xmax. Consequently, it is only possible to use Uc here if the target sum value
T is within this threshold distance from the extrema.

The second limitation to consider is the discussion from Section 5.4, whereby the
information about whether or not a state C(Xi) = T exists may rely on measurements finding
nothing. Previously, we discussed how an experimenter might iteratively decrease ps and
eventually expect to find regions where cost function values do not exist (see Figure 14)
as one approaches Xmin. Here, things are easier, as an experimenter can test for ps values
above and below where C(Xi) = T (except for the case where T is the global extremum).
Using a ps vs. C(X) correlation in this manner can confirm exactly where the ps value for
C(Xi) = T must be. Testing this ps window then either confirms the existence of a solution
for T via measurement, or conversely confirms no solution exists through multiple trials of
random measurement results.

8. Conclusions

The results of this study demonstrate that the gate-based model of amplitude amplifica-
tion is a viable means of solving combinatorial optimization problems, particularly QUBOs
(though beyond QUBOs as well; see Section 7). The ability to encode information via
phases and let the 2N superposition of qubits naturally produce all possible combinations
is a feature entirely unique to quantum. Harnessing this ability into a useful algorithmic
form was the primary motivation for this study, and as we have shown, is not without
its own set of challenges. In particular, the discussions in Sections 4.1 and 4.2 highlight
that this algorithm is not a ‘one size fits all’ strategy that can be blindly applied to any
QUBO. Depending on how the numerical values of a given problem form a solution space
distribution, it may simply be impossible for amplitude amplification to find one extremum
or the other. Figure 8 shows that at least one of the extremum solutions for quantum to
find is always viable, though this may not be the one that is of interest to the experimenter.

For cases where the desired solution is well-suited for quantum to find, that is, the de-
sired |Xmin〉 or |Xmax〉 is capable of achieving a high probability of measurement, a different
challenge lies in finding the correct ps value to use in order to boost these states. However,
the results in Section 5 illustrate that this challenge is solvable via quantum measurement
results. If the best an experimenter could do is simply to guess at ps and hope for success,
then amplitude amplification would not be a practical algorithm. However, the correlations
shown in Figures 10 and 11 illustrate that this is not the case, and that information about
ps can be experimentally learned and used to find extremum solutions. How quickly this
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information can be experimentally produced, analyzed, and used is exactly how quickly
quantum can find the optimal solution, which is an open question for further research.

Regarding the scalability of the amplitude amplification and the future potential of
the approach laid out in this study, there are three important results to address. First,
the quantum circuit encoding of combinatorial optimization problems such as QUBOs
can be seen to have high circuit depth efficiency, as shown in Figures 3 and 4. Requiring
only a two-qubit control phase is significantly more NISQ-friendly than other proposed
oracles, which often require full N-qubit control operations to mark states. Next, Figure 6
demonstrates that amplitude amplification performs better mathematically at higher qubit
sizes. The underlying reason for this can be seen in Figure 5, where increasing qubit size
leads to more superposition states, pulling the mean point π phase away from suitable
states for boosting. However, the major challenge of scaling up this approach, aside from
the noise and decoherence which plague all quantum algorithms, is higher demand on
phase control via the free parameter ps. Our proposed cost oracles require phases across
all 2N superposition states, which are always constrained to a range of approximately 2π.
Thus, as the problem size increases, the precision required by ps does as well.

While the free parameter ps can be considered the bottleneck of our algorithm for
finding the global optimal solution (Figure 9), it unlocks a different use case for amplitude
amplification, namely, as a heuristic algorithm. A major finding of this study is depicted in
Figures 11 and 12, which show that there is a wide range of ps values for which quantum
can find an answer within the best 1–5% of all solutions. As demonstrated with sampling
in Section 4.3, it is not unrealistic that a classical computation can estimate this ps region
very quickly. The question then becomes how this quantum heuristic approach, which is
O( π

4

√
2N/M), compares to classical greedy algorithms in terms of both speed and accuracy.

Additionally, a fast quantum heuristic solution is equally beneficial for a classical computer,
whereby the information learned through quantum measurements can be of equal use to
speed up a classical algorithm as well. Understanding which optimization problems this
scenario may be applicable to is the future direction of our research.
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Appendix A. QUBO Data

For this study, linear QUBOs as defined in Equation (4) were created using a uniform
random number generator for node and edge weights according to Equations (2) and (3).
The total number of QUBOs produced and analyzed to create Figure 6 is provided below in
Table A1. Every QUBO was simulated through amplitude amplification, and the ps value
which yielded the highest probability of measurement for |Xmin〉 was recorded.
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Table A1. Table of values showing the number of linear QUBOs generated and studied per size N.

N # of QUBOs Studied

17 5000

18 3000

19 2000

20 1500

21 1200

22 1000

23 1000

24 600

25 500

26 400

27 100

Appendix B. Linear Regression

In order to determine how linearly correlated the data points in Figure 10 were,
a regression best fit was performed according to Equations (A1)–(A5) below. The collection
of (x,y) data points D in Equation (A1) corresponds to the (ps,C(Xi)) points in the figure.
The resulting linear correlation factor R is reported at the top of Figure 10.

D = ((x1, y1), (x2, y2), . . . , (xN , yN)) (A1)

X̄ =
N

∑
i

xi X̄2 =
N

∑
i
(xi)

2 (A2)

Ȳ =
N

∑
i

yi Ȳ2 =
N

∑
i
(yi)

2 (A3)

X̄Y =
N

∑
i

xi · yi (A4)

R =
NX̄Y− X̄Ȳ√

(NX̄2 − (X̄)2)(NȲ2 − (Ȳ)2)
(A5)

Appendix C. Max-Cut Circuit

To illustrate how any graph structure S can be encoded as an oracle Uc, Figure A2
below shows the quantum circuit corresponding to S from Figure 18. Because this oracle
needs to represent a Max-Cut problem (weighted or unweighted), the states which must
acquire phases are |01〉 and |10〉. To make the circuit less cluttered, we can define the
custom gate shown in Figure A1.

Figure A1. Quantum circuit which achieves the 2-qubit unitary from Equation (A6).
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The quantum circuit shown in Figure A1, drawn similar to a CP(θ) gate with an extra
box around it, is an operation which achieves the following unitary:

U (α|00〉+ β|01〉+ γ|10〉+ ρ|11〉) (A6)

= α|00〉+ eiθ β|01〉+ eiθγ|10〉+ ρ|11〉

The unitary U from Equation (A6) is the required operation for representing the
cost oracle in Equation (31). If two nodes (qubits) share a connection in S, then a ‘cut’
corresponds to them being partitioned into different sets, which is represented by the qubit
states |0〉 and |1〉. Figure A2 uses the operation in Figure A1 to create the complete Uc
circuit for encoding all 15 connections in S.

Figure A2. Quantum circuit which achieves the oracle Uc corresponding to S from Figure 18, for the
Max-Cut problem. Each gate shown here represents one of the 15 connections in S, corresponding to
the custom gate defined in Figure A1. The placement of gates shown here has them spread out for
clarity; a real implementation could be more parallelized.
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