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Abstract: We consider the two planes at zero temperature with isotropic conductivity that are in
relative lateral motion with velocity v and interplane distance a. Two models of conductivity are taken
into account—the constant and frequency-dependent Drude models. The normal (perpendicular to
planes) Casimir force is analyzed in detail for two systems—(i) two planes with identical conductivity
and (ii) one plane that is a perfect metal. The velocity correction to the Casimir energy, ∆vE∝ v2, for
small enough velocities is used for all considered cases. In the case of constant conductivity, η, the
energy correction is ∆vE ∝ η/a3(v/η)2 for v≪ η ≪ 1.
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1. Introduction

The Casimir effect was initially considered for perfect conductive plates, and has
now been extended to many non-ideal and new materials [1,2]. Hendrik Casimir noted
in Ref. [3] that Niels Bohr suggested considering the zero-point energy as an origin of this
effect and simplifying the derivation of the force. In the case of perfect conductive planes,
the Casimir effect relies solely on fundamental constants and interplane distance. However,
for actual materials, the Casimir effect depends on various factors, such as the shape and
structure of the material, conductivity, chemical potential, temperature, and the presence of
impurities [1,2].

The Casimir force between bodies is further influenced by their relative motions
(see the recent review on the dynamic Casimir effect [4] and Refs. [1,5,6]). The relative
motions are lateral (parallel to the planes), perpendicular to planes, or, in general, a
combination of these. The Casimir effect for perpendicularly and uniformly moving
slabs was first considered in Refs. [7,8] for electromagnetic and massless scalar fields.
It is a direct consequence of the quantum field theory with moving boundaries [9]. In
the non-relativistic scenario, the velocity correction to the Casimir pressure is quadratic,
∝ v2 (∝ v2/c2 in dimensional units, where c denotes the speed of light) for both fields, but
with opposite signs. For the scalar field, the relative velocity correction for Casimir pressure
is δP = (P − Pv=0)/P = 8

3 v2, while for the electromagnetic field is
δP = −

(
10/π2 − 2/3

)
v2.

For the massless scalar field, δP , while is negative for the electromagnetic case.
The lateral relative motion of different planes gives rise to two distinct Casimir

pressures in perpendicular directions. One of these pressures acts normally to planes,
similar to perpendicular motion, while the other acts along planes, known as quantum,
non-contact, or Casimir friction. The study of normal force has been carried out in
earlier studies [10,11] for layers in stratified dielectric media with magneto-electric and
non-reciprocal constant coupling, and for plates with general electric permittivity and
magnetic permeability, respectively. For a three-layer system [10], the force can be either
attractive or repulsive depending on the velocity directions of the extreme layers. In the
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non-relativistic case, the velocity correction to the force becomes repulsive when the extreme
layers have the same velocity directions with respect to the middle layer, and becomes
attractive for opposite velocity directions. The velocity correction to the Casimir energy
follows a similar order of magnitude, approximately proportional to v2. For relativistic
velocities, both attractive and repulsive effects can occur. A general expression for the
normal force between two plates was obtained in Ref. [11] using the Fresnel reflection
coefficients. It was shown that the same quadratic correction ∝ v2, applies to the ordinary
Casimir force.

Quantum friction is a more challenging topic for analysis and is currently a subject
of debate [11–24], with some even negating its existence [11]. Two dielectric planes at
different temperatures with lateral relative motion have been considered in Refs. [12,13].
The quantum friction force was calculated within the framework of Rytov fluctuation
theory [25]. It was demonstrated that the force is proportional to the first power of the
velocity v, but can have different signs, resulting in either the deceleration or acceleration of
the planes. Mkrtchian investigated two conductive planes with relative lateral motion and
calculated the force and viscosity of vacuum for different plane impedance models [14]. The
dependence of the force on the interplane distance heavily relies on the chosen model, but
in any case, the velocity correction to the typical Casimir force proportional v emerges as the
typical dependence for Casimir friction. The quantum friction for planes with temporally
dispersive conductivity was analyzed in Ref. [15], revealing a cubic, v3, dependence at
relatively small velocities and a v−1 ln v-dependence at quite high velocities. In Ref. [16] a
general theory for quantum friction within the framework of fluctuation electrodynamics
was developed. Though Ref. [11] claims the absence of quantum friction as a whole, the
existence of a normal force remains without doubt (see Ref. [17]).

The study of quantum friction using scattering theory was carried out in Refs. [18,19],
demonstrating the existence of a quantum friction threshold: the friction force is zero
when the relative velocity is smaller than the speed of light within the slabs’ materials.
The origin of quantum friction was connected to quantum Cherenkov radiation: the
super-luminally moving object spontaneously emits photons. This concept is closely related
to super-radiance, where a rotating body amplifies incident waves [26]. In Refs. [20,21],
quantum friction was calculated for two graphene sheets using the effective action approach,
revealing a velocity threshold: the friction is zero when the relative velocity is smaller than
the Fermi velocity. The correlation of threshold with the findings of Refs. [18,19] arises
from the feature that the Dirac electron in graphene is described by the Dirac equation
with the Fermi velocity instead of the speed of light. The threshold was confirmed through
different calculations in Ref. [24]. The nonperturbative approach was employed to study
quantum friction in Ref. [22], where the friction force was associated with electromagnetic
instability: the kinetic energy of the relative motion transforms into exponentially growing
coherent radiation.

In this study, we investigate the normal force between two laterally moving planes
with isotropic conductivities. Previously [24], a general approach was developed for two
conductive planes with relative lateral motion, which allowed for the calculation of both
normal and tangential forces. The normal force was found to reduce to the typical Casimir
force for planes with tensorial conductivities [27], with a specific form for the tensor of the
moving plane being used. Quantum friction was also found to arise as an imaginary part
of the energy calculated for complex frequencies, as discussed in the earlier papers [28–30].

In the current paper, we focus specifically on the normal force for laterally moving
planes with isotropic conductivities. As noted in the earlier studies [31,32], Ohm’s law for
the moving plane needs to be considered carefully. The Lorentz transformation for a moving
plane with scalar constant conductivity is not straightforward, as it involves a coefficient
between three vectors of the electric current and an electric field. The transformation
law of the conductivity tensor was discussed previously in Ref. [32] utilizing a linear
response tensor [33]. In the case of graphene, the linear response tensor plays the role
of polarization tensor [24,34]. To obtain the isotropic conductivity of a moving plane,
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we adopt the approach suggested in Ref. [24] for graphene and consider the formal limit
where the Fermi velocity and mass gap tend to zero. In this limit, the conductivity tensor
becomes isotropic in the co-moving frame of the plane. However, in the laboratory frame,
the conductivity is not diagonal and depends on the velocity. It is worth noting that here
we employ the graphene approach as a computational tool only. The results obtained
are applicable to various compositions with isotropic conductivity, including those with
temporal dispersion (not considered in Ref. [10]).

In previous studies [6,35–37], the Casimir and Casimir–Polder effects for planes with
isotropic conductivity were explored. Two models of conductivity were employed: (i) the
constant conductivity, σ = σ0I, where σ0 denotes the scalar constant conductivity, and I is
the 2× 2 unit matrix, and (ii) the Drude–Lorentz model with seven oscillators σ = σDL(ω)I,

σDL(ω) =
f0ω2

p

γ0 − iω
+

7

∑
j=1

iω f jω
2
p

ω2 −ω2
j + iωγj

,

with the parameters of this model obtained from experimental data for graphite from
Ref. [38]. Here, f j, ωj and γj denote parameters of the model, ω is the frequency and
0 subscript notifies the Drude contribution. The first term in the model represents a
Drude-like contribution, while the other terms have a Lorentz-like form. Since graphene
is a single layer of graphite, the conductivity of graphene is obtained by multiplying the
above expression by the interplane distance in graphite. The estimation of the binding
energy per single sheet of graphene in graphite (a stack of graphenes) made in Ref. [36]
revealed that the constant conductivity model underestimates the binding energy, whereas
the Drude–Lorentz seven-oscillator model aligns well with the experimental data.

Both models were employed to describe the Casimir effect in a stack of graphene
layers and the Casimir–Polder effect for a micro-particle near the stack. The general case
of a layered system consisting of conductive planes with tensorial conductivities was
analyzed in Ref. [39]. This study demonstrated that the expressions for force and energy
have the same form as those obtained for the case of scalar constant conductivity, but with
corresponding reflection coefficients for transverse electric (TE) and transverse magnetic
(TM) modes.

In the case of constant conductivity, the Casimir energy exhibits a 1/a3-dependence for
all interplane distances. However, this relationship only holds for large interplane distances
in the case of graphene, where the parameter ma is much greater than one (m is mass gap).
This can be straightforwardly explained by noting that in the constant conductivity model,
there are no dimensional parameters other than the interplane distance. For the case of
small conductivity (ηgr = 2πσgr = 0.0114 for graphene), the TM mode contributes linearly
in η, while the TE mode contributes as η2. However, this is not the case for two graphenes,
where both modes contribute quadratically. As previously mentioned in Ref. [24], the
spatial dispersion of conductivity plays an important role in the Casimir effect, causing the
contribution to change from linear to quadratic.

The paper is organized is as follows. In Section 2, we re-derive the conductivity of a
moving graphene sheet by applying boundary conditions and obtain the main formula
for normal Casimir energy. We discuss the problem of determining the eigenvalues
of the product of reflection matrices. The Fresnel matrices do not commute, and their
eigenvalues are not simply the product of the eigenvalues of the individual reflection
matrices. Additionally, we briefly discuss the general property of lateral force along the
planes and demonstrate that the necessary condition for this force is that the modulus of
the Fresnel matrices is greater than one, indicating the production of photons. In Section 3,
we obtain the expressions for the normal Casimir force for isotropic conductivity in two
scenarios: (i) two identical planes and (ii) an isotropic plane and a perfect metal. We perform
numerical calculations of the Casimir energy and analytically derive the v2-dependence
for the velocity correction to the energy and pressure. We also evaluate the Drude-like
model of isotropic conductivity numerically and demonstrate that, for large distances, the
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Drude-like model yields quite similar results to the constant conductivity model. Finally,
in the conclusion in Section 4, we discuss the results obtained in this study.

Throughout this paper, the natural units with h̄ = c = 1 are used; here, h̄ represents
the reduced Planck’s constant.

2. The Casimir Energy of Moving Planes

We use the approach for the Casimir effect of lateral moving graphene developed in
Ref. [24] as a computational trick. In order to provide a comprehensive understanding of
this approach, let us review the key steps of derivations of the normal force outlined in
Ref. [24] with some expanded explanations.

The system under consideration involves two parallel conductive planes with isotropic
conductivities and an interplane distance, a. The first plane remains stationary in the
laboratory frame, while the second plane undergoes lateral motion with a velocity v. The
fluctuating electric field induces a current in the second plane following Ohm’s law. This
current affects the boundary condition and ultimately alters the energy spectrum. The
current induced in the second conductive plane, which is in motion, is described by Ohm’s
law in its co-moving frame. To solve the scattering problem in the laboratory frame, it
is necessary to determine the conductivity of the second plane in laboratory frame. The
Lorentz transformation of Ohm’s law was discussed in Ref. [31,32]. Given that Ohm’s law
has no covariant form, as it represents a linear relationship between the three-vector of
the electric field and current density, the method of linear response tensor, Πµν [33], is
preferred in this particular case. Within the framework of this approach, the four-vector, Jµ,
of the current density and the four-potential, Aν, are linearly connected through a tensor of
linear response: Jµ = Πµ

ν Aν. Here, the Greek letter indices denote the time (0) and space
(1, 2, 3) coordinates, xµ, under the space-time metric (+,−,−,−). The latter represents
a covariant relation that can be Lorentz-transformed into another inertial frame. This
approach was successfully implemented in Refs. [31,32], where it was demonstrated that
the transformation of the conductivity tensor assumes a complex and non-standard form.

A similar methodology was applied in Ref. [24] for a graphene sheet, where the
polarization tensor serves as the linear response tensor. The complete action, which includes
the Dirac electron, the classical electromagnetic field, and the effective action due to fermion
loop correction [34], yields the following set of Maxwell equations:

∂µFµν = −δ(z− a)Πνα Aα = −4π Jν, (1)

where z = a represents the position of the graphene plane and Πνα denotes the polarization
tensor resulting from the Dirac electron fermion loop. The current density assumes the
form of a boundary condition. Here, ∂µ ≡ ∂/∂xµ, Fµν represents the electromagnetic
tensor, and δ(z− a) is the Dirac delta function. By integrating the relationship (1) over an
infinitesimally small interval (a− ε, a + ε) with ε approaching zero, Equation (1) can be
transformed into Ohm’s law with the conductivity tensor,

σab =
Πab

iω
,

where the lower-case Latin letter indices take the values 1, 2.
The invariance of the boundary conditions with respect to 3-boosts,

Λ =

(
u0 −u
−u I + u⊗u

u0+1

)
, u = (u1, u2), (2)

along the graphene plane was utilized in Ref. [24] to determine the transformation of
the conductivity tensor of graphene to the laboratory frame, with u denoting the spacial
velocity and ⊗ representing the tensor product. In the current study, we employ this
approach to calculate the boost transformation of the isotropic conductivity tensor. The
conductivity tensor in the laboratory frame is represented by
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σ =
ω′

ω
Gσ′GT , (3)

where

G = I− ω

(ku)
u⊗ u
u0 + 1

+
u⊗ k
(ku)

,

k represents the wave vector and the prime denotes the quantities defined in the co-moving
frame.

In the framework of the scattering matrix approach [27], the Casimir energy density,
E , per unit area can be expressed in terms of the scattering matrix, S :

E =
i

4π

∫∫ d2k
(2π)2

∫ ∞

0
ln detS k3dk3√

k2 + k2
3

, (4)

where the S-matrix of the total system consists of the reflection, R, and transmission,
T , matrices:

S =

(
R T ′

T R′

)
.

The matrix (2) describes the scattering of the electromagnetic field:(←
El
→
Er

)
= S

(→
El
←
Er

)
,

where the direction of the vector indicates the direction of the wave,
→
E ∝ e+ik3z,

←
E ∝ e−ik3z

and indexes ”l” and ”r” stand for electromagnetic field on the left and right sides of the total
system, correspondingly. The system, in general, can consist of a set of planes. The vectors
over the fields denote the wave direction. The scattering matrix S cannot be reduced to a
product of matrices for each plane [39].

The general relation can be transformed [27] into the following expressions for the
energy density, E , and the pressure, P , for real frequencies:

E = − 1
2i

∫∫ d2k
(2π)3 (I− − I+) and P =

∫∫ d2k
(2π)3 (J− + J+), (5)

where

I± =
∫ ∞

k
dω ln det

[
1− e±2iak3R(±k3)

]
, (6)

J± =
∫ ∞

k
dωk3

e±2iak3(trR(±k3)− 2e±2iak3 detR(±k3))

det
[
I− e±2iak3R(±k3)

] , (7)

R(±k3) = r′I(±k3)rI I(±k3), k3 =
√

ω2 − k2 and rA with A = I, I I denote the reflection
matrices. The integration in Equation (5) is taken over the xy-plane. Formulas (5) only
consider the propagating waves, because ω ≥ k. The subscript I(I I) indicates that all
reflection matrices are related to the rest (moving) plane.

The scattering matrix for each part of the system (each plane) has the following form:

SA =

(
rA t′A
tA r′A

)
,

with the corresponding index A = I, I I and argument. It connects the electromagnetic
waves on the left side (l) of the specific plane of the system with that on the right (r) side
by relation:
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(←
El
→
Er

)
= SA

(→
El
←
Er

)
.

The reflection matrices for the conductive plane were derived in Ref. [27] using the
boundary condition on the plane:

rA = r′A = − ω2ηA − k⊗ (kηA) + Iωk3 det ηA
ω2 tr ηA − kkηA + ωk3(1 + det ηA)

, (8)

where ηA = 2πσA, and σi is the conductivity tensor of the plane A = I, I I. In domain
ω < k, there are evanescent and waveguide modes [40], but, as demonstrated in this
Section below, through the rotation of the contour of integration to the imaginary axis, the
contribution of these modes is cancelled out with the energy of the boundary states of
corresponding modes.

Then, a rotation of the integration contour over the real axis, ℜω, in I± (6) and J± (7)
is applied to the imaginary axis, ℑω; see Figure 1.

Figure 1. The contours γ± of integration for I± (6) and J± (7) in the ω-plane. The integration over
imaginary frequency, ξ = −iω, yields the energy, E⊥. The potential presence of poles within the
contours may contribute to a non-zero energy E∥. ε denotes an infinitely small distance to the axes
and k is the wave vector.

After the rotation of the contour to the imaginary axis, two contributions survive,
which we refer to as E⊥ and E∥, corresponding to normal (real) and parallel (imaginary)
to the planes, respectively. The first contribution with integration along the imaginary
frequency, ξ = −iω, is given by

E⊥ =
∫∫ d2k

2(2π)3

∫ +∞

−∞
dξ ln det

[
1− e−2akER(ikE)

]
, (9)

where kE =
√

ξ2 + k2. The corresponding force is perpendicular to the planes, as is typical
for the Casimir force. This expression can be simplified by using the eigenvalues of matrix
R and can be represented as a sum of TE and TM contributions. The matrices r′I and rI I
do not commute (see below in this Section), and therefore the eigenvalues of R are not
a product of the eigenvalues of r′I and rI I . The eigenvalues of R can be found in closed,
albeit complicated, forms [24], corresponding to the contributions of the TM and TE modes
separately. Instead of applying this approach, we use the expression for energy in the
form [27] straghtforwardly including the conductivity matrices, ηA:



Physics 2024, 6 154

E⊥ =
∫ d2k

2(2π)3

∫ ∞

−∞
dξ ln

(
1 + e−4akE

ξ2k2
E

bIbI I
det ηI det ηI I

− e−2akE

[
ξ2k2

E
bIbI I

[(1− det ηI)(1− det ηI I) + det(ηI − ηI I)]−
ξkE
bI
− ξkE

bI I
+ 1

])
, (10)

where bA = ξ2 tr ηA + (kkηA) + ξkE
(
1 + det ηA

)
. The E∥ contribution represents the

Casimir friction.
If the conductivity tensor is given by

ηA = ηTE
A I + (ηTM

A − ηTE
A )

k⊗ k
k2 , (11)

it possesses the eigenvalues ηTM
A and ηTE

A , corresponding to the TM and TE modes, respectively.
In particular, the graphene conductivity tensor has such a structure [34] with corresponding
conductivities of modes. The Hall conductivity gives an additional antisymmetric term [41]. In
this case, the expression (10) for Casimir energy can be transformed to the known [1] form of
sum contributions for the TE and TM modes:

E⊥ =
∫ d2k

2(2π)3

∫ ∞

−∞
dξ

ln

1− e−2akE(
1 + kE

ξηTE
I

)(
1 + kE

ξηTE
I I

)
+ ln

1− e−2akE(
1 + kE

ξηTM
I

)(
1 + kE

ξηTM
I I

)

.

In the case considered here, the conductivity of the moving plane does not have form (11),
and we use the Casimir energy in the form (10).

In Ref. [24], the normal force was considered for moving graphene with the following
conductivity in a co-moving frame:

η = ηgr
k̃
ω

(
I + v2

F
k⊗ k

k̃2

)
Φ̃
(

k̃
2m

)
, (12)

where ηgr = πe2/2 with e the electron charge, vF is the Fermi velocity,

Φ̃(y) =
2i
πy

(
1− y2 + 1

y
arctanh y

)
and k̃ =

√
ω2 − v2

Fk2. (13)

In the laboratory frame, the general structure of the moving plane’s conductivity
tensor (3) takes the form [24]

ηI I = i1I + i2k⊗ k + i3(k⊗ v + v⊗ k), (14)

where

i1 =
ηgrΦ̃′

ωk2k̃′

(
k2k̃′2 +

1− v2
F

1− v2 ((kv)2 − k2v2)k2
3

)
,

i2 =
ηgrΦ̃′

ωk2k̃′

(
k2v2

F +
1− v2

F
1− v2 v2k2

3

)
,

i3 =
ηgrΦ̃′

k2k̃′
1− v2

F
1− v2

(
k2 −ω(kv)

)
, (15)

and
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k̃′ =

√
k̃2 +

1− v2
F

1− v2 [ω
2v2 + (kv)2 − 2ω(kv)], (16)

is the Lorentz transformation of k̃ (13).
The reflection matrices ri (8), on the basis of eigenvectors, are given as

r̂I(k3) = −
 k3η

ηk3+k̃
0

0 ηk̃
ηk̃+k3

 and r̂I I(k3) = −
 k3η′

η′k3+k̃′
0

0 η′ k̃′

η′ k̃′+k3

, (17)

where the hat denotes the diagonalized reflection matrices, η = ηgrΦ̃(y), η′ = ηgrΦ̃(y′), and

T−1
A rATA = r̂A ⇔ rA = TA r̂AT−1

A . (18)

The matrices Ti diagonalize the reflection matrices ri and have the form

TI =

(
k2 k1
−k1 k2

)
and TI I =

 k2 − v2
k2

3
ω−(kv) k1 − v1ω

−k1 + v1
k2

3
ω−(kv) k2 − v2ω

.

It is worth noting that the eigenvalues of rI I can be obtained from the eigenvalues of
rI through a Lorentz transformation. Specifically, k3 → k3, k̃→ k̃′, and η → η′ under these
transformations, resulting in r̂I → r̂I I . This is expected, as eigenvalues are invariants of
a matrix.

The eigenvector basis of rI ,

a1 = (k2,−k1), a2 = (k1, k2) = k,

is orthogonal with a1 · a2 = 0, and a2
1 = a2

2 = k2. On the other hand, the eigenvector basis
of rI I ,

c1 =

(
k2 − v2

k2
3

ω− (kv)
,−k1 + v1

k2
3

ω− (kv)

)
,

c2 = (k1 − v1ω, k2 − v2ω),

is not orthogonal:

c1 · c2 =
k2 −ω(kv)

ω− (kv)
(kvn) ̸= 0, (19)

where na = δa
3 with δa

b the Kronecker delta. Through straightforward calculations, the
following expression for the commutator is obtained:

[rI , rI I ] = ηη′
(1− v2

F)
2

1− v2
ω((kv)ω− k2)

k̃k̃′bIbI I
(k2

3k⊗ v−ω2v⊗ k), (20)

Therefore, the commutator [rI, rII] ̸= 0 and the rI and rII cannot be diagonalized simultaneously;
this means that the eigenvalues of rI · rII are not a product of the eigenvalues of the matrices
rI and rII.

The straightforward calculations give the following expression for the eigenvalues of
matrix R:

rTM/TE(k3) =
ηη′

2PQP′Q′
{

α
(

k3

(
k2Q′ + Q

(
(ku)2 − k2

3

))
+ α

(
(ku)ω− k2

3u0

)
2
)
+ 2k2

3QQ′

±α

√(
k3
(
k2Q′ + Q

(
(ku)2 − k2

3
))

+ α
(
(ku)ω− k2

3u0
)

2
)2

+ 4k4
3QQ′((ku)2 − k2u2)

}
, (21)
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where α = 1− v2
F, ± defines the TM (plus sign) and TE (minus sign),

Q = k̃η + k3, P = k̃ + ηk3, and Q′ = k̃′η′ + k3, P′ = k̃′ + η′k3.

In the case of zero velocity, u = 0, r̂ = r̂2
I , is obtained, as expected. To establish the

correct correspondence, the following square root sign convention is employed:√
(αk2 + 2k3Q)

2 = αk2 + 2k3Q, (22)

The eigenvalues (21) have quite a complex form. Hence, expression (10) is used where the
Casimir energy is directly expressed in terms of the tensors’ conductivities.

Let us briefly discuss the contribution E∥, which can contribute to the force along the
planes. The contribution to the Casimir pressure takes the form

P∥ =
∫∫ d2k

(2π)3

{∮
γ−

dωk3
e−2iak3(trR(−k3)− 2e−2iak3 detR(−k3))

det
[
I− e−2iak3R(−k3)

]
+
∮

γ+

dωk3
e2iak3(trR(k3)− 2e2iak3 detR(k3))

det
[
I− e2iak3R(k3)

] }
, (23)

with the contours γ± as shown in Figure 1. This expression only has a non-zero value if
poles appear inside the contours, satisfying the relations

det
[
I− e±2iak3 r′1(±k3)r2(±k3)

]
= 0. (24)

The relation (24), within various contexts, has been noted in the earlier studies
[19,28–30,42]. If the matrix R has the eigenvalues rTM and rTE, this relation can be separated
into the two scalar relations:

1− e±2iak3 rTM(±k3) = 0 and 1− e±2iak3 rTE(±k3) = 0, (25)

respectively.
The solutions of the relations (25) must possess imaginary parts to contribute as

residues. It can be demonstrated that solutions to these relations exist if, and only if,

|rTM(±k3)| > 1 and |rTE(±k3)| > 1. (26)

Since sign(ℑk3) = sign(ℑω), then∣∣∣e±2iak3
∣∣∣ = [e±2iak3 e∓2iak∗3

]1/2
= e∓2aℑk3 = e−2a|ℑk3| < 1.

Given this inequality, one can obtain the inequalities (26) from the relations (25).
Then, it follows that the condition P∥ ̸= 0 is associated with virtual photon production

because the modulus of the reflection coefficients is greater than 1. Lifshitz demonstrated
[43] that without relative velocity, Equation (24) has no solutions since the inequalities (26)
cannot be satisfied. This statement can be proven for graphene with zero mass gap (for
simplicity). For velocity v = 0 and m = 0,

r−1
TM(±k3) =

(
1± k̃

ηk3

)2

=

(
1 +

k̃
ηgrk3

)2

,

r−1
TE (±k3) =

(
1± k3

ηk̃

)2
=

(
1 +

k3

ηgr k̃

)2

, (27)

are obtained. Then,
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∣∣∣r−1
TM(±k3)

∣∣∣ = (1 +
|k̃|2

η2
gr|k3|2

+ 2
ℜk̃ℜk3 +ℑk̃ℑk3

ηgr|k3|2

)2

. (28)

It can be straightforwardly shown that ℜk̃ℜk3 +ℑk̃ℑk3 > 0, thus, satisfying∣∣∣r−1
TM(±k3)

∣∣∣ > 1. (29)

Hence, one concludes that the inequalities (26) cannot be satisfied in the case considered
in this paper, indicating there are no solutions for Equation (24). However, one would
expect that solutions may exist due to relative motion of the planes.

3. The Case of Isotropic Conductivity

The case of isotropic conductivity can be obtained by taking the formal limits vF → 0
and Φ̃ → 1 (m → 0) in Equation (12) and replacing the graphene conductivity, ηgr, with
the conductivity, ηi, of the corresponding plane. After taking these limits, the conductivity
tensor for the plane at rest becomes diagonal ηI = ηII and k̃′ = γωv, where ωv = ω− kv,
γ = 1/

√
1− v2 is the relativistic factor, and

ηI I = i′1I + i′2k⊗ k + i′3(k⊗ v + v⊗ k), (30)

where

i′1 =
ηI Iγ

(
k2ω2

v + ((kv)2 − k2v2)k2
3
)

k2ωωv
, i′2 =

ηI Iγv2k2
3

k2ωωv
, i′3 =

ηI Iγ

k2ωv
(k2 −ω(kv)). (31)

The quantity ωvγ represents the frequency of photons in a laboratory that was emitted in a
co-moving frame.

By performing straightforward calculations at the imaginary axis ω = iξ, one obtains:

bI = (ηIξ + kE)(ξ + ηIkE), bI I =
ξ

γξv
(ηI Iγξv + kE)(γξv + ηI IkE),

det(ηI − ηI I) = (ηI − ηI I)
2 + ηIηI I

(
γv2 k2

E
ξξv

+ 2(1− γ)

)
, det ηA = η2

A, (32)

where ξv = ξ + ikv. Then, we use the polar coordinates for k in Equation (10), kv = kv cos φ
and transform the coordinates of the plane k ∈ [0, ∞), ξ ∈ (−∞, ∞) to polar coordinates
ξ = kE cos θ, k = kE sin θ. After these changes, the dependence of kE only survives in the
exponents. Changing akE = y, one observes that the energy depends on the interplane
distance as 1/a3 for constant conductivities, as expected [35]. Thus, the energy and pressure
have the following form (x = cos θ):

E⊥1,2 = ℜ
∫ ∞

0

y2dy
(2πa)3

∫ 1

0
dx
∫ π

0
dφE1,2, P⊥1,2 =

3
a
E⊥1,2, (33)

where

E1,2 = ln

{
1 + e−4y x2η2

I η2
I I

β I β I I

−e−2y

[
x2

β I β I I

(
(1− ηIηI I)

2 + ηIηI I

(
γv2

xxv
+ 2(1− γ)

))
− x

β I
− x

β I I
+ 1

]}
, (34)

and
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β I = (ηI x + 1)(x + ηI), β I I =
x

γxv
(ηI Iγxv + 1)(γxv + ηI I), xv = x + iv

√
1− x2 cos φ. (35)

If the first plane (at rest) is a perfect (ideal) conductor, one takes the limit η1 → ∞
and obtains

Eid,2 = ln

[
1 + e−4y xη2

I I
β I I
− e−2y

(
xη2

I I
β I I
− x

β I I
+ 1

)]
, (36)

whereas for two ideal planes,

Eid,id = 2 ln
(

1 + e−2y
)

, (37)

the energy does not depend on the velocity.
The expressions (33) and (34) coincide with those obtained in Ref. [11], where two

planes of finite thickness with relative lateral motion were considered. As noted in Ref. [44],
the typical reflection coefficients cannot be used for 2D (two-dimensional) materials due to
the impossibility of taking the limit of zero thickness. The reflection coefficients in this case
have to be calculated using scattering theory [45] or 2D quantum electrodynamics[34]. In
the case under consideration here, one needs to use the reflection coefficients (27) for the
plane at rest and the same expressions, but with a boosted wave vector (16), for the moving
plane. Then, one takes limit vF → 0 to obtain the isotropic conductivity. Finally, one arrives
at Equations (33) and (34). For example, the coefficient at e−4y in Equation (34) reads

x2η2
I η2

I I
β I β I I

= rE1rE2rB1rB2

in the notations of Ref. [11].
Without a relative movement, v = 0, the results obtained in Ref. [35] are reproduced:

E = ln
(

1− e−2y ηIηI I
(ηI + x)(ηI I + x)

)
+ ln

(
1− e−2y ηIηI I x2

(xηI + 1)(xηI I + 1)

)
= ETM + ETE, (38)

the sum of TM and TE contributions.
Let us consider the constant conductivities case with equal conductivities: ηI =

ηI I = η = const. For v = 0, one obtains from Equation (33) the sum of the TM and TE
mode contributions,

E0
1,2 = ln

(
1− e−2y η2

(x + η)2

)
+ ln

(
1− e−2y x2η2

(1 + xη)2

)
,

E0
id,2 = ln

(
1− e−2y η

x + η

)
+ ln

(
1− e−2y xη

1 + xη

)
, (39)

respectively.
In the case with η ≪ 1, the Casimir energies read for v = 0:

E0
1,2 =

η

a3
180ζR(3) + π4 + 60π2 − 1440 ln 2

2880π2 = −3.2× 10−3 η

a3 ,

E0
id,2 =

η

a3

[
ln η

32π2 +
90ζR(3) + π4 + 15π2 − 405

2880π2

]
= −

[
3.1 ln η−1 + 1.8

]
× 10−3 η

a3 . (40)

To move to the dimensional SI (International System) units, one has to multiply the
relations (39) and (40) by h̄c = 3.16× 10−26 J ·m.

For small velocity and conductivity, specifically if v≪ η ≪ 1, one obtains Equation (33):
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∆vE⊥1,2

E0
1,2

=
∆vP⊥1,2

P0
1,2
≈ −0.19

(
v
η

)2
,

∆vE⊥id,2

E0
id,2

=
∆vP⊥id,2

P0
id,2

≈ − 0.3
ln η−1 + 0.57

(
v
η

)2
, (41)

where ∆vE⊥i,k = E⊥i,k − E0
i,k. The relative velocity correction is quadratic in the velocity and is

negative, meaning the force is decreased due to the motion of the planes.
Numerical evaluations of Equation (33) are shown in Figure 2 for two systems:

(1, 2)—two conductive planes with constant conductivity η (solid lines) and (id, 2)—the
first plane at rest, which is a perfect metal (dashed lines). We calculated the velocity
correction to the energy: ∆vE⊥/E0 = (E⊥ −E0)/E0, where E0 is the energy without relative
movement. The velocity correction is negative for both systems and exhibits quadratic
behavior, proportional to v2, for small velocities, v ≪ η ≪ 1. The absolute value of the
correction is larger for the first system.
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Figure 2. The velocity correction ∆vE⊥/E0 = (E⊥ − E0)/E0 for η = 0.01, 0.1. In the case of small
velocity and conductivity, v ≪ η ≪ 1 (left and middle), a quadratic correction is observed in
accordance with Equation (41). The right plot shows the correction for all possible velocities. The
solid lines represent two planes with equal conductivity, as given by Equation (34), while the
dashed lines represent systems where one plane is stationary with perfect conductivity (described by
Equation (36)), and the second plane possesses isotropic conductivity (described by Equation (34)).
Here, c denotes the speed of light.

The above derivation is applicable for isotropic, but frequency-dependent (temporal
dispersion), conductivity, η = η(ω). Let us consider the simple enough case of Drude-like
conductivity with

η1 =
ηΓ

Γ + ξ
, η2 =

ηΓ
Γ + γξv

, (42)

where parameters are considered for graphene: Γ = 6.365 eV and η = ηgr = e2/4, where Γ
denotes a scattering parameter [36]. After changing the integrand variables as in Equation
(33) the Casimir energy acquires an additional dependence on the interplane distance
through conductivity:

ηI =
ηgr(aΓ)
(aΓ) + yx

, ηI I =
ηgr(aΓ)

(aΓ) + γyxv
. (43)

For a = 100 nm and Γ = 6.365 eV, one has aΓ = 3.225. For large values of aΓ ≫ 1, the
conductivities ηI = ηI I = ηgr, consistent with the constant conductivity model, are valid
for large interplane distances.

The Casimir energy is numerically evaluated and presented in Figure 3. It can be
observed that as the interplane distance increases, the energy approaches that of the
constant conductivity case (blue lines), as expected.
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Figure 3. The velocity correction ∆vE⊥/E0 = (E⊥ − E0)/E0 for the Drude model with the parameters
of the interplane distance, a = 10 nm and 100 nm, and constant conductivity, η = ηgr, the graphene
conductivity, for small velocities, v ≪ 1 (left), and the entire range of v (right). The solid lines
correspond to two planes with equal conductivity, and the dashed lines represent a scenario where
one plane is stationary with perfect conductivity. It is worth noting that as the interplane distance
increases, the curves approach the scenario of constant conductivity.

To compare the results obtained here with the analysis of graphene in Ref. [24],
let us consider the case of two graphene sheets. The energy initially increases with
velocity and then becomes negative, reaching a maximum at vc = vF + (ma)/2. When
m = vF = 0, the region with positive energy disappears. Conversely, for two planes
with constant conductivity, the energy is always negative for all values of velocity. Both
cases exhibit a velocity correction of v2 order. Regarding the interplane distance, different
behaviors are observed. For two planes with constant conductivity, the energy has the
1/a3-dependence for any a distance, while for graphene, this dependence is only evident
for large distances. This is expected, as the constant conductivity model for graphene is
valid for large interplane distances. In the case of a system consisting of a perfect conductor
and graphene, the energy is zero up to a specific velocity, while in the aforementioned
scenario, a quadratic behavior is observed at the beginning. The same conclusion holds for
the Drude model of conductivity (42). For large interplane distances, both models closely
align, while for small distances, a weak dependence on distance is observed.

4. Conclusions

In this paper, we investigated the normal (perpendicular to the planes) Casimir force
between two conductive planes with an isotropic conductivity that moves laterally with
a relative velocity v. Within the framework of scattering theory, the main challenge lies
in determining the conductivity of a moving plane in a laboratory frame. In a co-moving
frame, the isotropic conductivity is represented by a coefficient in Ohm’s law, J′ = σ′E′,
where E′ and J′ denote fluctuations in the electric field and corresponding current density.
Transforming this relation to the laboratory frame, where the first plane is at rest, is not a
trivial task. A simplified approach [31,32] to address this issue is to start from the linear
relation between current density and electromagnetic vector potential, Jµ = Πµ

ν Aν, which
is commonly used in plasma physics [33]. A similar approach was employed in Ref. [34],
where the polarization tensor served as the linear response tensor Πµ

ν .
Even in the case of constant conductivity, the transformation of conductivity does

not have quite a simple form [32]. A similar methodology was applied in Ref. [24], where
the linear relations for current and electromagnetic potential, as well as the conservation
of boundary conditions, were utilized. To obtain isotropic conductivity, we adapted the
expressions derived for graphene, taking the limits vF → 0 for Fermi velocity and m→ 0
for mass gap. With these limits, the conductivity tensor in the co-moving frame becomes
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diagonal. In the laboratory frame, it has the form (30). Using these tensors, the Casimir
energy can be calculated using expression (10), originally derived in Ref. [27].

The expressions (34) obtained for two conductive planes and for the system (perfect
conductivity)/(constant conductivity) involve two small dimensionless parameters: the
velocity v of the plane and the conductivity η = 2πσ (dimensionless for 2D systems). In
the case where v≪ η ≪ 1, the relative energy correction due to velocity is approximately
given by the (v/η)2 behaviour (41). This quadratic v-dependence is typical for normal force
and different directions of motion [7,8,10,24]. The energy dependence on the interplane
distance is 1/a3 for any distance, which is typical for the constant conductivity case [35], as
the constant conductivity model is valid for large distances where the Casimir regime is
satisfied. The Drude model of conductivity shows similar behavior of the system with a
weak dependence on the interplane distances (see Figure 3).

The constant conductivity model, discussed in Refs. [6,35–37], quite well describes the
Casimir effect for graphenes. However, in the case of the normal force considered in this
paper, there is a significant qualitative difference. When the mass gap m ̸= 0, the velocity
correction is positive up to its maximum value of v = vF + am/2, whereas the constant
conductivity model gives a negative correction. As stated in Ref. [24], spatial dispersion
plays a crucial role in the Casimir effect. For low conductivity values, the Casimir effect
exhibits a linear dependence on conductivity in the constant conductivity case, whereas it
becomes quadratic when the spatial dispersion of conductivity is taken into account.

Our future investigation concerns the quantum friction in the case of constant and
isotropic conductivity. It is anticipated that the magnitude of the friction force is smaller
by orders of magnitude [16] compared to the normal force. Nevertheless, the study is of
importance due to quite a wide range of the different results obtained for quantum friction.
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