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Abstract: The reactivity of the complex [(dpp-bian)GaNa(DME)2] (1) (dpp-bian = 1,2-bis[(2,6-di-
isopropylphenyl)imino]acenaphthene) towards isocyanates, benzophenone, diphenylketene, and 1,2-
dibenzylidenehydrazine has been studied. Treatment of 1 with isocyanates led to derivatives of imido-
formamide [(dpp-bian)Ga{C(=NPh)2}2–NPh][Na(DME)3] (2), biuret [(dpp-bian)Ga(NCy)2(CO)2NCy]
[Na(DME)] (3), or carbamic acids [(dpp-bian)GaN(Cy)C(O)O]2[Na(THF)(Et2O)] (4), [(dpp-bian)GaC
(=NCy)N(Cy)C(O)O][Na(Py)3] (5). Treatment of 1 with 2 equiv. of Ph2CO resulted in gallium
pinacolate [(dpp-bian)GaO(CPh2)2O][Na(Py)2] (9), while the reaction of 1 with 2 equiv. Ph2CCO
gave divinyl ether derivative [(dpp-bian)Ga{C(=CPh2)O}2][Na(DME)3] (10). Complex 1 treated with
2 equiv. 1,2-dibenzylidenehydrazine underwent [1+2+2] cycloaddition to give C–C coupling product
[(dpp-bian)Ga{N(NCHPh)}2(CHPh)2][Na(DME)3] (11). When complex 1 was sequentially treated
with 1 equiv. of 1,2-dibenzylidenehydrazine and 1 equiv. of pyridine or pyridine-d5; it gave [1+2+2]
cycloaddition product [(dpp-bian)GaN(NCHPh)C(Ph)CN][Na(DME)3] (12). Compounds 2–12 were
characterized by NMR and IR spectroscopy, and their molecular structures were established by
single-crystal X-ray diffraction analysis.

Keywords: redox-active ligand; low-valent gallium; isocyanate; benzophenone; ketene; azine; cycloaddition

1. Introduction

The discovery of stable carbenes at the end of the 20th century marked a new era in
chemistry. These compounds underwent rapid examination and garnered significant favor
as ligands for transition metal atoms. Notably, palladium and ruthenium complexes based
on N-heterocyclic carbenes have proven effective as catalysts for cross-coupling and olefin
metathesis reactions [1,2]. Carbenes themselves are highly reactive and showcase unique
properties [3–5], including cycloadditions [6].

Similar carbene-like reactivity is observed in certain compounds of group 13 elements.
The entities denoted as RM:, in which M represents gallium or aluminum, have been iden-
tified as stable complexes [Cp*Al]4 (Cp* = C5Me5) [7] and [(TMS)3CGa]4 (TMS = SiMe3) [8].
Other spacious ligands, such as amido–imino ligands (e.g., NacNac = (HC(CMeNAr)2)
and aromatic ligands like 2,6-terphenyls, proved to be useful in stabilizing [RM:]n (where
n = 1 or 2, M = group 13 metal) [9–12]. Another class of reactive group 13 species emerges
when [R2M•] (M = group 13 metal) undergo reduction, forming anionic carbenoid [R2M:]−

species. These anionic species find stabilization through various bisamido ligands, in-
cluding diaminoxanthene ligands [13], NON-ligands (NON = [O(SiMe2NAr)2]2−) [14],
SiNDipp (SiNDipp = CH2SiMe2N(2,6-iPr2C6H3))2, deprotonated β-diketiminate [15], 1,1,4,4-
tetrakis(trimethylsilyl)butane-1,4-diyl [16], and 1,4-diazadiene ligands [17–22]. Addition-
ally, they can be part of cyclic(alkyl)(amino)aluminyl anions [23,24].

Molecules of R2−M–MR2−-type exhibit carbene-like behavior if the ligand R is redox-
active. Due to the non-innocence of the ligand, these species may exhibit an equilibria R2-M–
MR2−↔R1−M=MR1−⇄R1−M (Scheme 1). While controlling electron transfer between
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the non-innocent ligand and the metal atom remains a challenge [25,26], the chemical
properties of R2-M–MR2- suggest reactivity resembling heterocyclopentadiene (II) [27,28],
dimetallene (III) [29,30], and metallylene (IV) [31,32] types (Scheme 1).
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reactivity types.

While the synthesis and structural features of low-valent 13 carbenoid compounds are
captivating, their reactivity remains an equally fascinating aspect [33–38]. First, they are
good σ-donor/π-acceptor ligands for transition metal centers [39,40], have high reactivity
against organic molecules, can cleave C–C aromatic bonds [41], and insert into robust
C–H [16,42–45], C–F, C–O [46], C=N [47], C=S, P=S bonds [48]. Low-valent 13 group
compounds were reported to undergo transition metal-like oxidative addition [31,49–51]
and reductive elimination [52,53]. This made them environmentally safe candidates to
replace expensive transition metal complexes in catalysis [54].

Despite structural and electronic differences, all the aforementioned metallylenes can
undergo cycloadditions [55]. Dialumenes, reminiscent of olefins (Scheme 2, A), unveil
their intriguing propensity for [2+2] cycloaddition reactions with an array of substrates—
ranging from CO2 [56], olefins, and alkynes [57,58] to unactivated benzene rings [59,60].
Gallium terphenyl dimetallene ArGaGaAr (Ar = 2,6-terphenyl) was reported to react
under ambient conditions with ethylene, propene, 1-hexene, and styrene to give 1,4-
digallacycloalkanes [61].
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Meanwhile, RM: species proceed with [2+1] or [4+1] cycloadditions. [NacNacAl:] reacts
with alkynes to form alumacyclopropenes [62], alkenes to form alumacyclopropanes [63,64],
and cyclic, acyclic and aromatic dienes [64,65], carbonyl compounds [66], and 1,4-dipho-
sphinine [67]. Anionic aluminum(I) complexes react with 1,3,5,7-cyclooctatetrene [14] or
unsaturated hydrocarbons [68]. [NacNacGa:] undergoes a cycloaddition reaction with
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two equivalents of RNCO (R = Ph; 3,5-Me2C6H3) or two equivalents (p-Tol)N=C=N(p-
Tol) (Scheme 2, B) [69]. Cycloaddition may occur at polar groups M=E (E = O, S, N(2,6-
iPr2C6H3)) [70–74] (Scheme 2, C). Noteworthy examples include cycloadditions of iso(thio)
cyanates to monomeric aluminum sulfide [NacNacAl=S] [48]. At the same time, alumylene
oxide {[(NON)Al=O]K}2 was reported to react with an equivalent of CO2, PhNCO, or
N2O via a [2+2]-cycloaddition mechanism to produce aluminum carbonate, carbamate or
hyponitrite [75]. The structural flexibility of low-valent species containing redox-active
ligands leads to a larger scope of cycloaddition reactions, including[4+1]-, [4+2]-, and
[2+2+1+1]- cycloaddition [76–78] (Scheme 2, D).

Attempts have been made to apply these concepts, but as of now, the achievements in
this area are quite limited, in contrast to applied low-valent surfaces and solid-state chem-
istry [79,80]. Metallylenes were employed for selective coupling of carbonyl compounds,
isocyanates, nitriles, imines, and azides with pyridine [81] or benzophenone [66]. They
promoted a facile synthesis of phosphine PH3 from white phosphorus and ammonia [82].
Alumene’s adducts of olefins can undergo a reversible insertion of CO [83]. Benzene was
converted into acyclic 1,3,5-triene products at a low-valent aluminum center [84]. Recently,
we reported a direct transformation of RN=C=NR to guanidinates and iminoguanidi-
nates [85,86], activation and modification of CO2 into carboxylic acid derivatives [87]
mediated by gallylene complex [(dpp-bian)GaNa(DME)2] (1).

Here, we report on novel transformations of RN=C=O, Ph2C=O, Ph2C=C=O, N2O,
COS and PhHC=N-N=CHPh at the gallium center of complex 1 and draw certain general-
izations regarding the patterns that govern them.

2. Materials and Methods

General procedure for synthesis of 2–12. All the manipulations with air- and moisture-
sensitive compounds were carried out in a vacuum or under argon using the standard
Schlenk technique or under an argon atmosphere in a drybox. A solution of 1 equiv. of
[(dpp-bian)GaNa(DME)2] [88] was prepared in situ by stirring 0.5 equiv. [(dpp-bian)Ga]2
with 1 equiv. of sodium metal in a relevant ether solvent until the metal completely
dissolved. The solution became yellow-green. Then, 1 (or 2) equiv. of heteroalkene was
added to the solution. Within a few minutes, the solution’s color became green/green-blue.
Further crystallization afforded green/green-blue diamagnetic crystals of compounds 2–12.

Details of synthesis, characterization, X-ray crystal structure determination details,
and crystal data are given in the electronic supplementary materials. CCDC 2314238 (2),
2314239 (3), 2314240 (4), 2314241 (5), 2314242 (6), 2314245 (7), 2314246 (8), 2314247 (9),
2314248 (10), 2314249 (11) and 2314250 (12) contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge via ccdc.cam.ac.uk/structures
(accessed on 13 December 2023).

3. Results and Discussion

Metallylene’s [(dpp-bian)GaNa(DME)2] (1) reactivity against isocyanates was tested
in three conditions: (1) 1 with 1 equiv. of PhNCO in DME solution, (2) 1 with 1 equiv. of
CyNCO in DME solution, and (3) 1 with 2 equiv. of CyNCO in THF solution at 25 ◦C.
A rapid solution color change from yellow-green to green-blue was observed. However,
despite similar reaction conditions, the isolated products were strikingly different in each
case (Scheme 3). The imidoformamide 2 was isolated from the first reaction, biuret (3) and
carbamic acid (4) derivatives from the second reaction, and carbamic acid (5) from the third
reaction, respectively. The products appeared to be especially moisture- and air-sensitive
crystals of various green-blue tones indicative of dpp-bian2− [31] that were isolated in
moderate 11–18% yields. Compounds 3 and 4 were isolated from the same reaction mixture
simultaneously.

ccdc.cam.ac.uk/structures
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and acenaphthene parts are omitted for clarity.

Formation of 2–5 can be rationalized through the mechanism suggested earlier for
the reaction of 1 with O=C=O [87]. It anticipates the formation of intermediate adduct
INT[GaRNCO] (Scheme 3). The reaction is followed by the [3+2] or [3+2+2] cycloaddition
of a second and a third molecule of isocyanate with concomitant extrusion of isonitrile
or CO. Moreover, the intermediate INT[GaRNCO] is supposed to have two competitive
decomposition pathways to the oxide INT[GaO] and the imide INT[GaNR], which are
unstable towards dimerization [87]. According to the proposed mechanism, the generation
of species 2 should have led to a noticeable amount of INT[GaO], which was well sup-
ported by an experiment. A deeper inspection of the reaction mixture of 1 with PhNCO
allowed the isolation of green crystals of an INT[GaO] dimer, the gallium oxide [(dpp-
bian)GaO]2[Na(DME)2]2 (6), on top of crystals of complex 2. The relatively low isolated
yields of 2–5 may be attributed to the existence of few energetically close intermediates
INT[GaO], INT[GaNR], INT[GaRNCO] along with the presence of competitive reaction
pathways that, in fact, resulted in a mixture of similar products. Complex 6 was also
synthesized by the direct reaction of gallylene 1 with 1 equiv. N2O (Scheme 4) as green
crystals in 66% yield. Spectral characteristics of 6 from both experiments coincided. For
the sake of 6 synthesis, compound 1 was also treated with 1 equiv. carbonyl sulfide. That,
however, resulted in sulfide 7 as green crystals in 35% yield.
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Compounds 2–6 are diamagnetic and produce resolved NMR spectra. Complexes
of dpp-bian that have symmetry elements produce a characteristic pattern of the ligand
NMR [87]. Likewise, the NMR spectra of a solution of 2 contain a simplified set of signals
due to two symmetry planes. Eight methyl groups and four methine groups of iPr are
presented by two doublets (δ 0.75, 0.89 ppm, 12H each) and one septet (3.74 ppm, 4H),
respectively. Protons of the phenyl group produce signals at 7.56 (2H), 7.25 (2H), 7.01 (4H),
6.78 (4H), 7.06 (1H), and 6.57 (2H) ppm. The GaC(NPh)N carbon atom produces a signal at
152.8 ppm that is similar to 158.1 ppm of azacyclobutane C(=NPh)C(Me2)N(Ph)C(=NPh) [89].
Compounds 3 and 4 were characterized only by XRD analysis because of very close
solubilities. The NMR spectrum of complex 5 demonstrates a simplified signal set due to a
symmetry plane. Protons of the methyl and methine groups of iPr give four doublets (6H
each) and two septets (2H each). Protons of the naphthalene part appear as two doublets
(2H each) at 6.29 and 7.12 ppm and one doublet of doublets (2H) at 6.86 ppm. Protons of
methylene groups cyclohexyl substitutes give six multiplets at 2.79 (2H), 1.89 (2H), 1.70
(4H), 1.57 (4H), 1.37 (4H), and 1.18 (4H) ppm. Protons of the methine groups produce two
broad singlets (1H each) at 4.82 and 3.54 ppm. Compound 6 is poorly soluble in ether
solvents, aggravating its NMR identification. The 1H NMR spectra of 6 exhibited two
doublets (24H each) at 0.96 and 0.86 ppm and one septet (8H) at 3.77 ppm for the protons
isopropyl group indicative of three symmetry planes. The reactions from Scheme 3 seem to
be unselective; NMR-scale experiments resulted in untrackable mixtures of products.

The IR spectra of the compounds 2–6 support the proposed structures. Compound
2 features a strong C=N absorption band (1640 cm−1). The mixture of 3 and 4 exhibits
absorption at 1628 cm−1 and 1602 cm−1, corresponding to C=O and C=N vibrations. The
IR spectrum of compound 5 consists of the absorption of 1714 cm−1 and 1661 cm−1, which
are characteristics of double C=O and C=N bonds, respectively. No -N=C=O absorption
bands were registered in the 2000–2300 cm−1 region.

In a separate experiment, adventitious contact of a reaction mixture of 1 with 1
equiv. CyNCO in THF with air led to the isolation of green crystals of compound [(dpp-
bian)GaOC(NHCy)O(O)][Na(DME)3] (8) in 9% yield (Scheme 5).
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Complex 8 is diamagnetic but shows no resolved NMR spectra at room temperature,
probably due to molecular motion in the cyclohexyl substituent. The spectrum resolution
improved at −20 ◦C (Figure S19). Protons from the isopropyl group produced signals at
1.20, 1.03, 0.74, and 0.71 ppm (12H each) and 3.84 and 3.48 ppm (4H each). Protons of
cyclohexyl substitutions appeared at 3.07 (1H), 2.20 (4H), 1.99 (4H), and 1.12 (2H) ppm.
Atom H(5) of the imino group presented as a doublet at 5.79 ppm. The IR spectrum
of product 8 contains absorption bands corresponding to stretching vibrations of N–H
(3364 cm−1) bonds and a carboxyl group (1591 and 1438 cm−1).

Even though the isocyanate oligomerization phenomenon under basic or reductive con-
ditions is known [90,91], and we reported a few isocyanate transformations on the gallium
center [27], most of the structures and transformations reported herein are novel. For exam-
ple, complex 2 is the first metallocycloiminoacylamidine of the main group metal. Three
metallocycloiminoacylamidines of the transition metals were characterized, though. They
were isolated by the insertion of 2,6-dimethylphenyl isocyanide to the M–N bond of platinu-
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mazacyclopropane [(RCN)2PtC(=NR)NR)] (R = 2,6-dimethylphenyl) [92] and transforma-
tion of isonitrile in the coordination sphere of iron in the complex [Fe(dppe)(CNR)4](ClO4)2]
(R = p-Tol; dppe = 1,2-bis(diphenylphosphino)ethane)) by its treatment with excess KOH [93].
Similarly, complex 3 is the second main group metal biuret to be deposited in the Cam-
bridge Structural Database (CSD) [27]. Isocyanate oligomerizations were reported to give
six-member metallacycles on nickel [94], palladium [95], and chromium [96] centers. To
the best of our knowledge, the generation of compounds with five-membered metallacycle
MC(=NR)C(=O)O, like in complex 5, is also unprecedented.

To better understand the reactivity of 1 against C=O-containing compounds, it was
treated with 2 equiv. of benzophenone or 2 equiv. of diphenylketene. Green crystalline prod-
ucts [(dpp-bian)GaO(CPh2)2O][Na(Py)2] (9) (53% yield) and [(dpp-bian)Ga{C(=CPh2)O}2]
[Na(DME)3] (10) (22% yield) were isolated from the reaction mixtures, respectively (Scheme 6).
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hybridized carbon atoms of the galladioxolane fragment (161.1 (OCO), 158.1 (OCGa), 
127.6 (Ph2C=COGa), 88.6 (Ph2C=CO2) ppm) are close to those in the phosphorus derivative 
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NMR spectra of the compounds 9 and 10 supported their structure. Protons of iso-
propyl substituents have shown a set of two doublets (12H each) and one septet (4H)
associated with two symmetry planes. At the same time, those of 10 produced four
doubles and two septets indicative of only one symmetry plane. The chemical shift
of the quaternary carbon atom of the pinacolate fragment of δ 88.6 ppm was signifi-
cantly shifted to a stronger field (cf. δ (13C) = 196.5 ppm in Ph2CO). 13C NMR chemical
shifts of sp2-hybridized carbon atoms of the galladioxolane fragment (161.1 (OCO), 158.1
(OCGa), 127.6 (Ph2C=COGa), 88.6 (Ph2C=CO2) ppm) are close to those in the phosphorus
derivative [PhPOC(=CPh2)OC(=CPh2)] (156.4 (OCO), 150.7 (PCO), 125.9 (Ph2C=COP), 95.5
(Ph2C=CO2 ppm) [97].

Pinacolate coupling was reported in the reaction of [NacNacAl] and benzophenone [98].
Magnesium complex [(dpp-bian)Mg(THF)3] also reacts with benzophenone to create bin-
uclear magnesium pinacolate [{(dpp-bian)Mg(THF)}2{µ-O2C2Ph4}], which can dissociate
in toluene solution into two biradical species [99]. Analogously to these cases, generation
of pinacolate 9 can be viewed through ketyl radical formation. Meanwhile, C–O coupling
instead of C–C in the reaction of 1 with diphenylketene may account for the [1+2+2]
cycloaddition mechanism. Besides transition metals [100] and phosphorus [97], ketene
cyclization product 10 is the first to be reported across the main group metals.

A similar mechanism ambiguity between reduction and [1+2+2] cycloaddition ap-
peared in the reaction of complex 1 with 2 equiv. of 1,2-dibenzylidenehydrazine. It resulted
in complex [(dpp-bian)Ga{N(NCHPh)}2(CHPh)2][Na(DME)3] (11) in the form of turquoise
crystals at 39% yield. During the reaction, two benzaldazine molecules combined in the
gallium atom coordination sphere. One C–C bond and two Ga–N bonds formed to create a
five-membered galladiazametallacycle (Scheme 7).
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Compound 11 is diamagnetic and exhibits resolved NMR spectra. In the THF-d8
solution, isopropyl substituents of the ligand appeared as a set of four doublets 6H and
two septets 2H, indicative of a symmetry plane. The methine protons of benzaldazine are
represented by two singlets at 7.37 and 5.08 ppm (2H each). The latter signal corresponds to
the hydrogen atoms at the carbon atoms that formed a new bond. It shifted into the higher
field compared to the starting 1,2-dibenzylidenehydrazine (cf. δ (NCHPh2)2 = 8.65 ppm).
The naphthalene protons were not equivalent, which allowed us to conclude that the
symmetry plane coincides with the naphthalene plane. The addition reaction was also
nicely illustrated by 13C NMR signals of 131.2 ppm (H–C=N) and 68.8 ppm (H–C–N) shifted
in comparison to the starting material (cf. δ (–N=CHPh)2 = 161.8 ppm). The presence of the
symmetry plane confirmed the formation of one optical isomer—the meso-form.

Curiously, when the DME solution of 1 was treated with 1 equiv. of 1,2-dibenzylidene-
hydrazine and then the products were dissolved in pyridine, a pyridine–benzaldazine
coupling product [(dpp-bian)GaN(NCHPh)C(Ph)CN][Na(DME)3] (12) was isolated in 40%
yield as green crystals (Scheme 7). Using pyridine-d5 as a solvent, an isostructural complex
12-d5 was isolated.

In the THF-d8 solution, the molecule of 12 was asymmetric, which was seen from
eight doublets and four septets arising from iPr-substituents of dpp-bian (Figure 1). The
methine protons of the azine fragment produced two distinct signals (1H each) at 7.73 and
4.58 ppm. The last corresponded to the hydrogen atom at the sp3-hybrydized carbon atom,
forming a new bond. Five signals of protons in the pyridine fragment (6.62, 5.44, 4.29, 4.23,
4.00 ppm) were significantly shifted in comparison to free pyridine (8.61, 7.66, 7.28 ppm),
which confirmed its dearomatization. The assignment of these signals became clear when
1H NMR spectra of 12 and 12-d5 were compared (Figure 1). The 13C NMR spectrum also
confirmed the structure of the resulting compound. The signal of the sp3-hybridized carbon
atom H–C–N of the azine fragment shifted upfield (73.3 ppm), and the sp2-hybridized
carbon atom H–C=N produced a signal at 131.5 ppm (cf. δ (–N=CHPh)2 161.8 ppm). The
carbon atoms of the pyridine fragment of 12 produced 13C NMR signals at 143.7, 127.5,
104.6, 92.5, and 62.5 ppm. (cf. C5H5N 149.9, 135.9, and 123.75 ppm in pyridine). Since
only one diastereomer was identified in both reactions of 1 with benzaldazine, it may be
believed to proceed through the cycloaddition mechanism.

Similar reductions of benzaldazine were reported by [(C5Me5)2Sm(THF)2] [101] and
[Cp2Ti(η2-Me3SiC2SiMe3)] [102]. The authors suggested a one-electron reduction of the
imino group, which led to C–C coupling binuclei complexes. Processes of chemoselective
coupling of carbonyl compounds with pyridine were previously reported for [NacNacAl:]
(NacNac = [ArNC-(Me)CHC(Me)NAr]−, Ar = 2,6-iPr2C6H3) [81]. However, the coupling of
two azine molecules and one azine molecule with a pyridine molecule in the coordination
sphere of one metal atom was observed for the first time.
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Figure 1. Selected area of 1H NMR spectrum of 12 (red) and 12-d5 (blue) (THF-d8, 400 MHz, 25 ◦C).

Molecular Structures of Compounds 2–12

According to XRD analysis of 2–12, interatomic bond distances within five-membered
metallacycles correspond to single C–N and double C=C bonds and agree well with the
geometry of complex 1 [103]. This anticipates that dpp-bian preserved the dianion state
during the reactions, while electron transfer occurred exclusively from the metal atom.

The XRD analysis of 2 (Figure 2) indicated that radial interatomic distances N(3)–
C(37) (1.277(2) Å) and N(5)–C(50) (1.284(2) Å) are close to the double C=N bonds (1.29 Å)
distances, while N(4)–C(37) (1.414(2) Å), N(4)–C(50) (1.412(2) Å) are close to single C–N
(1.47 Å). These values correlate well with distances in platinum complexes [(RCN)2PtC(=NR)
NRC(=NR))] (av. C=N 1.42, C–N 1.28 Å) [92] and the organic molecule imidoformamide
(av. C=N 1.268, C–N 1.375 Å) [104].
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Figure 2. Molecular structure of anion 2. Thermal ellipsoids are drawn at 30% probability level.
Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (◦): N(1)–C(1) 1.380(2),
N(2)–C(2) 1.401(2), C(1)–C(2) 1.379(2), N(3)–C(37) 1.277(2), N(4)–C(37) 1.414(2), N(4)–C(50) 1.412(2),
N(5)–C(50) 1.284(2), Ga(1)-C(37) 2.0621(16), Ga(1)-C(50) 2.0635(16), N(3)–C(37)–N(4) 119.12(14), C(50)–
N(4)–C(37) 109.86(13), N(5)–C(50)–N(4) 119.23(14) C(37)–Ga(1)–C(50) 68.20(6).
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In the crystal, molecules of 3 presented by species dimerized through sodium cations
and placed on the crystallographic center of symmetry (Figure 3). Distances O(1)–C(43)
(1.2397(18) Å), O(2)–C(50) (1.2448(18) Å) are close to each other and correspond to a dou-
ble C=O bond. The C–N bonds (N(3)–C(43) (1.3352(19) Å), N(5)–C(50) (1.3436(19) Å) are
averaged between C=N (1.27 Å) and C–N (1.46 Å), probably due to conjugation with
C=O bonds. Interatomic distances N(4)–C(50) (1.4174(19) Å) and N(4)–C(43) (1.4300(19) Å)
in turn fall into the range typical to single C–N bonds. Interatomic distances corrobo-
rate those of N,N’,N”-triphenylbiuret [105]. Complex 4, like 3, is a dimer in a crystal
state (Figure 4). Interatomic distance O(2)–C(37) (1.239(6) Å) corresponds to a double
C=O bond, while the distances O(1)–C(37) (1.345(6) Å) and N(3)–C(37) (1.366(6) Å) cor-
respond to single C–O and C–N bonds. Similar four-member metallacycles MNCO were
previously reported on aluminum [75]. Admittedly, structures 3 and 4 are reminiscent
of reaction products of 1 with 1 equiv. of CO2 and 1 equiv. of PhNCO or CyNCO [(dpp-
bian)GaN(Cy)C(O)N(Cy)C(O)O]2[Na(DME)2]2 and [(dpp-bian)GaN(Ph)C(O)O]2[Na(DME)2]2,
respectively [87].
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Hydrogen atoms are omitted. Selected bond lengths (Å) and angles (°): Ga(1)-N(3) 1.9029(12), Ga(1)-
N(5) 1.9301(13), O(1)-C(43) 1.2397(18), O(2)-C(50) 1.2448(18), N(4)-C(50) 1.4174(19), N(4)-C(43) 
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Figure 3. Molecular structure of compound 3. Thermal ellipsoids are drawn at 30% probability
level. Hydrogen atoms are omitted. Selected bond lengths (Å) and angles (◦): Ga(1)-N(3) 1.9029(12),
Ga(1)-N(5) 1.9301(13), O(1)-C(43) 1.2397(18), O(2)-C(50) 1.2448(18), N(4)-C(50) 1.4174(19), N(4)-C(43)
1.4300(19), N(5)-C(50) 1.3436(19), N(3)-C(43) 1.3352(19), N(3)-Ga(1)-N(5) 95.76(5), C(43)-N(3)-Ga(1)
117.45(10), N(3)-C(43)-N(4) 116.44(13), C(50)-N(4)-C(43) 124.69(12), C(50)-N(5)-Ga(1) 114.47(10), N(5)-
C(50)-N(4) 117.95(13).

Metallacycle GaOCNC is not planar; the gallium atom is positioned out of a plane at
0.127 Å (Figure 5). Interatomic distances O(1)–C(37) (1.305(2) Å), N(3)–C(37) (1.383(3) Å),
N(3)–C(44) (1.415(3) Å) are single C–O and C–N bonds, but O(2)–C(37) (1.228(2) Å) and N(4)–
C(44) (1.265(3) Å) are shorter and correspond to double bonds. The structure of the organic
fragment in 5 is parallel to the product of the insertion of carbodiimide into a carbamate,
propane-2-yl (diphenylcarbamimidoyl)(phenyl)carbamate PhNHC(=NPh)NPhC(=O)OiPr,
that was isolated from the reaction of titanium isopropoxide with phenylisocyanate [106].

According to XRD analysis, molecular structure of 6 (Figure S1) contains almost square
fragment Ga2O2 with inner angles about 90◦ and close interatomic distances Ga–O (Ga(1)–
O(1) 1.8322(16) Å, Ga(1)–O(1a) 1.8830(17) Å). Plane Ga2O2 is orthogonal to the plane of
dpp-bian moiety (89.9◦). This feature is reminiscent of other gallium oxo-complexes [107].
The Ga–Ga interatomic distance (2.6336(5) Å) is significantly less than the doubled value
van der Waals radius (3.74 Å) [108]. However, given the significant ionic nature of gallium
atoms, the Ga–Ga interactions are likely small.
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Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (◦): Ga(1)-N(2) 1.882(5),
Ga(1)-N(1) 1.889(5), Ga(1)-N(3) 1.902(4), Ga(1)-O(1) 1.984(3), N(1)-C(1) 1.389(9), C(1)-C(2) 1.394(7),
N(2)-C(2) 1.403(9), O(1)-C(37) 1.345(6), O(2)-C(37) 1.239(6), N(3)-C(37) 1.366(6), C(37)-N(3)-Ga(1)
92.6(3), N(3)-Ga(1)-O(1) 68.96(17), C(37)-O(1)-Ga(1) 89.8(3), O(1)-C(37)-N(3) 108.6(5), O(2)-C(37)-O(1)
122.4(5), O(2)-C(37)-N(3) 129.0(5).

Reactions 2024, 5, FOR PEER REVIEW 10 
 

117.45(10), N(3)-C(43)-N(4) 116.44(13), C(50)-N(4)-C(43) 124.69(12), C(50)-N(5)-Ga(1) 114.47(10), 
N(5)-C(50)-N(4) 117.95(13). 

 
Figure 4. Molecular structure of compound 4. Thermal ellipsoids are drawn at 30% probability level. 
Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Ga(1)-N(2) 
1.882(5), Ga(1)-N(1) 1.889(5), Ga(1)-N(3) 1.902(4), Ga(1)-O(1) 1.984(3), N(1)-C(1) 1.389(9), C(1)-C(2) 
1.394(7), N(2)-C(2) 1.403(9), O(1)-C(37) 1.345(6), O(2)-C(37) 1.239(6), N(3)-C(37) 1.366(6), C(37)-N(3)-
Ga(1) 92.6(3), N(3)-Ga(1)-O(1) 68.96(17), C(37)-O(1)-Ga(1) 89.8(3), O(1)-C(37)-N(3) 108.6(5), O(2)-
C(37)-O(1) 122.4(5), O(2)-C(37)-N(3) 129.0(5). 

Metallacycle GaOCNC is not planar; the gallium atom is positioned out of a plane at 
0.127 Å (Figure 5). Interatomic distances O(1)–C(37) (1.305(2) Å), N(3)–C(37) (1.383(3) Å), 
N(3)–C(44) (1.415(3) Å) are single C–O and C–N bonds, but O(2)–C(37) (1.228(2) Å) and 
N(4)–C(44) (1.265(3) Å) are shorter and correspond to double bonds. The structure of the 
organic fragment in 5 is parallel to the product of the insertion of carbodiimide into a 
carbamate, propane-2-yl (diphenylcarbamimidoyl)(phenyl)carbamate 
PhNHC(=NPh)NPhC(=O)OiPr, that was isolated from the reaction of titanium 
isopropoxide with phenylisocyanate [106].  

 
Figure 5. Molecular structure of compound 5. Thermal ellipsoids are drawn at 30% probability level. 
Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): N(1)-C(1) 1.394(2), 
N(2)-C(2) 1.391(2), C(1)-C(2) 1.368(3), N(3)-C(37) 1.383(3), O(1)-C(37) 1.305(2), O(2)-C(37) 1.228(2), 

Figure 5. Molecular structure of compound 5. Thermal ellipsoids are drawn at 30% probability level.
Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (◦): N(1)-C(1) 1.394(2),
N(2)-C(2) 1.391(2), C(1)-C(2) 1.368(3), N(3)-C(37) 1.383(3), O(1)-C(37) 1.305(2), O(2)-C(37) 1.228(2),
N(3)-C(44) 1.415(3), N(4)-C(44) 1.265(3), Ga(1)-N(1) 1.8874(15), Ga(1)-N(2) 1.8908(15), Ga(1)-O(1)
1.9520(13), Ga(1)-C(44) 1.979(2), N(1)-Ga(1)-N(2) 90.29(7), N(1)-Ga(1)-O(1) 105.07(6), N(2)-Ga(1)-
O(1) 109.23(6), N(1)-Ga(1)-C(44) 129.61(7), N(2)-Ga(1)-C(44) 134.14(8), O(1)-Ga(1)-C(44) 84.00(7),
O(2)-C(37)-O(1) 121.95(19), O(2)-C(37)-N(3) 121.76(17), O(1)-C(37)-N(3) 116.29(17), N(4)-C(44)-N(3)
118.76(18), N(4)-C(44)-Ga(1) 133.90(16), N(3)-C(44)-Ga(1) 107.34(13).

Crystals of 8 suitable for XRD analysis were obtained by recrystallization from C6D6
(Figure 6). Bonds lengths in carbamate fragment O(2)–C(73) (1.2744(19) Å), O(3)–C(73)
(1.2759(19) Å) are approximately equal and in good agreement with phenanthroline–
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carboxylate gallium complex (C(30)–O(5) (1.269(12) Å) and C(30)–O(6) (1.272(11) Å)) [109].
The gallium oxide bridge geometry is similar that of 6. The sum of the angles at the C(73) is
approximately 360◦, which indicates its sp2-hybridization.
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The molecular structure of products 9 and 10 is shown in Figure 7. They consist of 
galladioxolene metallacycles. Bonds within the metallacycles (O(1)-C(37) 1.4184(15), O(2)-
C(50) 1.4377(15), C(37)-C(50) 1.6408(18), Ga(1)-O(1) 1.8310(9), Ga(1)-O(2) 1.8654(9) Å in 9 
and O(43)–C(44) 1.313(6), O(45)–C(44) 1.370(6), O(45)–C(46) 1.408(6), Ga(1)–O(43) 1.921(4), 
Ga(1)–C(46) 1.978(5) Å in 10) are in perfect agreement with expected values (C–C 1.52, C–
O 1.42, C(sp2)–O 1.39, Ga–O 1.88, Ga–C(sp2) 1.95 Å) derived from corresponding covalent 
radii [110]. Compared to 9, the metallacycle in 10 is almost flat; the deviation of atoms 
from this plane is less than 0.033 Å. The sum of the angles at the carbon atoms C(44) and 
C(46) in 10 is approximately 360°, indicating their sp2-hybridization. Bond lengths C(44)–
C(66) (1.372(8) Å) and C(46)–C(47) (1.333(8) Å) correspond to double C=C bonds (1.34 Å). 
Pinacolate fragments can be compared with similar complexes, for example, aluminum 
pinacolate [LAl(OCPh2)2] (L = HC[(CMe)(NAr)]2, Ar = 2,6-i-Pr2C6H3) [98]. Comparison of 
metallacycle in 10 is limited to germanium cycloadduct [LGeC(Ph)OC(Ph)O] (O(1)–C(21) 
1.416(2) Å, O(2)–C(21) 1.433(2) Å, O(2)–C(28) 1.435(2) Å) [111], and the titanium complex 
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Hydrogen atoms (except H(5)) are omitted. Selected bond lengths (Å) and angles (◦): Ga(1)–N(1)
1.9047(12), Ga(1)–N(2) 1.9046(12), O(2)–C(73) 1.2743(19), O(3)–C(73) 1.2759(18), N(1)-C(1) 1.3929(19),
N(2)–C(2) 1.3920(19), N(5)–C(73) 1.342(2), O(1)–Ga(1)–N(1) 124.00(5), O(1)–Ga(1)–O(2) 106.72(5),
Ga(1)–O(1)–Ga(2) 123.34(7), O(2)–C(73)–O(3) 125.90(14), O(2)–C(73)–N(5) 118.38(14), O(3)–C(73)–N(5)
115.73(14).

The molecular structure of products 9 and 10 is shown in Figure 7. They consist
of galladioxolene metallacycles. Bonds within the metallacycles (O(1)-C(37) 1.4184(15),
O(2)-C(50) 1.4377(15), C(37)-C(50) 1.6408(18), Ga(1)-O(1) 1.8310(9), Ga(1)-O(2) 1.8654(9) Å in
9 and O(43)–C(44) 1.313(6), O(45)–C(44) 1.370(6), O(45)–C(46) 1.408(6), Ga(1)–O(43) 1.921(4),
Ga(1)–C(46) 1.978(5) Å in 10) are in perfect agreement with expected values (C–C 1.52, C–O
1.42, C(sp2)–O 1.39, Ga–O 1.88, Ga–C(sp2) 1.95 Å) derived from corresponding covalent
radii [110]. Compared to 9, the metallacycle in 10 is almost flat; the deviation of atoms
from this plane is less than 0.033 Å. The sum of the angles at the carbon atoms C(44) and
C(46) in 10 is approximately 360◦, indicating their sp2-hybridization. Bond lengths C(44)–
C(66) (1.372(8) Å) and C(46)–C(47) (1.333(8) Å) correspond to double C=C bonds (1.34 Å).
Pinacolate fragments can be compared with similar complexes, for example, aluminum
pinacolate [LAl(OCPh2)2] (L = HC[(CMe)(NAr)]2, Ar = 2,6-i-Pr2C6H3) [98]. Comparison of
metallacycle in 10 is limited to germanium cycloadduct [LGeC(Ph)OC(Ph)O] (O(1)–C(21)
1.416(2) Å, O(2)–C(21) 1.433(2) Å, O(2)–C(28) 1.435(2) Å) [111], and the titanium complex
[(Cp)2TiC(=CPh2)OC(=CPh2)O)] (O(1)–C(11) 1.36(2) Å, O(2)–C(11) 1.33(2) Å, O(2)–C(13)
1.42(2) Å) [100].

The compounds 11 and 12 were characterized by XRD (Figure 8). During the reaction,
the double C=N bond is reduced to a single one, as can be clearly seen from a comparison
of C(38)–N(5) (1.4578(16) Å) and N(6)-C(58) (1.2903(18) Å) interatomic distances in 11.
Bonds N(5)–N(6) (1.3584(15) Å) and N(3)–N(4) (1.3547(16) Å) are also elongated by 0.6 Å in
comparison to free benzaldazine (1.418 Å) [112] due to loss of conjugation. These changes
are consistent with the geometry of the reduced benzaldazine fragment in [Cp2Ti(η2-
Me3SiC2SiMe3)] [102]. The same considerations are true for the benzaldazine fragment
of 12. On top of that, the pyridine molecule in 12 loses its aromaticity, which is clear
from a comparison of the interatomic distances of a pyridine fragment, where N(5)–C(41)
(1.428(8) Å), N(5)–C(37) (1.363(8) Å) are single C–N bonds, C(38)–C(39) (1.443(10) Å) are
C–C bonds, and C(37)–C(38) (1.347(7) Å), C(40)–C(39) (1.383(10) Å) are double C=C bonds.
Compound 12 is chiral due to the two asymmetric centers, C(41) and C(42), with an S-
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configuration. Compound 12 crystallizes in the centrosymmetric group P21/C, so the
enantiomer is also present in the crystal.
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Figure 7. Molecular structures of compound 9 and anion of 10. Thermal ellipsoids are drawn at
30% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles
(◦) in 9: N(1)-C(1) 1.3988(16), C(1)-C(2) 1.3799(18), N(2)-C(2) 1.3901(16), Ga(1)-O(1) 1.8310(9), Ga(1)-
O(2) 1.8654(9), O(1)-C(37) 1.4184(15), O(2)-C(50) 1.4377(15), C(37)-C(50) 1.6408(18), O(1)-Ga(1)-O(2)
89.30(4), O(1)-C(37)-C(50) 107.94(10), C(37)-O(1)-Ga(1) 114.14(8), C(50)-O(2)-Ga(1) 112.25(7), O(2)-
C(50)-C(37) 105.97(10), C(57)-C(50)-C(51) 113.06(11), C(38)-C(37)-C(44) 107.86(10). Selected bond
lengths (Å) and angles (◦) in 10: N(2)–C(15) 1.392(7), C(16)–C(15) 1.385(7), N(17)–C(16) 1.375(7),
Ga(1)–O(43) 1.921(4), Ga(1)–C(46) 1.978(5), O(43)–C(44) 1.313(6), O(45)–C(44) 1.370(6), O(45)–C(46)
1.408(6), C(44)–C(66) 1.372(8), C(46)–C(47) 1.333(8), O(43)–Ga(1)–C(46) 84.67(19), O(43)–C(44)–O(45)
117.1(5), O(43)–C(44)–C(66) 123.4(5), O(45)–C(44)–C(66) 119.5(5).
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N(6)-C(58) 1.2903(18), C(37)-C(38) 1.5629(19), N(3)-C(37) 1.4637(17), N(3)-N(4) 1.3547(16), N(4)-
C(51) 1.2721(19), N(4)-N(3)-C(37) 111.43(10), C(51)-N(4)-N(3) 119.86(12), N(6)-N(5)-C(38) 120.00(11), 
C(58)-N(6)-N(5) 120.79(11), N(3)-C(37)-C(38) 108.19(10), N(5)-C(38)-C(37) 106.35(10), N(4)-C(51)-
C(52) 120.14(13), N(6)-C(58)-C(59) 121.14(13). Selected bond lengths (Å) and angles (°) in 12: Ga(1)–
N(5) 1.897(4), Ga(1)–N(4) 1.890(6), Ga(1)–N(1) 1.926(4), Ga(1)–N(2) 1.886(4), N(5)–C(41) 1.428(8), 
C(42)–C(41) 1.550(9), N(4)–C(42) 1.476(6), N(3)–C(49) 1.290(7), N(4)–N(3) 1.375(7), N(1)–C(1) 
1.375(7), C(1)–C(2) 1.369(7), N(2)–C(2) 1.409(7), N(4)–Ga(1)–N(5) 87.9(2), N(2)–Ga(1)–N(1) 89.79(18), 
N(4)–C(42)–C(41) 106.5(5), N(5)–C(41)–C(42) 113.3(5), N(5)–C(41)–C(40) 116.7(6), C(41)–N(5)–Ga(1) 
111.2(4), C(42)–N(4)–Ga(1) 113.9(4), C(49)–N(3)–N(4) 116.3(5). 

4. Conclusions 
In conclusion, transformations of isocyanates, nitrous oxide, carbonyl sulfide, 

benzophenone, diphenylketene, benzaldazine, and pyridine at the GaI center combined 
with redox-active ligand dpp-bian were reported. They primarily resulted in 
cycloaddition products that reflected the gallium center’s transition metal-like properties. 
The reactions were always aggravated by strong reductive behavior of low-valent centers, 
and a complete oxygen atom or other group transfer was sometimes observed. 
Simultaneously, the gallium center exhibited an exciting balance between the strong oxo- 
and carbophilicity, giving rise to products like imidoformamide 2. This manuscript, 
together with papers concerning transformations of RN=C=NR [86] and O=C=O [87] 
substrates, illustrates that the Ga(I)-center supported with bisamide ligand can promote 
coupling of several C=O− and C=N− substrates to give plentiful organic products. One of 
the most notable features was coupling benzaldazine molecules with a robust substrate 
such as pyridine. That may open up more sustainable and selective alternatives for 
syntheses of imidoformamide, biuret, carbamic acid compounds, as well as opportunities 
to use gallylene reagents in McMurry- and Wittig-type reactions, selective C–C reductive 
couplings, and cyclizations. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Details of synthesis, characterization, X-ray crystal structure determination 
details, and crystal data are given in the electronic supporting information. Figure S1: Molecular 
structure of compound 6; Figure S2: Molecular structure of compound 7; Figures S2–S46: NMR 
spectra of compounds 2, 5, 6, 8–12. Table S1. Crystallographic data and refinement details for 
compounds 2–12. References [113–123] are cited in the Supplementary Materials. 
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Figure 8. Molecular structures of anions 11 and 12. Thermal ellipsoids are drawn at 30% probability
level. Hydrogen atoms except for H(58), H(38), H(37), H(51) in 11 and H(37), H(38), H(39), H(40),
H(41), H(42), H(49) in 12 are omitted. Selected bond lengths (Å) and angles (◦) in 11: N(1)-C(1)
1.3871(16), C(1)-C(2) 1.3805(18), N(2)-C(2) 1.3884(16), N(5)-N(6) 1.3584(15), N(5)-C(38) 1.4578(16),
N(6)-C(58) 1.2903(18), C(37)-C(38) 1.5629(19), N(3)-C(37) 1.4637(17), N(3)-N(4) 1.3547(16), N(4)-
C(51) 1.2721(19), N(4)-N(3)-C(37) 111.43(10), C(51)-N(4)-N(3) 119.86(12), N(6)-N(5)-C(38) 120.00(11),
C(58)-N(6)-N(5) 120.79(11), N(3)-C(37)-C(38) 108.19(10), N(5)-C(38)-C(37) 106.35(10), N(4)-C(51)-C(52)
120.14(13), N(6)-C(58)-C(59) 121.14(13). Selected bond lengths (Å) and angles (◦) in 12: Ga(1)–N(5)
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1.897(4), Ga(1)–N(4) 1.890(6), Ga(1)–N(1) 1.926(4), Ga(1)–N(2) 1.886(4), N(5)–C(41) 1.428(8), C(42)–
C(41) 1.550(9), N(4)–C(42) 1.476(6), N(3)–C(49) 1.290(7), N(4)–N(3) 1.375(7), N(1)–C(1) 1.375(7), C(1)–
C(2) 1.369(7), N(2)–C(2) 1.409(7), N(4)–Ga(1)–N(5) 87.9(2), N(2)–Ga(1)–N(1) 89.79(18), N(4)–C(42)–
C(41) 106.5(5), N(5)–C(41)–C(42) 113.3(5), N(5)–C(41)–C(40) 116.7(6), C(41)–N(5)–Ga(1) 111.2(4),
C(42)–N(4)–Ga(1) 113.9(4), C(49)–N(3)–N(4) 116.3(5).

4. Conclusions

In conclusion, transformations of isocyanates, nitrous oxide, carbonyl sulfide, ben-
zophenone, diphenylketene, benzaldazine, and pyridine at the GaI center combined with
redox-active ligand dpp-bian were reported. They primarily resulted in cycloaddition
products that reflected the gallium center’s transition metal-like properties. The reactions
were always aggravated by strong reductive behavior of low-valent centers, and a com-
plete oxygen atom or other group transfer was sometimes observed. Simultaneously, the
gallium center exhibited an exciting balance between the strong oxo- and carbophilicity,
giving rise to products like imidoformamide 2. This manuscript, together with papers
concerning transformations of RN=C=NR [86] and O=C=O [87] substrates, illustrates that
the Ga(I)-center supported with bisamide ligand can promote coupling of several C=O−
and C=N− substrates to give plentiful organic products. One of the most notable features
was coupling benzaldazine molecules with a robust substrate such as pyridine. That may
open up more sustainable and selective alternatives for syntheses of imidoformamide,
biuret, carbamic acid compounds, as well as opportunities to use gallylene reagents in
McMurry- and Wittig-type reactions, selective C–C reductive couplings, and cyclizations.
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mation. Figure S1: Molecular structure of compound 6; Figure S2: Molecular structure of compound 7;
Figures S2–S46: NMR spectra of compounds 2, 5, 6, 8–12. Table S1. Crystallographic data and refine-
ment details for compounds 2–12. References [88,113–123] are cited in the Supplementary Materials.
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