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Abstract: A surging demand for sustainable energy and the urgency to lower greenhouse gas
emissions is driving industrial systems towards more eco-friendly and cost-effective models. Biogas
from agricultural and municipal organic waste is gaining momentum as a renewable energy source.
Concurrently, the European Hydrogen Strategy focuses on green hydrogen for decarbonising the
industrial and transportation sectors. This paper presents a multi-objective network design model
for urban–industrial symbiosis, incorporating anaerobic digestion, cogeneration, photovoltaic, and
hydrogen production technologies. Additionally, a Bayesian best-worst method is used to evaluate
the weights of the sustainability aspects by decision-makers, integrating these into the mathematical
model. The model optimises industrial plant locations considering economic, environmental, and
social parameters, including the net present value, energy consumption, and carbon footprint. The
model’s functionalities are demonstrated through a real-world case study based in Emilia Romagna,
Italy. It is subject to sensitivity analysis to evaluate how changes in the inputs affect the outcomes and
highlights feasible trade-offs through the exploration of the ϵ-constraint. The findings demonstrate
that the model substantially boosts energy and hydrogen production. It is not only economically
viable but also reduces the carbon footprint associated with fossil fuels and landfilling. Additionally,
it contributes to job creation. This research has significant implications, with potential future studies
intended to focus on system resilience, plant location optimisation, and sustainability assessment.

Keywords: industrial symbiosis; waste-to-energy; biomass-to-energy; biomass-to-hydrogen; hydrogen
production; renewable energy sources; MILP; best-worst method

1. Introduction

In 2019, global atmospheric emissions were approximately 59 ± 6.6 GtCO2eq, marking
a significant surge in CO2 levels to 410 parts per million, a peak not witnessed since pre-
industrial times [1]. This alarming increase underscores the urgent necessity for climate
change countermeasures, particularly through renewable energy adoption, as highlighted
in the European Renewable Energy Directive (RED 2018/2001/EU), which sets an ambitious
target of at least 42.5% renewable energy by 2030. The European Green Deal further
advocates for the escalated use of recycled materials in industrial sectors to nurture a green,
sustainable economy, and to enhance cleaner and more efficient transport systems, which
are responsible for a quarter of emissions.

Currently, urban areas are estimated to account for about half of the world’s waste
production and roughly 80% of GHG emissions. Each year, approximately 740 Mt of
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municipal solid waste (MSW) is disposed of in landfills, representing 37% of the global
MSW total. Utilising waste management techniques can significantly reduce waste volume,
lower pollutant generation, and decrease the spatial footprint needed for waste processing
facilities compared to landfills. Additionally, employing anaerobic digesters (ADs) not
only contributes to managing waste but also produces digestate, a valuable by-product
that can be used as an agricultural fertiliser [2]. The Emilia-Romagna region in northern
Italy, known for its rich agricultural background and robust industrial sector, produced
2,839,452 tonnes of urban waste in 2021. The most commonly collected materials were
organic and green waste (19% and 6% potentially recoverable). The region also generated
451,423 tonnes of waste from agriculture and forestry, with 99,894 tonnes earmarked for
disposal [3]. Waste-to-energy (WtE) technologies are being examined for their potential
to effectively recover energy from waste materials [4]. Among these, anaerobic digestion
stands out as a WtE technology offering numerous benefits for solid waste management
and agriculture. Anaerobic digestion generates biogas, which can be utilised to produce
renewable energy while simultaneously reducing waste volume. Biogas can be employed
for heat and power generation [5], thereby diminishing reliance on fossil fuels and fostering
a more economical and sustainable energy supply [6]. Furthermore, ADs yield a nutrient-
rich digestate, serving as a natural fertiliser to improve soil quality and crop yields, reducing
dependency on chemical fertilisers [7].

A particular focus in Emilia-Romagna is the development of green hydrogen for
both mobility and energy production. The primary challenge in this endeavour lies in
the economic viability, given the substantial initial and operational costs. A gradual tran-
sition is envisioned, starting with the integration of hydrogen into existing natural gas
infrastructures, moving towards electrolysis powered by renewable electricity sources,
particularly for heavy transport and industries that are difficult to decarbonise. Effective
management of municipal and rural waste, along with establishing a proficient hydro-
gen supply chain, are, therefore, pivotal areas of interest for stakeholders in the region.
Hydrogen is a versatile medium for energy storage, transportation, and electricity produc-
tion. Currently, the majority of the world’s hydrogen is produced from natural gas and
coal [8], with renewables contributing a mere 2% to the total output [9]. The transition to a
sustainable energy system by 2050 necessitates a shift towards low-carbon hydrogen [10].
The power-to-hydrogen process converts extra electricity into hydrogen using electrolysis,
breaking water molecules into O2 and H2. When this electricity is derived from renewable
sources, the resultant hydrogen, termed “green hydrogen”, has a substantially lower global
warming potential compared to conventional coal gasification and reforming methods [11].
The biomass–electricity–electrolysis pathway is, thus, seen as having superior environmen-
tal benefits [12,13]. Green hydrogen also has the potential to drive low-carbon mobility,
fostering synergies between industrial sectors and communities [14].

Industrial symbiosis (IS) focuses on resource exchange between companies and has
evolved over time. Originally defined over two decades ago within the broader concept of
industrial ecology (IE), recent interpretations incorporate modern industrial aspects like
mutual learning and life-cycle analysis [15,16]. The process of establishing IS is divided
into three phases: exploration of potential collaborations, a critical phase of organisation
and development, and finally, the realisation of symbiosis through investments in exchange
facilities [17,18]. This approach not only fosters new business opportunities but also en-
hances supply chain resilience by increasing network connectivity and exchange density,
thereby optimising waste management and adding value to waste exchanges [19]. The
urban–industrial symbiosis (UIS) concept, as an innovative strategy, promotes sustainable
development and efficient resource utilisation across industrial, urban, and rural areas [20].
This approach, facilitated by geographical proximity, enhances trust and reduces logisti-
cal challenges, leading to decreased resource consumption, waste, and greenhouse gas
emissions, and achieving economic and environmental benefits [21].

The model proposes the creation of an energy-based UIS system that converts biomass
into biogas, heat, electricity, and hydrogen through electrolysis. The model aims to assist
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in planning the use of by-products, particularly fertilisers produced during the anaerobic
digestion process, to optimise the economic and environmental impacts of the entire system,
with a particular emphasis on the development of a hydrogen supply chain.

This paper includes a concise literature review in Section 2, problem description
and formulation in Section 3, a detailed case study in Section 4, followed by results and
a sensitivity analysis in Section 5, trade-offs analysis and discussion in Section 6, and
provides concluding remarks in Section 7.

2. Literature Review

In recent years, WtE methodologies have become increasingly important for waste
management and sustainable energy production. A key tool in this field is mixed integer
linear programming (MILP), known for its flexibility in integrating various decision factors
and parameters. MILP models are primarily used for designing waste supply chain net-
works, focusing on waste allocation, and optimising the number, capacities, and locations
of waste treatment plants to balance economic, environmental, and social impacts.

Several studies have made notable contributions using MILP, as presented in Table 1.
Kim et al. [22] developed a comprehensive optimisation model for selecting and sizing fuel
conversion technologies, focusing on biomass source location, processing plant decisions,
and logistics to maximise profit. Gondal and Sahir [23] highlighted the potential of Pak-
istan’s agrarian economy as a significant source of biomass for hydrogen production. The
study introduces an integrated renewable hydrogen model that utilises biomass feedstocks,
demonstrating its effectiveness in generating hydrogen. Balaman and Selim [24] optimised
biomass-to-energy supply chain networks at regional level in Turkey. Their MILP model
considered economic and environmental criteria to identify the optimal number, capacities,
and locations of biogas plants and biomass storages. Patrizio et al. [25] explored the poten-
tial of agricultural biogas in Italy for power generation, heat cogeneration, and biomethane
use in transport and grid injection, using the BeWhere model for optimal location and
technology mix assessment.

Table 1. Summary of the literature of waste-to-energy supply chain networks.

Reference Source Output Objective (s)
MSW RW FW PV WP P H H2 F BF Eco Env Soc

Kim et al. [22] X X X
Gondal and Sahir [23] X X X
Balaman and Selim [24] X X X X X X
Patrizio et al. [25] X X X X X
Wu et al. [26] X X X X
Mayerle and de Figueiredo [27] X X X X X
Woo et al. [28] X X X X
López-Díaz et al. [29] X X X
Silva et al. [30] X X X X
Han and Kim [31] X X X X
Bijarchiyan et al. [32] X X X X X X
Maha et al. [33] X X X X X
Thiriet et al. [34] X X X X
Rahimi et al. [35] X X X X
Abbasi et al. [36] X X X X X
This Study X X X X X X X X X X

Notes: MSW: Municipal Solid Waste, RW: Rural Waste, FW: Forestry Waste, PV: Photovoltaic System, WP: Wind
Power, P: Power, H: Heat, H2: Hydrogen, F: Fertiliser, BF: Biofuel, Eco: Economic, Env: Environmental, Soc: Social.

Wu et al. [26] addressed the optimisation of biomethane production systems location
and resource allocation. Their study employs a mixed integer nonlinear programming
model to minimise supply chain costs, encompassing construction, transportation, and
labour. The model integrates elements like local farms, collection hubs, and biomethane
reactors. Mayerle and de Figueiredo [27] focused on supply chain network design for
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anaerobic digestion and energy generation using animal waste. Addressing the high trans-
portation costs of animal biomass, a methodology was developed to optimise logistics and
reduce biogas loss. Woo et al. [28] introduces a MILP model aimed at minimising total
annual costs by optimising a biomass-to-hydrogen supply chain. This involves biomass in-
ventories, gasification plants, hydrogen storage, and fuelling stations. López-Díaz et al. [29]
investigated the impact of bio-refining supply chains on regional water resources. Their
optimisation framework considers the entire bio-refining system, including biomass produc-
tion, processing, fresh water usage, and wastewater discharge, while integrating economic
and environmental objectives. The study places special emphasis on the optimal use of
water resources and the selection of feedstocks, cultivation sites, and processing facilities.

Silva et al. [30] tackled biogas plant location for animal waste treatment from dairy
farms, considering economic and social factors. Their study introduces a multi-objective
MILP model that focuses on minimising initial investment, operation, and maintenance
costs, transportation costs, and social rejection. Han and Kim [31] offer a comprehensive
method for strategic investment in renewable energy systems, integrating wind, solar,
and biomass sources. Using MILP, the study focuses on optimal investment timing and
allocation for various energy facilities and demands. Bijarchiyan et al. [32] modelled a
biomass-to-bioenergy supply chain using ADs maximising economic profits and positive
social externalities. Maha et al. [33] developed an optimisation model for a hydrogen
supply chain in Johor, using oil palm biomass and solar energy for hydrogen and electric-
ity production.

Thiriet et al. [34] described an approach to design a network of distributed micro-scale
ADs for the valorisation of urban bio-waste. Their MILP model aimed to minimise the
total payload distances involved in transporting waste and digestate. Rahimi et al. [35]
designed an electricity production supply chain from animal manure, minimising supply
chain costs. They determined the best locations for establishing facilities, optimal capacity
levels, and material flow. In the context of MSW management, Abbasi et al. [36] considered
MSW management, comparing anaerobic digestion and incineration processes to minimise
environmental impact while maximising profits.

These studies collectively demonstrate the versatility and effectiveness of MILP in
optimising WtE systems, balancing economic viability with environmental sustainability.
However, there is a growing need for a new, more comprehensive model that intertwines
MSW and agricultural biomass waste. This model should ideally incorporate agrivoltaic
systems (which couple agriculture and solar power generation) and encompass the pro-
duction of power, heat, and hydrogen. The development of a multi-objective optimisation
model is essential, one that targets not only economic profitability but also strives to es-
tablish a low-carbon supply chain. Additionally, this model must take into account social
impacts, ensuring that the solutions proposed are not only efficient and sustainable but
also socially responsible and acceptable. Such an integrative approach would represent
a significant advancement in the field, addressing the multifaceted challenges of modern
waste management and energy production. Here are three key points summarising the
contribution of this research:

• Creating a novel model that combines MSW and agricultural biomass waste with
agrivoltaic systems, addressing multiple aspects of waste and energy management in
a unified approach;

• Balancing economic profitability, environmental sustainability (specifically low-carbon
supply chains), and social impacts, ensuring a comprehensive and responsible ap-
proach to WtE systems;

• Designing a system that simultaneously addresses the production of power, heat, and
hydrogen, showcasing a versatile and efficient solution in sustainable energy.

3. Material and Methods

The proposed model is focused on designing a WtE system for organic waste, utilising
AD as a key component. In this section, we outline the challenge of creating a WtE
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system and offer a mathematical representation of the multi-tiered, interconnected biogas–
hydrogen network.

3.1. Problem Definition

We now turn to the issue of waste-to-energy (WtE) and hydrogen supply chain man-
agement. Our proposed model examines a multi-layered network, encompassing nodes
for MSW and livestock manure, ADs, solar photovoltaic systems, cogeneration units, elec-
trolysis stations, and relevant storage facilities, as illustrated in Figure 1. The model aims
to assist in making strategic decisions regarding the ideal placement of ADs, photovoltaic
systems (PVs), combined heat and power plants (CHPPs), and electrolysis units, along
with determining their optimal capacities and storage solutions over a set time frame. Fur-
thermore, the model guides decision-makers in managing transportation routes for various
materials, including manure, the organic fraction of solid waste, produced biogas, heat,
electricity, and hydrogen throughout the network. This is performed with the objective
of optimising total costs, reducing GHG emissions, and fostering job creation, thereby
adhering to the three pillars of sustainability.

Figure 1. Superstructure of a supply network.

The network begins with the collection of MSW and livestock manure from diverse
urban and rural areas. The organic components of this waste are processed in ADs, where
they undergo decomposition by microorganisms in an oxygen-free environment. This
process yields biogas, a renewable energy source, and digestate, a nutrient-rich fertiliser
for agriculture. Concurrently, PVs in selected areas convert sunlight into electricity, which
can be used immediately or stored in batteries. The biogas from ADs is utilised in CHPPs,
generating electricity and heat. Additionally, electricity from both solar PVs and CHPPs
is employed in electrolysis units to produce hydrogen and oxygen from water. This
hydrogen, a clean energy source, is stored for future use. The outputs are then stored and
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distributed as needed, employing a mix of different capacity trucks, along with existing
grids and pipelines.

Before running the model, we made several assumptions to ensure its accuracy and
relevance to real-world scenarios. These assumptions were chosen based on the level of
detail that has been found useful for addressing similar problems in the existing literature.

• Biowaste supply, treated as deterministic across time periods, includes categories like
cattle slurry, cattle manure, and the organic/green fraction of municipal wastes.

• Parameters for major facilities encompassing conversion efficiency, capacity, lifetime,
investment, and operating costs are given.

• Parameters for hydrogen and fertiliser tanks involving capacity are given.
• Distances between locations are given by regional data.

3.2. Mathematical Model
3.2.1. Objective Functions

Concerns about sustainability are increasingly pushing supply chain managers to
make more effective decisions. Human activities have a detrimental effect on natural
resources and the environment. The considered approach seeks to mitigate the negative
effects of human activities. UIS aims to balance economic benefits through innovative
energy business models, reduce emissions from traditional linear economic activities, and
generate social benefits by creating jobs. The goal is to assess sustainability from three
perspectives: economic, social, and environmental. All relevant sets, parameters, and
variables are reported in Appendix A.

The first objective function seeks to maximise the system’s overall economic net
present value. This covers the expenses of installing ADs, CHPPs, PVs, and electrolysers,
as well as the costs of operating and maintaining them, transporting feedstock and biogas,
and producing hydrogen. The revenues are generated from the sale of electricity, heat,
hydrogen, and fertiliser produced within the system.

Z1 = −TIC − ∑
t∈T

(AOCt − ATRt)
1

(1 + r)t (1)

Equation (2) calculates the total initial cost (TIC), which includes the investment costs
for installing ADs, CHPPs, electrolysers, and PVs. The cost of each facility type is weighted
by its respective capacity and whether it is built or not (indicated by the binary variables).

TIC = ∑
k∈K

(
∑

a∈A
icaAD

k baak + ∑
c∈C

iccHP
k bcck + ∑

e∈E
iceEL

k beek + ∑
p∈P

icpPV
k bppk

)
(2)

Equation (3) calculates the annual operating costs (AOC), accounting for the opera-
tional expenses, transportation costs of feedstock and biogas, and the time value of money.
It includes the costs of operating and maintaining the installed facilities and the costs
related to transportation, all discounted to their present value.

AOCt = TIC · op +

(
∑
f∈F

∑
a∈A

xt
f a

capTR d f a + ∑
a∈A

∑
c∈C

yt
ac

capTR tac

)
· tc (3)

The annual total revenue (ATR) in Equation (4) calculates the yearly income generated
from selling electricity, heat, hydrogen, and fertiliser produced within the system. It consid-
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ers the quantities of these products sold and their respective unit prices, all discounted to
their present value.

ATRt = pa ∑
a∈A

f t
a + pp ∑

c∈C

(
et

c − ∑
e∈E

zt
ce

)

+ pp ∑
p∈P

(
st

p − ∑
e∈E

lt
pe

)
+ ph ∑

c∈C
qt

c + pe ∑
e∈E

wt
e (4)

The secondary objective Z2 encapsulated within Equation (5) is to minimise the envi-
ronmental impacts within the supply chain. This goal is pursued through an assessment and
minimisation of CO2 emission factors. Primary focal points include emissions stemming
from road transportation linking feedstock sources to AD facilities, and the subsequent
transit between AD and CHPP nodes (ETF). Additionally, it incorporates emissions at-
tributable to the operational processes within these production units (EBE). Z2 quantifies
the environmental advantages derived from diminished natural gas usage (primary non-
renewable energy carrier) and the application of fertilisers generated as by-products among
the network.

Z2 = ETF + EBE + EUF − EFP − ENG (5)

Equation (6) calculates the total emissions from transporting feedstock and biogas. It
uses e f T , the emission factor for truck transportation, and includes two main components:
emissions from transporting feedstock (xt

f a) from each source f to each AD a, factoring in

the distance d f a and the truck capacity (capTR), and the emissions from transporting biogas
(yt

ac) from each AD a to each CHPP c, considering the distance (tac) and truck capacity.

ETF = ∑
t∈T

e f T

(
∑
f∈F

∑
a∈A

xt
f a

capTR d f a + ∑
a∈A

∑
c∈C

yt
ac

capTR tac

)
(6)

Equation (7) focuses on the emissions resulting from the exploitation of biomass in
AD plants and biogas in CHPPs. It uses e f A, the emission factor for biomass exploitation
in AD plants, and e f C, the emission factor for biogas exploitation in CHPPs. The equation
calculates emissions based on the amount of feedstock (xt

f a) used in AD plants and the
amount of biogas (yt

ac) used in CHPPs.

EBE = ∑
t∈T

(
e f A ∑

f∈F
∑

a∈A
xt

f a + e f C ∑
a∈A

∑
c∈C

yt
ac

)
(7)

Equation (8) calculates the emissions from feedstock that are not exploited and end
up being landfilled. It uses e f W , the emission factor for landfilling unexploited feedstock.
The calculation is based on the total feedstock availability ( f st

f ) at each source f minus the
amount of feedstock (xt

f a) used by ADs.

EUF = e f W ∑
t∈T

∑
f∈F

(
f st

f − ∑
a∈A

xt
f a

)
(8)

Equation (9) accounts for the emissions associated with fertiliser production. It uses
e f F, the emission factor for fertiliser production, and calculates emissions based on the
amount of fertiliser ( f t

a) produced from ADs.

EFP = e f F ∑
t∈T

∑
f∈F

f t
a (9)
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Equation (10) addresses emissions from natural gas consumption and electricity gen-
eration. It uses e f NG, the emission factor for natural gas consumption. The calculation
includes emissions from electricity generated at CHPPs (et

c) and by PVs (st
p).

ENG = e f NG ∑
t∈T

(
∑
c∈C

et
c + ∑

p∈P
st

p

)
(10)

The third objective function Z3 in Equation (11) focuses on maximising job creation
associated with new facilities in the supply chain, highlighting its economic and social
benefits. This objective fosters socio-economic development by generating employment
opportunities across various stages of the supply chain, including AD, CHPP, and electrol-
yser facilities.

Z3 = ∑
k∈K

(
∑

a∈A
jcAD

k baak + ∑
c∈C

jcHP
k bcck

+ ∑
e∈E

jcEL
k beek + ∑

p∈P
jcPV

k bppk

)
(11)

3.2.2. Constraints

The constraints of the optimisation problem can be divided into multiple stages based
on the components and functions of the system. Constraint (12) ensures that the feedstock
quantity delivered to each AD a in time period t does not overcome the available biomass at
each source node i, in line with the feedstock availability parameter f st

f . The constraint (13)
ensures compliance with the AD plants’ capacity limits, where the feedstock transported
from source f to AD a must align with the maximum capacity level capAD

k of the AD.
Meanwhile, the constraint (14) restricts the ADs to installing only one capacity level per
site, ensuring that each AD a adheres to a singular capacity choice within the set k.

∑
a∈A

xt
f a ≤ f st

f ∀ f ∈ F, t ∈ T (12)

∑
f∈F

xt
f a ≤ ∑

k∈K
capAD

k baak ∀ a ∈ A, t ∈ T (13)

∑
k∈K

baak ≤ 1 ∀ a ∈ A (14)

The constraints (15) and (16) are designed to align biogas and fertiliser outputs with the
feedstock inputs at each AD plant. Specifically, these constraints ensure that the production
rates of biogas (λB) and fertiliser (λF) at each AD a match the amount of feedstock processed
within each time period t.

f t
a = ∑

f∈F
λFxt

f a ∀ a ∈ A, t ∈ T (15)

∑
c∈C

yt
ac = ∑

f∈F
λBxt

f a ∀ a ∈ A, t ∈ T (16)

Constraint (17) quantifies the electricity output from PV p during each time period t.
This calculation incorporates key parameters: the annual solar radiation (Ψp), indicating
the solar energy received over a year; the capacity ratio (ηPV), reflecting the operational
efficiency of the PVs; and the total area of solar panels (Θk) installed.

st
p ≤ ΨpηPV ∑

k∈K
Θkbppk ∀ p ∈ P, t ∈ T (17)

∑
k∈K

bppk ≤ 1 ∀ p ∈ P (18)
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The constraint (19) states that the electricity sent to each electrolyser must be limited
to the amount produced by the CHPP. Additionally, the constraint (20) manages the flow
of electricity from PVs to electrolysers, aligning it with the PVs’ output. This integration of
renewable energy sources is crucial for sustainable hydrogen production. The total amount
of electricity consumed does not exceed the capacity of each electrolyser and the hydrogen
production rate is consistent with the electricity input and electrolyser conversion efficiency
(constraints (21) and (23)). Moreover, the constraint (22) limits the range of capacity levels
for installation of the electrolyser e.

∑
e∈E

zt
ce ≤ et

c ∀ c ∈ C, t ∈ T (19)

∑
e∈E

lt
pe ≤ st

p ∀ p ∈ P, t ∈ T (20)

∑
c∈C

zt
ce + ∑

p∈P
lt
pe ≤ ∑

k∈K
capEL

k beek ∀ e ∈ E, t ∈ T (21)

∑
k∈K

beek ≤ 1 ∀ e ∈ E (22)

wt
e = ηE ∑

c∈C
zce ∀ e ∈ E, t ∈ T (23)

The constraint (24) guarantees that the total biogas consumption does not exceed the
operational capacity k of each CHPP c. Additionally, the constraint (25) regulates the range
of capacity levels that can be installed at each CHPP, ensuring that only one capacity level
is chosen per unit. The constraint (26) calculates the heat output (qt

c) of each CHPP, taking
into account the lower heating value of biogas (α) and the heat conversion efficiency (ηH)
for each time period t. Similarly, the constraint (27) assesses the electricity generation (et

c),
utilising the electrical conversion efficiency (ηP).

∑
a∈A

yt
ac ≤ ∑

k∈K
capHP

k bcck ∀ c ∈ C, t ∈ T (24)

∑
k∈K

bcck ≤ 1 ∀ c ∈ C (25)

qt
c = ηH ∑

a∈A
αyt

ac ∀ c ∈ C, t ∈ T (26)

et
c = ηP ∑

a∈A
αyt

ac ∀ c ∈ C, t ∈ T (27)

Finally, the constraints (28)–(40) represent variable-type constraints.

xt
f a ≥ 0 ∀ f ∈ F, a ∈ A, t ∈ T (28)

yt
ac ≥ 0 ∀ a ∈ A, c ∈ C, t ∈ T (29)

zt
ce ≥ 0 ∀ c ∈ C, e ∈ E, t ∈ T (30)

lt
pe ≥ 0 ∀ p ∈ P, e ∈ E, t ∈ T (31)

f t
a ≥ 0 ∀ a ∈ A, t ∈ T (32)

et
c ≥ 0 ∀ c ∈ C, t ∈ T (33)

qt
c ≥ 0 ∀ c ∈ C, t ∈ T (34)

wt
e ≥ 0 ∀ e ∈ E, t ∈ T (35)

st
p ≥ 0 ∀ p ∈ P, t ∈ T (36)

baak ∈ {0, 1} ∀ a ∈ A, k ∈ K (37)

bcck ∈ {0, 1} ∀ c ∈ C, k ∈ K (38)

beek ∈ {0, 1} ∀ e ∈ E, k ∈ K (39)



Smart Cities 2024, 7 744

bppk ∈ {0, 1} ∀ p ∈ P, k ∈ K (40)

3.3. Solution Approach

The multi-objective optimisation model will employ a scalarisation technique
(i.e., weighted sum) with the Bayesian best-worst method for an a priori articulation
of preferences. This method requires users to specify the relative significance of each
objective function.

3.3.1. Linear Normalisation Technique

Normalisation is widely recognised as the most robust method for transforming
objective functions, irrespective of their initial range. This technique ensures consistent
comparability by adjusting different scales to a standard range [37]. The goal of linear
normalisation is to transform data into a new scale that typically ranges from 0 to 1. It
is built on the concept of the ideal (Ij) and nadir/anti-ideal (AIj) solutions to represent
the best and worst feasible outcomes for each objective j. Ij denotes the ideal solution,
characterised by the highest (maximum) values for benefit-oriented objectives and the
lowest (minimum) values for cost-oriented objectives. In contrast, AIj represents the anti-
ideal solution, signifying the lowest values for the benefit objectives and the highest for the
cost objectives. All values nj(x) will be transformed to align with the benefit-type objective
function framework, where higher values are deemed more favourable.

nj(x) =
fi(x)− AIj

Ij − AIj
Benefit-type (41)

nj(x) =
AIj − fi(x)

AIj − Ij
Cost-type (42)

3.3.2. Bayesian Best-Worst Method (B-BWM)

The basis of the Bayesian best-worst method (BWM) is comparison of the best and
worst criteria with all other pertinent criteria for a particular problem. Compared to
other pairwise comparison methods, such as AHP (analytic hierarchy process) and ANP
(analytic network process), BWM stands out due to its need for fewer data comparisons [38].
BWM stands out from other multi-criteria decision-making (MCDM) methods due to three
key advantages. First, it starts by identifying the best and worst criteria, which assists
decision-makers in setting their evaluation priorities. Second, the comparison vectors based
on these two polar criteria effectively reduce biases from expert opinions. Finally, this
methodology proves to be more efficient than other MCDM techniques in both data and
time consumption.

The following are the major stages for B-BWM deployed in the current study [39]:

1. Fixing C = {c1, . . . , cn , where n denotes the total number of sustainability dimensions
(n = 3).

2. Choosing the best (CB) and the worst (CW) imperatives from the set of C. This step is
performed by each evaluator individually.

3. Conducting a pair-wise comparison vector between the best over the other (BO).
Each expert uses a 1–9 scale to construct the pair-wise comparison vector between the
best and the other imperatives. The BO vector is written as AB = (aB1, . . . , aBn). aBj
shows how much more important the best imperative is than the others.

4. Conducting a pair-wise comparison vector between the others over the worst impera-
tive (OW). In the same way, each evaluator rates the impact of the other imperatives
on the worst through a 1–9 scale. The resultant AW = (aW1, . . . , aWn). aWj expresses
how much more important the other imperatives are than the worst one.

5. Finding the optimal and the aggregated weight. This stage determines each optimal
weight z1:K as well as the total optimal weight zagg given A1:K

B are identified, which
accounts for all the evaluators.
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4. Case Study

Our case study is situated in the countryside between Modena and Reggio Emilia
(Figure 2). This distinctive region is interesting for the following key reasons: (1) The
region has significant potential for biogas production, especially from agri-food sector
waste, which is plentiful in Emilia-Romagna due to Parmigiano-Reggiano cheese and
farming [40]. (2) The region’s agricultural activities generate a substantial amount of
biomass, including crop residues, animal manure, food and agro-industrial wastes, and
organic waste [41]. (3) Emilia-Romagna has adopted a Regional Energy Plan (REP) to
2030, aiming at greenhouse gas (GHG) emissions reduction, energy consumption control,
and enhanced use of bioenergy. This plan, along with Italy’s incentives for renewable
energy initiatives, enhances the supply chain’s economic viability [42]. The REP forecasts a
notable growth in biogas production, with the possibility of expanding the current installed
capacity of 234 MW to 320 MW [40].

Figure 2. An illustrated map of the case study location.

This study spans a 10-year time horizon and utilises feedstock composed of agricul-
tural waste and biomass sourced from local communities. The annual amount of this
feedstock is determined by calculating the recoverable organic and green fraction of waste
from various towns, using per capita waste data, adding sewage and manure data from
nearby cow farms. Consequently, each source provides quantities varying between 300 and
9000 t/y (feedstock availability is reported in Table 2).

Three increasing in size PVs are taken into account. It is assumed that all these
PVs share the same electricity generation efficiency of 0.14. Information regarding the
yearly solar radiation for these facilities is sourced from the PVGIS database [43]. We
consider 10 potential sites for anaerobic digestors to process the feedstock. These sites
are selected considering their proximity to feedstock sources. Each potential site can
host an AD with a capacity ranging from 30,000 to 75,000 t/y. The investment cost for
building an AD ranges from EUR 500,000 to EUR 3,000,000, depending on the capacity
and site-specific installation costs [44]. The model assumes a biogas yield of 150 Sm3/t
and a fertiliser yield of 200 kg/t of feedstock. The biogas produced by the digestors can
be used to generate heat and electricity in cogeneration units. Processing 1000 tonnes of
organic waste using an AD typically creates about 20 direct jobs in the sectors of waste
collection and management. Furthermore, it leads to an additional 15 jobs indirectly,
encompassing roles in the supply chain and various support services [45]. CHPPs vary
in capacity between 1 to 20 MW. Their investment costs also differ, ranging from EUR
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650,000 to EUR 15,000,000, which can be attributed to variations in scale and technological
differences. These systems are characterised by an efficiency of 50% for heat conversion
and 30% for electricity generation. Our model includes the integration of ten potential
sites for alkaline electrolysers (AEL). Currently, AELs represent the most advanced and
cost-efficient technology available for hydrogen production. These units are specifically
designed to utilise excess electricity generated by cogeneration systems. The capacity of
these electrolysers varies, ranging from 500 kW to 5 MW, with a maximum production
rate of 5.5 Sm3H2/kWh. The investment required for these electrolysers falls between
EUR 500,000 and EUR 3,000,000 [46]. Table 3 in the document provides a summary of the
key input data for the case study. Hydrogen transportation is accounted for considering a
heavy duty truck 30 L/km average consumption and 1.7 €/L gas price. The capacity of
trucks for transportation is set with specific limits: trucks are assumed to carry a maximum
of 14 tons of biomass and up to 3000 Nm3 of biogas. Revenue generation within the supply
chain comes from several sources: fertiliser sales at a unit price of 6 EUR/t, electricity at
0.157 EUR/kWh, heat at 0.075 EUR/kWh, and hydrogen at 5 EUR/Sm3 [47,48].

Table 2. Amount of feedstocks in each location and period (in t/y).

Source T1 2 T2 T3 T4 T5 T6 T7 T8 T9 T10

F1 1 3715 3550 3630 3710 3595 3715 3895 3955 3885 3820
F2 1415 1425 1480 1370 1355 1425 1490 1475 1500 1405
F3 770 875 830 800 865 835 890 820 825 855
F4 685 695 730 680 730 695 715 715 710 675
F5 690 635 705 695 675 635 705 635 655 685
F6 4510 4510 4520 4495 4500 4540 4530 4535 4550 4505
F7 490 495 495 460 510 470 505 490 480 510
F8 325 325 330 325 325 335 325 335 320 340
F9 375 350 360 355 375 340 335 345 355 345

F10 340 335 355 340 340 345 340 345 340 350
F11 3940 3955 4195 4195 4140 4125 4170 4160 3825 4005
F12 595 615 625 665 625 640 580 630 640 600
F13 580 625 625 610 605 595 585 565 570 610
F14 445 460 455 420 445 470 480 480 455 465
F15 560 570 575 575 560 565 590 570 570 550
F16 330 335 360 365 345 355 335 350 350 345
F17 2325 2355 2350 2350 2340 2355 2345 2350 2365 2350
F18 320 315 330 310 325 330 325 330 330 350
F19 8810 8820 8815 8820 8810 8805 8810 8815 8820 8810
F20 290 270 265 275 285 285 280 255 285 285

1 F: Feedstock Source. 2 T: Time Period.

Additionally, the model incorporates emission factors to assess the environmental
impact of the supply chain. Various emission factors are included, such as 1.9 kgCO2eq/kg
for anaerobic digestion, 4.20 kgCO2eq/kgN for fertiliser production, 0.548 kgCO2eq/kWh
for electricity emissions in northern Italy, and 0.137 kgCO2eq/kWh for cogeneration. In
Figure 3, a map is presented of potential facilities sites and feedstock sources. The black “F”
symbol represents a feedstock source, the green “A” symbol an AD location, the yellow “P”
symbol a PV location, the orange “C” symbol a CHPP location, and the blue “E” symbol an
AEL location.
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Table 3. Technical and economic parameters of different level facilities.

Small Medium Large

PV

Area size m2 2000 5000 8000
Power Capacity MW 0.2 0.7 1.1
Capacity Factor - 0.14 0.14 0.14

Capital Cost M€ 0.4 1 1.6

AD

Capacity t/y 30,000 50,000 75,000
Biogas Yield Nm3/t 50 50 50

Fertiliser Yield kg/t 100 100 100
Capital Cost M€ 0.5 1.5 3

Emission Factor kgCO2eq/kg 1.90 1.90 1.90

CHPP

Capacity MW 1 10 20
Heat Efficiency - 0.5 0.5 0.5

Power Efficiency - 0.3 0.3 0.3
Capital Cost M€ 0.65 8 15

Emission Factor kgCO2eq/kWh 0.14 0.14 0.14

AEL
Capacity MW 0.5 2.5 5

Hydrogen Yield Sm3H2/kWh 5.5 5.5 5.5
Capital Cost M€ 0.5 1 3

Figure 3. Map of sources and potential sites for facilities.

5. Results and Sensitivity Analysis

We will now illustrate how our formulated model is tested using the Emilia Romagna
biowaste case study. Model validation is carried out on an Apple M1 Pro with installed
16.00 GB RAM, with a time limit for each run of 3600 s. Initially, we solve each objective
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function as an individual optimisation model to determine the ideal and anti-ideal solutions
based on the case study data (i.e., maximising and minimising each objective function). A
linear normalisation technique is employed to transform units of each objective function,
obtained from solving the problem, into numerical values that lie between 0 and 1. Subse-
quently, a weighted sum method is used to convert the multi-objective optimisation model
into a single objective function with weighted factors, as depicted in Equation (43). Here,
each weight value, w, corresponds to a specific objective function.

min ZWSM = −w1
Z1 − AI1

I1 − AI1
+ w2

AI2 − Z2

AI2 − I2
− w3

Z3 − AI3

I3 − AI3
(43)

Moreover, the weights are evenly distributed (each set to 1/3) across the economic,
social, and environmental dimensions. This allocation underscores the equal significance
of each dimension, facilitating the exploration of a hypothetical scenario where all elements
are prioritised equally. The results and a map of the selected locations are shown in Table 4
and Figure 4, following Figure 3 symbols code. In particular, a single AD facility with
50,000 t/y capacity is selected. Additionally, two cogeneration units with a capacity of
1 MW, all five large scale photovoltaic systems, and a single 500 kW electrolyser are selected.

Figure 4. Map of selected facilities in the equally weighted objective functions solution.

B-BWM is utilised to evaluate the sustainability weights within a collective decision-
making framework, where various stakeholders (i.e., managers, public administration,
academics), each holding distinct viewpoints, deliberate on which side should be stressed.
Best-to-others and others-to-worst tables are presented in Table 5. The economic dimension
is clearly given priority over other dimensions by the first two experts; nevertheless, the
second expert exhibits a minor difference in the criteria used. This suggests a balanced
approach, valuing economic factors while still giving reasonable weight to environmental
and social sustainability. Only the third expert places a strong emphasis on social aspects,
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indicating a focus on employment-related factors. The final two experts assign significant
importance to environmental factors, underscoring a robust commitment to ecological and
environmental sustainability.

Table 4. Key results for each configuration.

Z1 Z2 Z3 Equal Weights B-BWM Weights

Ideal Values 637.32 M€ −198.70 ktCO2eq 2660 - -
(Anti-Ideal Values) −697.65 M€ 0.17 ktCO2eq - - -
Investment Costs 17.65 M€ 210.50 M€ 313.00 M€ 18.15 M€ 18.65 M€
Operation Costs 21.69 M€ 258.69 M€ 384.65 M€ 22.31 M€ 22.92 M€
Transport Costs 6.13 M€ 11.96 M€ - 47.10 M€ 60.66 M€
Revenues Total 679.31 M€ 238.29 M€ - 679.31 M€ 679.31 M€
CF * Transport 0.12 ktCO2eq 0.09 ktCO2eq - 0.32 ktCO2eq 0.16 ktCO2eq
CF Biogas 2.84 ktCO2eq 2.84 ktCO2eq - 2.84 ktCO2eq 2.84 ktCO2eq
CF Landfill - - 0.17 ktCO2eq - -
CF Avoided −201.62 ktCO2eq −201.62 ktCO2eq - −201.62 ktCO2eq −201.62 ktCO2eq
Job Employment 276 1947 2660 268 286

* CF: Carbon Footprint.

Table 5. B-BWM experts’ judgements.

Expert Criteria Vector Eco Env Soc

1 Best: Eco BtO 1 9 3
Worst: Env OtW 9 1 6

2 Best: Eco BtO 1 6 3
Worst: Env OtW 5 1 2

3 Best: Soc BtO 6 4 1
Worst: Eco OtW 1 2 5

4 Best: Env BtO 3 1 8
Worst: Soc OtW 5 9 1

5 Best: Env BtO 2 1 9
Worst: Soc OtW 8 9 1

Notes: BtO: Best-to-Others, OtW: Others-to-Worst.

The social, environmental, and economic aspects of the sustainability paradigm are
assigned scores with weights of 0.424, 0.304, and 0.271, respectively, according to the
group decision-making analysis. The results in Figure 5 (using the same symbol code as in
Figures 3 and 4) suggest the selection of the same AD as previously identified but with the
minimal capacity, coupled by an additional facility of medium size. Furthermore, an elec-
trolyser of small size has been chosen at a distinct location. The B-BWM solution highlights
the model’s capacity to intricately balance economic, environmental, and social objectives
rather than an equal weights solution. Investment costs experience a slight increase under
B-BWM conditions (EUR 18.65M) compared with equal weights (EUR 18.15M), indicating a
marginal rise in initial investment. Operational costs also experience a slight increase under
B-BWM weights (EUR 22.92M versus EUR 22.31M), suggesting that achieving operational
efficiency with the B-BWM optimisation incurs a minor cost premium, while transport costs
are significantly higher (EUR 60.66M versus EUR 47.10M). Both configurations generate
identical revenues (EUR 679.31M) and achieve the same reduction in carbon footprint
(−201.62 ktCO2eq). There is a slight increase in job creation with B-BWM weights (286)
compared with equal weights (268), highlighting the social sustainability benefits of the
B-BWM-optimised solution, despite the lower allocation weight for B-BWM (0.271 vs.
0.333). The B-BWM-optimised solution balances economic costs, environmental benefits,
and social impacts. This approach slightly increases the investment and operational costs
but leads to improved sustainability outcomes. In addition, it generates more job positions
than equal weights scenario.
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When considering the integration of renewable energy sources into UIS models, several
critical factors must be addressed. Potential obstacles on the path to implementation
warrant careful consideration, including multiple stakeholder engagement and physical
constraints. An initial phase of engaging stakeholders and exchanging information will
foster robust collaboration between companies and the urban population. This effort
should be supported by the involvement of municipal bodies and “facilitators” from
industrial districts.

Figure 5. Map of selected facilities in the B-BWM-weighted objective functions solution.

This study focused on examining four critical parameters likely to influence the net
present value: capital investment, operational costs, revenue from sales, and transporta-
tion capabilities. The objective of the sensitivity analysis was to determine the impact
of variations in these parameters on the optimisation results by adjusting them over a
predefined range (specifically, from 0.5 to 1.5 times their original values in increments of
0.1). The investigation offered valuable perspectives on the robustness and reactivity of the
optimisation model, revealing the impact of various components on the overall outcomes.
A cautious assessment of these elements is crucial when determining the economic viability
of the project. Figure 6a demonstrates that while investment costs (CAPEX) generally have
a moderate impact on the objective function, this is not the case for PVs, which exhibit
a significant influence. The sensitivity of PVs indicates a more pronounced response to
changes in investment costs, highlighting their crucial role in the overall economic perfor-
mance of the project. Conversely, Figure 6b depicts the sensitivity of the objective function
to alterations in the operation and transport costs. Notably, the objective function’s value
exhibits a sharp decline as the operation cost ratio (calculated on a CAPEX basis) expands.
Furthermore, Figure 6c examines the effects of changes in the selling prices of commodities
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produced in the UIS. An increase in the hydrogen price is seen as the most impacting
change. Finally, Figure 6d displays a parabolic trend in response to adjustments in the
truck capacity for biowaste and biogas. This pattern indicates a diminishing impact on the
overall profitability of the project.

Building on the discussed points, it is essential for organisations to make strategic
decisions to manage and optimise their investment costs effectively. This involves looking
for cost-effective equipment, exploring various suppliers, and negotiating better prices.
Moreover, sensitivity to OPEX emphasises the need for efficient operational management
to maintain system viability. Additionally, considering geopolitical factors is also impor-
tant. The selling price of hydrogen is critical and should be monitored closely as market
conditions evolve. To reduce operational costs, exploring different transportation op-
tions and securing competitive rates is key. Logistics and transportation capacities are
pivotal and require strategic planning to ensure they do not become bottlenecks. These
steps are crucial for improving cost efficiency and enhancing the effectiveness of waste
management processes.

(a) (b)

(c) (d)

Figure 6. Sensitivity analysis of economic objective function with respect to changes in different
parameters. (a) Sensitivity to investment cost changes. (b) Sensitivity to operation cost changes.
(c) Sensitivity to selling price changes. (d) Sensitivity to transportation capacity changes.

6. Discussion

A significant dependency on weight selection is one of the main drawbacks of weighted
sum approaches for resolving multi-objective problems. A linear weighted sum cannot
find optimal solutions if the solution functions exhibit a concave trade-off surface [49].
Therefore, an in-depth analysis is performed to investigate the trade-offs between various
sets of objective functions. Increasing the importance of one goal function could mean
decreasing the efficacy of another. Here, the Pareto front is a useful tool for visualising
these inter-dependencies. An efficient frontier is defined as the set of all optimal points [37].
This term indicates a situation in which it is impossible to redistribute resources to benefit
one party without harming the benefits of others. The methodology used to solve this
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model employs an ϵ-constraint approach. This technique facilitates the determination of an
array of efficient solutions.

Optimise oi(x⃗) (44)

s.t. (12)− (40) (45)

oj(x⃗) ≤ ϵj j = 1, . . . , k and i ̸= j (46)

In this research, bi-dimensional graphs are exploited to show trade-offs between vari-
ous pairs of objective functions, as reported in Figure 7. Figure 7a delineates the trade-off
between the economic objective (i.e., net present value) against the social aspect (i.e., ex-
pected employment). Figure 7b presents the interplay between the economic (i.e., net
present value) and environmental (i.e., carbon footprint) objectives, while Figure 7c ex-
amines the interaction between social (expected employment) and environmental (carbon
footprint) objectives. As presented, we expect the B-BWM solution to be located in the up-
per left side of the graph, reflecting the prioritisation of economic, environmental, and social
objectives in the assigned weights. Moreover, the axes in these graphical representations
are reversed to align the visual depiction with standard interpretations. This manipulation
ensures that the direction indicative of preferable outcomes remains consistent across all
plots, thereby enhancing the intuitive understanding of the trade-offs being visualised.

(a) (b)

(c)

Figure 7. Pareto front of different pairs of objective functions and the B-BWM solution. (a) Trade-off
between Z1 and Z2. (b) Trade-off between Z1 and Z3. (c) Trade-off between Z2 and Z3.

In this section, we present specific recommendations for better understanding the
trade-offs among economic, environmental, and social objectives. Managers should care-
fully consider the relative importance of economic, environmental, and social goals in their
operational context to guide the optimisation process effectively. The ϵ-constraint approach
suggests a dependency between the net present value and the carbon footprint; in fact, the
B-BWM solution produces very high avoided emissions due to the efficient exploitation of
waste. However, the Pareto front, with Z1 as the primary function, demonstrates limited
savings even for higher net carbon footprints. Enhancing one objective might compromise
another, and thus, aiming for an optimal balance is essential. Prioritising job creation could
result in excessive costs, while simultaneously offering limited environmental benefits. The
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B-BWM-based weighted sum approach represents a sufficiently good and feasible solution
for balancing stakeholders’ preferences, as it facilitates job creation without adversely
affecting economic and environmental objectives. Simultaneously, it provides a sustainable
solution from both environmental and economic perspectives.

7. Conclusions

This study focused on creating a supply chain framework for an energy symbiosis sys-
tem in Emilia-Romagna, focusing on the conversion of biomass into biogas, heat, electricity,
and green hydrogen through electrolysis. This approach promotes sustainable develop-
ment by leveraging resource exchanges between industrial, urban, and rural sectors. The
model also integrates the use of by-products, especially fertilisers from ADs, to enhance
both economic and environmental impacts. Key to this model is the development of a
hydrogen supply chain, marking a significant step towards sustainable energy systems.
This initiative addresses the crucial challenge of economic viability, proposing a gradual
transition that starts with hydrogen integration into existing natural gas infrastructures and
progresses towards electrolysis powered by renewable sources. This strategy is particularly
vital for heavy transport and industries that are challenging to decarbonise. The study
underscores the importance of effective municipal and rural waste management and the
establishment of a proficient hydrogen supply chain as central to the region’s stakeholders.
By capitalising on the benefits of green hydrogen, which contributes significantly less to
global warming compared to traditional hydrogen production methods, the model sets
a path towards low-carbon mobility and industrial synergy. In UIS settings, renewable
energy sources present an opportunity to lower GHG emissions, fight climate change, and
foster a more sustainable future. The proposed supply chain model incorporates aspects
such as feedstock supply, multi-energy systems, and multiple energy carriers to enhance
the efficiency of the biomass-to-energy and biomass–hydrogen networks.

By addressing a multi-objective optimisation problem, the model offers a compre-
hensive approach to maximise the economic net present value, minimise environmental
impact, and boost job creation. The optimisation problem is addressed using a weighted
sum method with B-BWM for preference articulation. This method is enhanced by the
linear normalisation technique, which standardises the objective function values for compa-
rability. The B-BWM is characterised by its efficiency and reduced bias in decision-making,
involving a detailed comparison process between the best and worst criteria. It facilitates
sensitivity studies, allowing stakeholders to evaluate the effects of various factors on the
final results. The results show that applying the B-BWM to solve the multi-objective opti-
misation in our case study yields positive economic impacts, with high overall revenues
of EUR 679.31M, while keeping costs limited to investments (EUR 18.65M), operations,
and transportation. On the other hand, the carbon footprint from landfilling and primary
energy production is reduced, considering an increase in biogas production and trans-
portation efficiency. Finally, job employment is boosted by the opening of AD, CHPP, and
AEL facilities.

In terms of the limitations of this research, scalarisation methods in multi-objectives
may lead to solutions that are biased towards objectives with higher assigned weights. This
is why we opted to previously perform a weighting phase with a group decision-making
method to balance diverse stakeholders’ perspectives. Additionally, this method might not
fully explore the Pareto front, particularly its non-convex regions. This is why we employed
a ϵ-constrain method to visualise the trade-offs and compare them to our proposed solution.
Nonetheless, other a priori multi-objective approaches can be explored. It is important to
note that the conducted sensitivity analysis does not consider how variables may change
over time; simulation studies in the solution could offer more detailed analysis of system
sensitivity. Moreover, due to computational limitations (owing to the high number of
parameters), it was not possible to test inter-dependencies.

This study provides valuable insights into the economic, operational, and environ-
mental aspects of the biomass-to-energy and biomass-to-hydrogen supply chain. However,
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future research could focus on incorporating uncertainty by developing a stochastic model
since uncertainty exists for various supply chain echelons (e.g., demand fluctuations,
supply interruptions, lead time variability, price volatility, taxation, subsidies, technolog-
ical innovations, and unforeseen disruptive events like natural disasters). The impact
of such uncertainties can significantly disrupt the supply chain, affecting each echelon
from feedstock availability to biogas and energy supply. To enhance resilience against
these uncertainties, future models would benefit from including proactive and reactive
strategies, such as facility fortification, backup supplies, and redundancy. Additionally,
incorporating other social and environmental factors would provide a more holistic view of
the supply chain dynamics. Social factors may relate to labour conditions and community
impact, particularly concerning health and safety. While other environmental factors can
integrate life cycle assessment indicators. Employing spatial analysis alongside MCDM
approaches could significantly enhance the capabilities for optimal location selection, en-
suring a more efficient and sustainable biomass-to-energy supply chain. Finally, analysis of
policy scenarios could facilitate improved judgement regarding taxation and the dynamics
of technological innovation.
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Appendix A

Table A1. Table of model parameters.

Parameters Description

capTR Maximum capacity of trucks.
capAD

k Maximum capacity level k of AD.
capHP

k Maximum capacity level k of CHPPs.
capEL

k Maximum capacity level k of electrolysers.
Θk Total level k PV area

icak Investment cost for building AD with capacity k.
icck Investment cost for building CHPP with capacity k.
icek Investment cost for building electrolyser with capacity k.
icpk Investment cost for building PV with capacity k.

op Operational costs for the facilities.
ηH Heat conversion efficiency at CHPPs.
ηP Power conversion efficiency at CHPPs.
ηE Hydrogen yield per unit of electricity at electrolysers.
Ψp Annual average solar radiation of location p.
ηPV Capacity factor of PVs.

λB Biogas yield per unit of feedstock at each AD.
λF Fertiliser yield per unit of feedstock at each AD.
e f A Emission factor for biomass exploited in ADs.
e f W Emission factor for unexploited feedstock landfilling.
e f C Emission factor for biogas exploited in CHPPs.
e f F Emission factor for fertiliser production.

e f NG Emission factor for natural gas consumption.
e f T Emission factor for transportation with trucks.

tc Cost of truck transportation.
pa Unit price of fertiliser.
pp Unit price of electricity sold to the grid.
ph Unit price of sold heat.
pe Unit price of sold hydrogen.
r Interest rate for discounting cash flows.

jcAD
k Job creation from AD at capacity level k.

jcHP
k Job creation from CHPPs at capacity level k.

jcEL
k Job creation from electrolysers at capacity level k.

jcPV
k Job creation from PVs at capacity level k.

Table A2. Table of model sets.

Indices Description

f Index of feedstock sources ( f ∈ F)
a Index of AD (a ∈ A)
c Index of CHPPs (c ∈ C)
p Index of PVs (p ∈ P)
e Index of AEL plants (e ∈ E)
k Set of installed capacity of each site (k ∈ K)
t Index of time periods (t ∈ T)
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Table A3. Table of model variables.

Variables Description

baak Indicates if AD a with capacity k is built (binary).
bcck Indicates if CHPP c with capacity k is built (binary).
beek Indicates if electrolyser e with capacity k is built (binary).
bppk Indicates if PV p with capacity k is built (binary).

xt
f a Feedstock transported from source f to AD a in period t.

yt
ac Biogas transported from AD a to CHPP c in period t.
f t
a Fertiliser transported from AD a in period t.

st
p Electricity produced by PV system p in period t.

et
c Electricity generated at CHPP c in period t.

qt
c Heat generated at CHPP c in period t.

wt
e Hydrogen produced at electrolyser e in period t.

zt
ce Electricity from CHPP c used by electrolyser e in period t.

lt
pe Electricity from PV p used by electrolyser e in period t.
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