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Abstract: Mato Grosso state is the biggest maize producer in Brazil, with the predominance of
cultivation concentrated in the second harvest. Due to the need to obtain more accurate and efficient
data, agricultural intelligence is adapting and embracing new technologies such as the use of satellites
for remote sensing and geographic information systems. In this respect, this study aimed to map
the second harvest maize cultivation areas at Canarana-MT in the crop year 2019/2020 by using
geographic object-based image analysis (GEOBIA) with different spatial, spectral, and temporal
resolutions. MSI/Sentinel-2, OLI/Landsat-8, MODIS-Terra and MODIS-Aqua, and PlanetScope
imagery were used in this assessment. The maize crops mapping was based on cartographic basis
from IBGE (Brazilian Institute of Geography and Statistics) and the Google Earth Engine (GEE),
and the following steps of image filtering (gray-level co-occurrence matrix—GLCM), vegetation
indices calculation, segmentation by simple non-iterative clustering (SNIC), principal component (PC)
analysis, and classification by random forest (RF) algorithm, followed finally by confusion matrix
analysis, kappa, overall accuracy (OA), and validation statistics. From these methods, satisfactory
results were found; with OA from 86.41% to 88.65% and kappa from 81.26% and 84.61% among the
imagery systems considered, the GEOBIA technique combined with the SNIC and GLCM spectral
and texture feature discriminations and the RF classifier presented a mapping of the corn crop of the
study area that demonstrates an improved and aided the performance of automated multispectral
image classification processes.

Keywords: textures GLCM; Landsat-8; MODIS; PlanetScope; random forest; Sentinel 2; SNIC
segmentation

1. Introduction

Mato Grosso state is the biggest maize producer in Brazil, according to Companhia
Nacional de Abastecimento (Conab) in its 12◦ Brazilian grains crop survey (2021/22),
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presenting an area of near 6.55 million hectares (ha) and 41.62 million tons (t) of grains [1].
It is also worth noting that despite the large domestic consumption, most of the production
is destined for exports, which have broken records in recent years [2]. At the state level,
the predominance of cultivation occurs on the second harvest, which corresponds to
approximately 99% of the maize crop total area [3]. In view of the large production, the
crop area’s estimate plays an important role on national demand supply as well as ensuring
that transportation and storage capacity are not compromised [4].

Brazilian official crops estimates are based on subjective surveys by Conab and Insti-
tuto Brasileiro Geografia e Estatística (IBGE). Most of the agricultural crops data are based
on surveys conducted by technical agents, which rely on cultivated areas, production, and
economic data from agricultural producers, agricultural inputs sellers, and other related
interviews, which are poorly reliable data for such a survey [5].

Field data surveys occur at low frequency and are being gradually reduced by the
scarcity of financial and human resources. Moreover, the large territorial extension of the
state of Mato Grosso makes the surveys costly and time-consuming. In this way, the use
of remote sensing techniques and geographic information systems (GIS) can be applied
to avoid the inconveniences related to the search for agricultural production data [6]. In
comparison to other productive sectors, agricultural activities face uncertainties and thus
demand frequent and large-scale monitoring [7,8].

Remote sensing and geoprocessing are the most use techniques for land use data
generation over time, as they allow the evaluation of changes in the landscape [9]. Remote
sensing imagery provides important historical series for crop dynamics identification,
and spatial resolution allows precision agriculture-level interventions [10] Geographic
object-based image analysis (GEOBIA) has emerged as a powerful methodology for image
analysis and classification, proving effective in accurately identifying and classifying land
cover types, mapping and monitoring deforestation, monitoring vegetation health and
growth, predicting crop yields, and classifying remote sensing imagery [11]. By utilizing
spectral, spatial, textural and topological features, GEOBIA enables comprehensive image
analysis, providing valuable information about the characteristics of and changes in natural
and agricultural landscapes [12].

These methodologies offer strong integration with GIS and use advanced machine
learning techniques for image classification. By combining the power of random forest
(RF) with the insights derived from GEOBIA, which uses a set of decision trees where
each tree is trained on a subset of data and features, providing robust and accurate predic-
tions, researchers and practitioners have achieved significant advances in the analysis of
remotely sensed imagery, enabling comprehensive understanding and informed decision
making [13,14]. The emergence of several cloud computing platforms, which store images
captured by a range of satellite sensors as well as geospatial analysis and geoprocessing
tools, has expanded access to free images to supports a wide range of remote sensing re-
search. The Google Earth Engine stands out in this scenario [15]. The platform has imagery
data from the Sentinel, Landsat, and Terra/Aqua satellites and provides conditions for the
development of geospatial algorithms involving large data sets [16].

In view of the economic importance of maize for Canarana and the Mato Grosso state,
information regarding the extension of cultivated areas, which is widely disclosed by the
official estimates of area and agricultural production made by IBGE and Conab, supports
political and economic planning. However, there are currently differences between these
agencies’ publications that were evidenced in the 2019/20 harvest. In that crop year,
Conab estimated an area of 5414.4 ha [3], while IBGE estimated 5337.3 thousand ha for
second-harvest maize cultivation in Mato Grosso [17].

This area difference is one of the factors that contributes to the difference in maize
production of about 930,000 tons in the state, which is a significant amount for agribusiness,
and this has raised uncertainty in the sector about the numbers released by official agencies.
Therefore, this study presents a geoprocessing- and remote-sensing-based approach to
mapping maize crops at Canarana in the state of Mato Grosso.
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2. Materials and Methods

The mapping of agricultural land with remote sensing tools endorsed by geoprocessing
and based on well-stablished, cost-effective, time-efficient, and accurate machine learning
was carried out as determined by the definition of approaches of each of the following
steps. Here, the maize crops mapping at Canarana in the state of Mato Grosso considered
the steps in the following workflow (Figure 1).

AgriEngineering 2024, 6 493 
 

 

This area difference is one of the factors that contributes to the difference in maize 
production of about 930,000 tons in the state, which is a significant amount for 
agribusiness, and this has raised uncertainty in the sector about the numbers released by 
official agencies. Therefore, this study presents a geoprocessing- and remote-sensing-
based approach to mapping maize crops at Canarana in the state of Mato Grosso. 

2. Materials and Methods 
The mapping of agricultural land with remote sensing tools endorsed by 

geoprocessing and based on well-stablished, cost-effective, time-efficient, and accurate 
machine learning was carried out as determined by the definition of approaches of each 
of the following steps. Here, the maize crops mapping at Canarana in the state of Mato 
Grosso considered the steps in the following workflow (Figure 1). 

 
Figure 1. Flowchart of the object-oriented classification methodology. 

2.1. Study Area 
The study area comprises the municipality of Canarana, in northeastern Mato 

Grosso, over the geographic coordinates 12°36′17″ to 13°47′12″ S and 51°22′32″ to 53°06′12″ 
W (Figure 2). Canarana has an area of 10,855.181 km2 and estimated population of 21.842 
inhabitants. The average altitude of the locality is 390 m, and it is characterized by a humid 
tropical climate (Köppen–Geiger climate classification: Aw), with mean temperature of 25 
°C. It exhibits two well-defined seasons, namely dry (from May to September) and rainy 
(from October to April) [18,19], with an average annual rainfall for the 2019/2020 crop year 
ranging around 1650.54 mm to 1866.10 mm [20]. The predominant soil class is dystrophic 
red-yellow latosol [21]. 

Figure 1. Flowchart of the object-oriented classification methodology.

2.1. Study Area

The study area comprises the municipality of Canarana, in northeastern Mato Grosso,
over the geographic coordinates 12◦36′17′′ to 13◦47′12′′ S and 51◦22′32′′ to 53◦06′12′′

W (Figure 2). Canarana has an area of 10,855.181 km2 and estimated population of
21.842 inhabitants. The average altitude of the locality is 390 m, and it is characterized
by a humid tropical climate (Köppen–Geiger climate classification: Aw), with mean temper-
ature of 25 ◦C. It exhibits two well-defined seasons, namely dry (from May to September)
and rainy (from October to April) [18,19], with an average annual rainfall for the 2019/2020
crop year ranging around 1650.54 mm to 1866.10 mm [20]. The predominant soil class is
dystrophic red-yellow latosol [21].
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Figure 2. Location of study area in Canarana municipality, Mato Grosso state, presented by using the
normalized difference vegetation index (NDVI).

Canarana was involved in the Superintendence for the Development of Amazon
(SUDAM), originated in 1972 from a colonizing cooperative company (Cooperativa Colo-
nizadora 31 de Março Ltd.a—COOPERCOL) appliance. The purpose of the project was to
attract to the regional rural entrepreneurs (large, medium, and small) as well as the multi-
national and family producers. Currently, the main economic activities of the municipality
are cattle ranching, agriculture (rice, maize, sesame, and soy), and agroindustry. In view of
agricultural aptness and phytogeography, the Amazon–Cerrado biomes transition can be
seen in the Canarana area, where 34.51% is attributable to the Amazon biome and 65.49%
to Cerrado [18,19,22,23].

2.2. Pre-Processing

At first, the IBGE cartographic basis for Canarana was followed, based upon the
methodological approach, and then Google Earth Engine (GEE) uploading was carried out.
Due to processing limitations in the GEE platform resources, the acquisition, segmentation,
and machine learning steps for processing geospatial data were performed in the Google
Collaboratory platform (Colab) and can be accessed at https://colab.research.google.com/
(accessed on 12 November 2022). The Google Colab platform is based on the Phyton lan-
guage in the Jupyter Notebook, allowing free access at runtime to scripts. The PlanetScope
NICFI imagery was added to GEE in addition to other multispectral imagery present in
Google Earth Engine, namely MODIS Terra/Aqua, OLI/Landsat-8 (Operational Land
Imager), and MSI/Sentinel-2 (MultiSpectral Instrument). Multiple imagery-based stages in
this methodological approach were utilized for maize crops detection.

Regarding the maize phenological cycle, images from 1 April 2022 to 31 May 2022
were considered since this period represents the stage of greatest vegetative vigor typical
of the second-crop maize culture, and these images utilized cloud filtering of up to 35%. In
order to obtain a single image to represent the collected period, the median was used.

To reduce the effects of terrain irregularity, before calculating the subsequent spectral
indices and image classification, it was necessary to perform topographic correction on
GEE [24,25]. This correction was based on a semi-empirical method that takes into account
the topography of the area and the solar angle (zenith and azimuth), called the correction
method Solar Canopy Sensor+C (SCSc) [25–27]. The SCS+C model is based on the canopy,
allowing changes in the direction of illumination to be considered during the processing of
light correction from inclined to horizontal surfaces.

The digital elevation model (DEM) information was taken from the Shuttle Radar
Topography Mission (SRTM); the SRTM V3 (SRTM Plus) product was provided by NASA
JPL, with a resolution of 1 arc second (approximately 30 m) [28,29]. The SRTM metadata

https://colab.research.google.com/
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were used to obtain information such as the satellite angle at solar zenith for topographic
correction effectiveness.

Mapping maize crops was dependent on the vegetation indices (VI). Therefore, the
NDVI (Equation (1)) was considered since this VI creates an image displaying the green
tone (relative biomass), illustrating the contrast of the chlorophyll pigment absorption
characteristics in the red band and the high reflectivity of plant materials in the near-
infrared band (NIR) [30].

The enhanced vegetation index (EVI) (Equation (2)) was also considered. Despite
being similar to Normalized Difference Vegetation Index (NDVI), the EVI is improved
in regards to the soil and atmospheric effects for vegetation mapping, and it also does
not saturate dense green vegetation areas [30]. Further, the perpendicular vegetation
index (PVI) (Equation (3)) allows to nullify the background reflectance of soil a at the crop
emergence stage; an important part of this reflectance registered by the sensor refers to
exposed soil. Finally, the perpendicular crop enhancement index (PCEI) (Equation (4)) was
used to determine the minimum and maximum crop development period [30].

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

EVI = g × ρNIR − ρRED
ρNIR + (c1 × ρRED)− (c2 × ρBLUE) + 1

(2)

PVI =
ρNIR − (a × ρRED)− b√

1 + a2
(3)

PCEI = g × (MaxPVI + S)− (MinPVI + S)
(MaxPVI + S) + (MinPVI + S)

(4)

where:
ρNIR—Reflectance in the near-infrared spectral range;
ρRED—Reflectance in the red spectral range;
ρBLUE—Reflectance in the blue spectral range;
g—Gain factor (102);
c1—Atmospheric effects correction coefficient for red (6.0);
c2—Atmospheric effects correction coefficient for blue (7.5);
a—Soil line slope (1.17);
b—Soil line intercept (3.37);
MaxPVI—Maximum PVI value observed during the period of maximum maize

crop development;
MinPVI—Minimum PVI value observed in the pre-planting and/or emergence period;
S—Enhancement coefficient. (the value of 102 is assigned for the enhancement of

the amount of energy deposited in the active layer of the cell due to the reduction of the
reflection intensity.)

2.3. Segmentation and Classification

The segmentation and classification process were initially based on textural feature
extraction via gray level co-occurrence (GLCM). The GLCM statistical approach relies on
the texture features from the distribution of observed intensity combinations at specified
positions relative to each other in the same image (Equations (5)–(9)) [31,32]. This algorithm
requires an eight-bit gray-level image generated by linearly combining near-infrared, red,
and green bands, which leads to eighteen different textural indices [25,33]. From this, three
texture models were selected: inverse difference moment (IDM), sum of entropy (SENT),
and dissimilarity (DISS) [34].
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mean =
1

♯PObj
∑

(x,y)∈PObj

Ck(x, y) (5)

Standard deviation =

√√√√√ 1
♯PObj

∑
(x,y)∈PObj

∗

ck(x, y)− 1
♯PObj

∑
(x,y)∈PObj

ck(x, y)

 (6)

GLCM homogeneity =
N−1

∑
i,j=0

Pi,j

1 + (i − j)2 (7)

GLCM dissimilarity =
N−1

∑
i,j=0

Pij
∣∣i − j

∣∣ (8)

GLCM entropy =
N−1

∑
i,j=0

Pij
(
−lnPij

)
(9)

where:
PObj—{(x, y):(x, y) ∈ PObj} Set of pixels of an image object;
♯PObj—Total number of pixels contained in the PObj;
ck(x, y)—Pixel value of the image layer (x, y), where (x, y) are pixel coordinates;
i—Row number of the co-occurrence matrix;
j—Column number of the co-occurrence matrix;
Pi,j—The normalized value in the cell i, j: Pi,j =

(
Vi,j/∑N−1

i,j=0 Vi,j

)
;

Vi,j—The value in cell i, j of the co-occurrence matrix;
N—The number of rows or columns of the co-occurrence matrix.
After the procedure, the principal component (PC) analysis was carried out in view

of data dimensionality reduction to maximize the amount of original information in the
smallest number of principal components. Here, the data rely on 16 vectors among bands,
vegetation indices, and texture features [25,35].

This process significantly reduces the computational burden for feature extraction
by transforming a set of correlated variables (original bands) into distinct uncorrelated
variables (principal components) that contain a maximum of primary information, signifi-
cantly speeding up the maximum likelihood classification process [36]. Moreover, these
calculations have been widely applied in remote sensing to classify land use and land cover
and their changes [35,37].

Next, the images went through the segmentation step, qualified by the application
of the simple non-iterative clustering (SNIC) algorithm [38]. In this algorithm, similar
pixels are grouped into image objects, possessing spectral and textural information that
will be employed in the classification step. SNIC is an improved version of the simple
linear iterative clustering (SLIC) segmentation algorithm that benefits from a non-iterative
procedure and imposes the connectivity rule from the initial stage [34].

At first, SNIC initializes the centroids of pixels in the regular image grid, and the pixel
distance in dimensional color space and spatial coordinates are used to determine the depen-
dence of each pixel on the centroid. Finally, the integrated spatial and color distances result
in efficient, compact, and nearly uniform polygons, providing the identification of objects
(clusters) according to the input parameters and generating a multi-band raster including
clusters and additional layers containing average values of the input features [25,33,39,40].
The main parameters of the SNIC algorithm are image, size, compression, connectivity,
neighborhood size, and seeds [39,40].

The classification based on the random forest (RF) classifier was applied due to its
great accuracy classification compared to other classifiers and also considering the dataset
traits and the applied methods [25,33,39–42] in addition to providing a reduced probability
of explanatory variables to the training data and fitting them perfectly, regardless of the
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large number of decision trees, where each element uses a random subset of the training
data and a limited number of randomly selected predictor variables [43].

2.4. Segmentation and Classification

We collected 2200 random field points of maize crops and other different land-use
and land-cover types. For this, 74 points of water, 8 of cotton, 10 of agricultural expansion
area, 9 of recovering area, 6 of urban area, 239 of Cerrado, 7 of crotalaria, 4 of beans, 347 of
forest, 247 of sesame, 84 of millet, 725 of second-crop corn, 159 of pasture, 149 of degraded
pasture, 14 of fallow soil, 4 of exposed soil, and 104 of sorghum for the RF training and
validation were determined (Figure 3). The Locus Map application was used to collect
these points with an average precision of 5 m. For each class of samples, we used 70%
of the points in the training phase and 30% in the validation phase; these were selected
randomly [25,33,40].
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Figure 3. Land-use and land-cover sample’s location at Canarana-MT.

After processing and classifying the images and obtaining the thematic maps of
the corn areas, we proceeded to the analysis of the numerical confusion matrix, which
is responsible for determining the method’s accuracy by comparing the percentage of
objects classified by class with the real class verified in the field, indicating a posteriori the
correct evaluation and errors among the strata studied. The confusion matrix provides
the classification’s overall accuracy (OA) (Equation (10)); the producer accuracy (PA)
(Equation (11)) or omission error that, in turn, indicates the probability that the result
classified in the image actually represents that category in reality; and the user accuracy
(UA) (Equation (12)) or commission error, which indicates the percentage of correctness of
a polygon or a true pixel (reference) to have been correctly classified [25,33,39,40,44,45]. In
addition to these analyses, kappa coefficient metrics (Equation (13)) were applied to assess
the reliability and accuracy of the classified data [46].
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OA (%) =
∑n

i=1 Pii
N

× 100, (10)

PA(%) =
Pii
P+i

× 100 (11)

UA(%) =
Pii
Pi+

× 100, (12)

kappa(%) =
N × ∑n

i=1 Pii − ∑n
i=1(Pi+ × P+i)

N2 − ∑n
i=1(Pi+ × P+i)

× 100 (13)

where:
n—Total number of columns in the confusion matrix, i.e., the total number of categories;
Pii—Number of correct classifications of the top crop type sample in row i and column

i of the confusion matrix;
Pi+—Total number of samples of the crop type in row i;
P+i—Total number of samples of the culture type in column i;
N—Total amount of samples used for verification.

3. Results and Discussion

Through the digital elevation model, two land-use classes were derived with a 12%
slope threshold based on the mechanization factor as one of the attributes to be observed in
the agricultural aptitude and considering that some machines, mainly harvesters, that are
available on the market are adapted for slopes of up to 12% [47–49]. The area amount of
10,465.36 km2 with up to 12% slope was obtained, corresponding to 96.55% of the total area
of the municipality.

For improving supervised classification results, PC analysis was carried out, and as
input, the reflectance data of 16 bands based on red (R), green (G), blue (B), and near-
infrared (NIR) bands of the four sensors as well as the terrain slope and the vegetation
indices were utilized. Here, the first three components (PC1, PC2, and PC3) were defined,
which can express the dataset variance (Table 1).

Table 1. Principal component variation in each sensor.

PC OLI/Landsat-8 MODIS PlanetScope MSI/Sentinel-2

PC01 97.02% 94.52% 98.22% 95.28%
PC02 2.65% 4.31% 1.52% 4.51%
PC03 0.29% 1.08% 0.18% 0.15%
PC04 0.03% 0.04% 0.04% 0.03%
PC05 0.01% 0.03% 0.03% 0.02%
PC06 0.00% 0.02% 0.01% 0.01%
PC07 0.00% 0.00% 0.00% 0.00%
PC08 0.00% 0.00% 0.00% 0.00%
PC09 0.00% 0.00% 0.00% 0.00%
PC10 0.00% 0.00% 0.00% 0.00%
PC11 0.00% 0.00% 0.00% 0.00%
PC12 0.00% −0.00% 0.00% 0.00%
PC13 0.00% −0.00% 0.00% 0.00%
PC14 −0.00% −0.00% 0.00% −0.00%
PC15 −0.00% −0.00% 0.00% −0.00%
PC16 −0.00% −0.00% −0.00% −0.00%
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Our results corroborate other findings [33,35,50] that obtained more than 90% of the
information of the original bands in the first three principal components, which can be
expressed in false-color composition as shown in Figure 4.
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Hereinafter, the segmentation based on first three principal components was carried
out. The combination of texture features with vegetation indices, the original bands, and
the PC analysis improved the segmentation results [33].

In the segmentation, one of the factors that may have influenced the results was the
decrease of the spatial resolution of the MSI/Sentinel-2 and Planet NICFI sensor images
to 30 m, making it possible to evaluate the spectral, textural, contextual characteristics,
and hierarchical features of all multispectral images. Also, the limitation of the processing
capacity of the GEE platform in the free account was a constraint since the platform is of
global use, and therefore free access should be limited [33,51–53].

In a previous step of the final classification of the algorithm, the accuracy test with
different numbers of decision trees in random forest showed different results for the four
sensors used, which were analyzed a range from 10 (ten) to 200 (two hundred) trees as the
ideal combination in terms of accuracy and computational costs [33].

In view of highest accuracy of random forest classification, the optimal quantities of
decision trees for imagery sensor were 120, 110, 150, and 180 for OLI/Landsat-8, MODIS,
Planet NICFI, and MSI/Sentinel-2, respectively (Figure 5). This process concomitantly
evaluated the importance of each image band for land-use and land-cover classification.
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From the classified data (Figures 6 and 7), the confusion matrices were generated with
OA from 86.41% to 88.65% (Figures 8–11; Table 2). The Landsat imagery had the highest
accuracy, with OA ranging from 88.65% to 84.61% and PAs between 65.16% and 91.53%.
Yet, the lower accuracy relied on the “other land uses” class, and the higher corresponded
to the second-harvest maize class, where UA for this class was 91.98%. [53–55].

AgriEngineering 2024, 6 500 
 

 

 
Figure 5. Accuracy test with different quantities of decision trees in the random forest classification 
process in each imagery system considered: (A) OLI/Landsat-8, (B) MODIS Terra, (C) Planet NICFI, 
and (D) MSI/Sentinel-2. 

From the classified data (Figures 6 and 7), the confusion matrices were generated 
with OA from 86.41% to 88.65% (Figures 8–11; Table 2). The Landsat imagery had the 
highest accuracy, with OA ranging from 88.65% to 84.61% and PAs between 65.16% and 
91.53%. Yet, the lower accuracy relied on the “other land uses” class, and the higher 
corresponded to the second-harvest maize class, where UA for this class was 91.98%. [53–
55]. 

 
Figure 6. Land-use and land-cover classification based on GEOBIA and random forest for each con-
sidered sensor: (A) OLI/Landsat-8, (B) MODIS (C) Planet NICFI, and (D) MSI/Sentinel-2. 

Figure 6. Land-use and land-cover classification based on GEOBIA and random forest for each
considered sensor: (A) OLI/Landsat-8, (B) MODIS (C) Planet NICFI, and (D) MSI/Sentinel-2.



AgriEngineering 2024, 6 501AgriEngineering 2024, 6 501 
 

 

 
Figure 7. Classified second-crop maize areas clip: (A) OLI/Landsat-8, (B) MODIS, (C) Planet NICFI, 
and (D) MSI/Sentinel-2. 

 
Figure 8. Confusion matrix for OLI/Landsat-8 imagery. 

Figure 7. Classified second-crop maize areas clip: (A) OLI/Landsat-8, (B) MODIS, (C) Planet NICFI,
and (D) MSI/Sentinel-2.

AgriEngineering 2024, 6 501 
 

 

 
Figure 7. Classified second-crop maize areas clip: (A) OLI/Landsat-8, (B) MODIS, (C) Planet NICFI, 
and (D) MSI/Sentinel-2. 

 
Figure 8. Confusion matrix for OLI/Landsat-8 imagery. Figure 8. Confusion matrix for OLI/Landsat-8 imagery.



AgriEngineering 2024, 6 502AgriEngineering 2024, 6 502 
 

 

 
Figure 9. Confusion matrix for MODIS imagery. 

 
Figure 10. Confusion matrix for Planet NICFI imagery. 

Figure 9. Confusion matrix for MODIS imagery.

AgriEngineering 2024, 6 502 
 

 

 
Figure 9. Confusion matrix for MODIS imagery. 

 
Figure 10. Confusion matrix for Planet NICFI imagery. Figure 10. Confusion matrix for Planet NICFI imagery.



AgriEngineering 2024, 6 503
AgriEngineering 2024, 6 503 
 

 

 
Figure 11. Confusion matrix for MSI/Sentinel-2. 
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The classification of the second-harvest corn areas with Planet images deviated from 
the results of the other sensors, with a total area for this class of 330,000 hectares, 
indicating that despite the higher spatial resolution, the classification algorithm confused 
the second-harvest corn crop with the other second-harvest crop (Table 2). Considering 
the analysis of variance and Tukey test’s for means comparison, there was no significant 
difference at 5% probability among the results of the classifications performed, implying 
that the responses of the sensors were statistically similar (Table 3). 
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Table 2. Overall accuracy (OA), kappa coefficient, and classified maize crop area (ha) for each sensor
image classification.

Landsat-8 MODIS Planet Sentinel-2

Overall accuracy 88.65% 86.83% 86.79% 86.41%
Kappa coefficient 84.61% 82.01% 82.06% 81.26%

Second-harvest maize area (ha) 450,766.60 424,715.59 329,557.85 432,422.91

The classification of the second-harvest corn areas with Planet images deviated from
the results of the other sensors, with a total area for this class of 330,000 hectares, indicating
that despite the higher spatial resolution, the classification algorithm confused the second-
harvest corn crop with the other second-harvest crop (Table 2). Considering the analysis of
variance and Tukey test’s for means comparison, there was no significant difference at 5%
probability among the results of the classifications performed, implying that the responses
of the sensors were statistically similar (Table 3).
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Table 3. Analysis of variance (ANOVA) and means multiple comparison by Tukey’s test at 5%
probability for the overall accuracy and kappa coefficient results.

Analysis of Variance

Variable N Mean SD SE 95% Conf Interval

MODIS 2 84.42 3.42 2.42 53.72 115.12
Landsat-8 2 86.63 2.86 2.02 60.95 112.31

Planet 2 84.43 3.35 2.37 54.37 114.49
Sentinel-2 2 83.84 3.64 2.57 51.18 116.50

Tukey’s test HSD

Group 1 Group2 Meandiff P-adj Lower Upper Interval

Landsat-8 MODIS −2.2098 0.9 −15.7536 11.3339 False
Landsat-8 Planet −2.2037 0.9 −15.7474 11.34 False
Landsat-8 Sentinel-2 −2.7929 0.8225 −16.3367 10.7508 False

MODIS Planet 0.0061 0.9 −13.5376 13.5498 False
MODIS Sentinel-2 −0.5831 0.9 −14.1268 12.9606 False
Planet Sentinel-2 −0.5892 0.9 −14.1329 12.9545 False

Despite the lower spatial resolution in relation to the other sensors, MODIS images
showed values very close to those of the OLI/Landsat sensor, obtaining OA and kappa
coefficients of 86.83% and 82.01% (Table 2), respectively, with the focus class of the study
having CA (consumer accuracy) of 90.85% and PA (producer accuracy) of 89.40%.

The independence of spatial resolution with LULC classification accuracy were seen in
the comparison between the OA and kappa coefficient results of MODIS and MSI/Sentinel-2
sensors, indicating that high-spatial-resolution data are not always superior to low-resolution
data in identifying land uses when objects have varied and complex attributes [25,33,52].

The PlanetScope imagery, despite its high spatial resolution, reached inferior overall
results compared to OLI/Landsat-8 [33]. This result is probably related to the lower
temporal and spectral resolution of this dataset and to the training points being collected in
a concentrated manner and not spread over the entire area of interest [56]. This combination
of factors did not produce enough information to adequately differentiate the classes,
suggesting that the spatial resolution of 4.77 m did not provide enough textural information
for the effective separation of the classes studied. The results of Planet NICFI images in
relation to Sentinel-2 were similar to each other in both the OA of 86.79% and 86.41%, and
kappa of 82.06% and 81.26%, respectively. For CA, the results were higher than 87% and
for PA higher than 89%.

Classification in a highly heterogeneous and fragmented agricultural region is chal-
lenging due to the similarities in reflectance among the second-crop crops as well as the
different temporal and spatial resolutions of the images used. Given this situation, the
combination of several types of images with spatial and temporal resolution as well as the
use of time series images can be seen in past research, in which better results were achieved
than those obtained by analyses using separate, once-monthly images [55,57,58].

Based on our studies, the result obtained in this research, especially for Landsat 8
and MODIS Terra images, is very consistent with respect to classification accuracy and
suggests the use in further studies of the combination of the aforementioned images with
PlanetScope NIFCI and Sentinel-2 images as well as other sensors in order to achieve more
refined results than the present study.

The results of this study were obtained due to the open-access remote sensing datasets
and the computing power of the GEE platform, which has demonstrated considerable
versatility and adaptability due to its integrative capabilities and its efficient platform
for scripting in JavaScript and Python. This study was based on the use of open-source
technologies with a focus on processes, and these are robust and scalable over large spatial
extents; thus, good results were obtained.
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4. Conclusions

The evaluations performed showed satisfactory results since the kappa coefficient
and OA presented values higher than 80%. Therefore, it is concluded that the GEOBIA
methodology, which employed the combination SNIC + GLCM with the random forest
classifier, was successful. However, it is important to highlight that there is still room for
improvement in the segmentation step in order to make the methodology applicable in
large agricultural areas. The use of other techniques with more spectral models as well as
using other types of sensors in the geo-object-oriented analysis input could improve our
findings. For future work, the use of hyperspectral data to improve identification should
be considered.

Furthermore, this study highlighted the overall reliability of the GEOBIA methodology,
although its complexity results in higher computational demands. This can affect the
execution of the GEE code, especially when using high-spatial-resolution data such as that
from Sentinel-2 and PlanetScope.
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