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Abstract: Confusion emotion in a learning environment can motivate the learner, but prolonged
confusion hinders the learning process. Recognizing confused learners is possible; nevertheless,
finding them requires a lot of time and effort. Due to certain restrictions imposed by the settings
of an online learning environment, the recognition of confused students is a big challenge for
educators. Therefore, novel technologies are necessary to handle such crucial difficulties. Lately,
Electroencephalography (EEG)-based emotion recognition systems have been rising in popularity in
the domain of Education Technology. Such systems have been utilized to recognize the confusion
emotion of learners. Numerous studies have been conducted to recognize confusion emotion through
this system since 2013, and because of this, a systematic review of the methodologies, feature sets,
and utilized classifiers is a timely necessity. This article presents the findings of the review conducted
to achieve this requirement. We summarized the published literature in terms of the utilized datasets,
feature preprocessing, feature types for model training, and deployed classifiers in terms of shallow
machine learning and deep learning-based algorithms. Moreover, the article presents a comparison
of the prediction accuracies of the classifiers and illustrates the existing research gaps in confusion
emotion recognition systems. Future study directions for potential research are also suggested to
overcome existing gaps.

Keywords: EEG signals; emotion recognition; confusion; learning activities; machine learning;
deep learning

1. Introduction

The COVID-19 pandemic, which led to educational institutes’ longest closing in history
and an impending recession, brought abrupt and consequential changes to every education
system in the world. The normal instruction mode of delivery was disrupted, forcing
them to transpose into the online mode. Virtual classrooms and MOOCs are significant
online systems where usage dramatically increased during this time [1]. The transition
was challenging to both the educator and the learner; however, many learners in the
higher education systems now favor online learning as it provides flexibility to achieve a
satisfactory work–study balance for them [1–3]. Yet, challenges remain still for the educator,
such as the incapacity to assess learner emotions via online mode.

Education psychologists refer to the emotions stimulated during learning as “aca-
demic emotions”. Academic emotions can be of three types: Positive, Negative, and Mixed
(i.e., both positive and negative). Positive emotions are pleasant feelings for learning like
joy, zeal, and motivation while negative emotions denote unpleasant feelings that make
a learner demotivated [2]. Confusion is an emotion that can be experienced by anyone
during the learning process. According to educational psychologists, confusion is felt when
a learner finds it difficult to align new knowledge with the existing knowledge stored in the
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brain. This emotion is often utilized in the learning environment as a motivator; however,
prolonged confusion levels among learners lead to frustration and boredom [1–3]. Due to
this, educators need to thoroughly monitor learners’ confusion levels during their learning
process. Various technologies that detect confusion emotion within a digital learning envi-
ronment, such as learner analytics and sentiment analysis, are presently being utilized [3].
Bio-physiological signal approaches such as using Electroencephalography (EEG), Electro-
cardiogram (ECG), skin conductance, etc., are now becoming a popular technology over the
aforementioned ones, as the latter can offer more accurate and reliable emotion dynamics
over the former, which relies on indirect cues. As emotions are considered the source of
most physiological responses, the validity and reliability of emotion recognition through
these signals are enhanced [4–7]. Moreover, physiological signals can provide real-time
emotional detection, which allows for immediate feedback in human–computer applica-
tions. Hence, many researchers in the emotion recognition domain prefer this approach.
Out of the physiological signals, many researchers prefer EEG as it captures emotions from
the source of generation, that is, the brain [2–4].

Confusion emotion detection among learners using EEG is still an emerging research
domain, where the first publication was reported in 2013 [4]. However, when observing the
trend of publications in this domain (Figure 1), this domain did not show intense popularity
when compared to research conducted on other emotion recognition systems (Figure 2).
This lesser popularity of the confusion emotion recognition domain was the problem that
drove the authors to conduct this review with the intention of finding the root causes of
this unwavering popularity. Hence, this systematic review was conducted to (i) have a
state-of-the-art understanding of the current context; (ii) identify present research gaps
and their plausible root causes; and (iii) explore future research directions to encourage
potential research.
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Table 1. Breakdown of obtained articles from the databases.

Research Database No. of Extracted Literature

IEEE Xplore 06

ACM Digital Library 10

arXiv 4

Springer 3

Other 2
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The following Sections of the review comprise (i) a description of the methodology
followed to conduct the review; (ii) a detailed synopsis of the published literature within
the research domain concerning utilized datasets, feature preprocessing, feature types for
model training, and deployed machine learning and deep learning classifier algorithms;
(iii) a comparison of the prediction accuracies of the confusion emotion classifiers and
illustration of the existing research gaps in the confusion emotion recognition systems—
the algorithm comparison was made based on two categories, machine learning and
deep learning; and (iv) providing conclusions that the recommendations would be ideal
for future researchers to develop efficient systems for recognizing confused emotions in
practical learning environments.

2. Methodology

The review was conducted by defining a review protocol that described the article
selection and search strategy, article screening, data extraction, and critical evaluation.

In order to conduct the critical evaluation, three (03) Research Questions (RQ) were
formulated as follows: RQ 01: What is the present context of EEG-based confusion emotion
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recognition systems? RQ 02: What existing major research gaps are yet to be addressed and
what are their associated research problems? RQ 03: Can the identified issues be resolved?
If so, what could be the recommendations that can pave the way for future research?

The selection and screening of articles were performed as follows:

(a) Selection of Articles:

To minimize bias, all literature was selected from peer-reviewed data sources that
were extracted using the Google Scholar web search engine from the following research
databases. Table 1 illustrates the breakdown of obtained articles from the databases.

Accordingly, twenty-five (25) literature articles were identified. The authors did not
use any automation tool for the selection. The following search strings were used to search
literature from the above databases for selection: “Confusion emotion”, “recognition”,
“detection”, “learning”, “online education”, “EEG”, “Machine learning”, “Deep Learning”,
and “Artificial Intelligence”. The terms were even combined using Boolean operators such as
‘AND’ and ‘OR’ to broaden the search space and identify as many eligible articles as possible.

(b) Screening of Articles:

The selected articles were then screened using inclusion criteria: (i) articles written in
the English Language; (ii) articles that exclusively presented research on confusion emotion
recognition using EEG signals; (iii) Articles that presented work on confusion emotion
recognition within learning/educational environments. Articles were then excluded due to
the following reasons: Reason 01: Articles with only extended abstracts.

Reason 02: Articles with incomplete work, e.g., did not report/could not find re-
sults/findings of the study; Reason 03: Articles that had conducted research on confusion
emotion recognition but not using (a) EEG signals, (b) EEG frequency domain features, or
(c) were not about learners’ confusion emotion.

Data extraction was performed using the seventeen (17) screened articles. Data re-
garding the utilized datasets, feature preprocessing, feature types for model training,
and deployed ML/DL algorithms and their performances were extracted. All data were
recorded in evidence tables, which are presented in Tables 2–10. The authors then per-
formed a critical evaluation of the data extracted, which is presented in the Discussion
Section. A detailed description of the articles considered for the systematic review is listed
in Appendix A.

Table 2. Timeline of the published literature in chronological order.

Year Publication

2011 Wang et al. [4]

2016 Yang et al. [8]

2017 Nie et al. [9]

2018 Zhou et al. [10], Ibtehaz et al. [11], Tahmassebi et al. [12]

2019 Zhou et al. [13], Kumar et al. [14], Erwianda et al. [15], Wang et al. [16],
Reñosa et al. [17],

2021 Dakoure et al. [18], Benlamine et al. [19], He et al. [20]

2022 Daghriri et al. [21], Abu-gellban et al. [22], Men et al. [23]
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Table 3. Published datasets in ascending order (2011–2021).

Author Year Nature of
Subjects Stimuli EEG

Headset

No of/Type
of Electrodes
Used

EEG
Sampling
Rate

No. of Data
Samples Access

Wang et al. [4] 2011 10 college
Students

MOOC
videos

Single
channel
Neurosky
Mindset

Single
channel
(frontal lobe
Fp1 location)

512 Hz 12,811 Free and
public use

Zhou et al. [10] 2018 16 college
students Raven’s tests Emotiv

Epoc+

16 channels
14 channels
and
2 references

Not reported Not reported
Unavailable
for public
use

Zhou et al. [13] 2019

28
23 college
students and
5 Masters
level
students

Raven Test
and Sokoban
Cognitive
Game

OpenBCI

10 channels
08 channels
and
2 references

250 Hz Not reported
Unavailable
for public
use

Dakoure et al. [18] 2021
10 CS *
undergradu-
ates

Cognitive
ability tests Emotiv Epoc

16 channels
14 channels
and
2 references

128
samples/s 128

Unavailable
for public
use

Benlamine et al. [19] 2021
20
CS * under-
graduates

3D
adventure
serious game

Emotiv Epoc

16 channels
14 channels
and
2 references

128
samples/s 128

Unavailable
for public
use

* CS—Computer Science.

Table 4. EEG preprocessing techniques.

Technique Overview

Down-sampling This technique reduces the data in the EEG signal. For example, signals recorded at 512 Hz can be
down-sampled into 128 Hz. This technique mostly opts for wireless transmission [9,10].

Filtering for Artifact removal
Artifacts are noises/disturbances recorded in the EEG signal. Artifacts can be internal such as eye
blinks or external such as electrode displacement in the EEG headset. Independent Component
Analysis and Regression are commonly used approaches for artifact removal [8–10].

Re-referencing

When obtaining EEG recordings, researchers place a reference electrode mostly at one Mastoid
Cz. This will record voltages relative to another electrode.
This technique can be performed by changing the reference electrode to another position. This is a
good option when initial data recorded have not been collected without proper reference [10].

Table 5. The outline of Preprocessing Techniques used in Publications is listed in Table 3.

Publication Preprocessing Technique

Zhou et al. [7] Z-score standardization was used for EEG normalization to reduce individual differences in the
signals.

Dakoure et al. [8]

Performed Artifact Removal using high pass filtering at 0.5 Hz and Low pass filtering at 43 Hz—the
authors stated that the first filter was used as they wanted to deploy ICA. The second filter was used
because ICA was sensitive to low frequencies and the headset used for EEG acquisition did not
record signals above 43 Hz. ICA deployment. This algorithm breaks down the EEG signal into
independent signals coming from particular sources.
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Table 6. Domain Types of EEG Features.

Feature Types Significance to EEG Data Analysis

Frequency
D

om
ain

(FD
).

Statistical measures extracted from Power Spectral Density
(PSD): energy, intensity weighted mean frequency, intensity
weighted bandwidth, spectral edge frequency, spectral
entropy, peak frequency, the bandwidth of the dominant
frequency, power ratio [18]

PSD serves as the base calculation of this domain. The EEG
series’ power distribution over frequency is represented by
PSD values. Computing PSD values are advantageous as
neuroscientists believe they directly illustrate the neural
activity of the human brain. [4,8,19,20].

Relative PSD

The most frequently used frequency domain features in
EEG signal analysis [16]. Relative PSD is the ratio of the
PSD values of the frequency band to be analyzed to the total
frequency band. This measure reduces the inter-individual
deviation associated with absolute power. However, the
accuracy for analyzing brain changes based on the
non-stationary EEG signal is limited [18–21].

Differential Entropy

It is the fundamental concept that quantifies the
uncertainty/randomness of a continuous signal. It
measures the amount of information consisting of a signal
per unit time [22].
Differential entropy is the most used for emotion
classification nowadays. However, this measure only
considers relative uncertainty but does not calculate
absolute uncertainty [22–25].

Tim
e

D
om

ain
(T

D
)

Tim
e

D
om

ain
(T

D
)

Statistical measures such as minimum and maximum values
to quantify the range of data or the magnitude of signal
baseline, mean, mode, variance, skewness, and kurtosis [15]

The time domain decomposes the raw EEG signal about
time. It is assumed that statistical distributions can identify
EEG seizure activities from normal activities [22–25].

Hjorth Parameters

These are a set of statistical descriptors introduced by Bengt
Hjorth in 1970. The descriptors describe temporal domain
characteristics of mostly EEG and ECG signals. The
parameters provide information about the mobility, activity,
and complexity of the above signals [23–26].

Tim
e–Frequency

D
om

ain
(T

FD
)

Tim
e–Frequency

D
om

ain
(T

FD
)

Statistical measures such as mean, variance, standard
deviation, absolute mean, absolute median

These features are estimated to differentiate EEG signal
variations through statistical properties in each designated
frequency sub-band for a specific time domain [18–20].

Energy, Root Mean Square (RMS), and Average Power The signal amplitudes that correlate to frequency sub-bands
for a specific time domain are examined [18–20].

Short-Time Fourier Transform (STFT)

The time is frequently modified by a fixed window function
using the short-time Fourier transform (STFT). A number of
brief-duration stationary signals are superimposed to form
the non-stationary process.
However, the low-frequency subdivision and the
high-frequency temporal subdivision criteria cannot be
satisfied [17].

Wavelet Transform (WT)

The STFT local analysis capability is inherited by the
Wavelet Transform (WT) method. WT has a higher
resolution to investigate time-varying and non-stationary
signals [17].
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Table 7. Comparison of ML Architectures.

Reference ML Algorithm/s Type of
Features

Prediction
Performance Significance

Wang et al. [4] Naïve
Bayes—Gaussian

Power
Spectral
Density (PSD)
values

51–56%

The classifier was chosen as it works well with sparse and noisy
training data.
They stated that the difficulties in interpreting EEG data and their
large dimensionality were found to have a negative impact on the
accuracy of the classification, which was not significantly different
from the applied educational researchers’ method of direct
observation.

He et al. [26]

Naïve
Bayes—Gaussian PSD values 58.4%

They found that Random Forest and XG Boost are approximately
10% higher when compared with Naïve Bayes and KNN.
Concluded that Naïve Bayes is not suitable for this dataset as the
classifier makes an incorrect assumption that each value in the
multi-dimensional sample has an independent impact on
categorization.

Naïve
Bayes—Bernoulli 52.4%

k Nearest
Neighbor (kNN) 56.5%

Random Forest
(RF) 66.1%

XG Boost 68.4%

Dakoure et al. [8]

Support Vector
Machine (SVM)

PSD values 68.0%
They classified confusion levels into three (03) levels, which had not
been previously done.
They concluded that SVM is better suited for EEG classification than
KNN with justifications stating that KNN does not abstract and
learn patterns in data like SVM. It merely computed distances and
formed clusters, and the instances of the same cluster are close in the
feature space.kNN 65.2% (k = 20)

Kumar et al. [27]

kNN

PSD values

54.86% (n = 1)

The authors employed 32 supervised learning algorithms with
different parameter settings. (Algorithms with the highest
accuracies are only displayed here.) They concluded that Random
Forest with Bagging had the highest accuracy. However, they did
not provide justifications for their conclusions.
They recorded universal-based models to improve the accuracy.

Logistic
Regression CV 53.88%

Linear
Discriminant
Analysis

53.38%

Ridge Classifier 53.38%

SVM 55.18%

RF with Bagging 61.89%

XG Boost 59.21%

Erwianda et al.
[28]
2019

XG Boost

PSD values

82%

RFE was utilized as the feature selection technique and TPE as the
hyperparameter optimization technique.
The study revealed that the best features were Theta, Delta, and
Gamma-2 for confusion detection. However, an explanation for this
fact was not provided.

XG
Boost-Recursive
Feature
Elimination (RFE)

83%

XG Boost-RFE—
Tree-Structured
Parzan Estimator
(TPE)

87%

Daghriri et al. [29]

Gradient Boosting
(GB) PSD values

100%

A novel feature engineering approach was proposed to produce the
feature vector. Class probabilities from RF and GB were utilized to
develop the feature vector.
Results indicated that 100% accuracy was obtained via this approach.
Further, it stated that the DL models that were trained did not
perform well when compared with ML. The reason stated was the
dataset was too small for better performance.

RF

Support Vector
Classifier (SVC)

Logistic
Regression (LR)

Yang et al. [30] SedMid Model

EEG time
series data
and data
extracted
from audio
and video
features of the
lectures

87.76%

The authors introduced a new model named Sequence Data-based
Mind-Detecting (SedMid). First of a kind that detected confusion
levels by combining other sources. The Sedmid model developed
mixed time series EEG signals with audio–visual features.
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Table 7. Cont.

Reference ML Algorithm/s Type of
Features

Prediction
Performance Significance

Benlamine et al.
[9]

kNN

EEG time
series

92.08%
(k = 5 ≈ log
(number of
samples))

A novel approach where the researchers attempted to recognize
confusion emotion in learners in a multi-class classification
approach rather than a binary classification. At fixed time frames,
facial data showing the confusion levels of each participant were
recorded. The corresponding EEG signals were recorded. Finally,
separate EEG recordings were obtained for high, medium, and low
levels of confusion. The Model was trained using SVM and KNN;
however, they preferred SVM due to
(a) Popular in BCI research;
(b) Robustness against nonlinear data;
(c) Efficient in high dimensional space.
The authors did not review why KNN produced higher results,
although they stated that KNN is not suitable for EEG classification.

SVM 92.08%

Table 8. Comparison of prediction accuracies using ML and DL algorithms.

Reference Deployed Algorithm Prediction Accuracy

Benlamine et al. [19]
ML kNN 92.08%

DL LSTM * 94.8%

He et al. [20]
ML XGBoost 68.4%

DL LSTM * 78.1%

* LSTM—Long Short-Term Memory.

Table 9. Comparison of DL Architectures.

Reference DL Algorithm/s Deployed Prediction Performance Significance

Zhou et al. [13] Convolutional Neural
Network (CNN) 71.36%

This study selected CNN as it accepts raw data out of several channels as direct
inputs, reducing the need to transform the EEG raw data into the standard
frequency bands and the process subsequent feature extraction method.

Ni et al. [9]

CNN 64.0%
This study was conducted to improve the accuracy of the dataset [4].
Concluded that CNNs and DBNs are not a good choice for this dataset as there
is a high chance of overfitting.
They recommended LSTMs, although different time steps (i.e., a feature for
every 0.5 s) supplied to the LSTM share the same weights in the neural network,
the forget gate can learn to utilize previous hidden states in the LSTM.
Bi-directional LSTMs employ sequential data from both directions to learn a
representation in both directions including context data, which enables a more
reliable and accurate model.

Deep Belief Network
(DBN) 52.7%

LSTM 69.0%

Bi-LSTM 73.3%

Wang et al. [16] Confounder Bi-LSTM
(CF-Bi-LSTM) 75%

This study was conducted to improve the accuracy of the dataset of [4] by the
same authors.
They introduced the Confounder Filtering method that reduces confounders
and improves the generalizability of the deep neural network and concluded
that this approach improves the performance of bioinformatics-related
predictive models.

Abugellban et al. [22] CNN with Rectified Linear
Unit (ReLu) 98%

This study addressed the performance issues of CDL 14, which had ignored the
demographic information of the students.
Concluded that demographic information is naturally influenced by confusion
emotion detection.

Reñosa et al. [17] Artificial Neural Network
(ANN) 99.78%

The research attempted to classify confusion levels of students as a percentage
using combined averaged power spectra of all frequency bands and the
standard deviation of each frequency band as inputs for the ANN.

Zhou et al. [13]

05 layered CNN
Adaptive Moment
Estimation (ADAM) for
optimization

91.04%

The authors provided a detailed description of how they conducted the human
experiment to collect EEG recordings by inducing confusion through
game-based learning. They utilized Adam Optimization to speed the gradient
descent process and remove excessive swings during the CNN model training
process. They highlighted that the binary classification of the confusion
emotion state is preliminary since confusion is a complex emotion state. They
recommended multi-class classification as a good alternative.
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Table 9. Cont.

Reference DL Algorithm/s Deployed Prediction Performance Significance

Men et al. [23]

LSTM 77.3%
This paper addresses the issue of an overfitting problem with LSTM and
Bi-LSTM algorithms by introducing an attention layer. This is a technique in
neural networks that attempts to resemble cognitive attention. The authors
stated that the attention layer achieved good accuracy in textual and image
classification models. They utilized two DL algorithms: LSTM and Bi-LSTM but
were not satisfied with either model as they had not met their expectations.
They concluded that LSTM had heavy overfitting and Bi-LSTM did not learn
features from the training data.

LSTM + Attention Layer 81.7%

Bi-LSTM 67.9%

Bi-LSTM + Attention Layer 69.7%

Ibtehaz et al. [11]

CNN + Logistic Regression 81.88%

The authors proposed a new algorithm where spectral features of EEG signals
are fused with the temporal features. Spectral features were extracted using
CNN and classification was performed through ML algorithms. Thus, this
study implemented a hybrid ML and DL model. The features for the classifier
algorithms were the activation map received from the Global Average Pooling
layer. The authors concluded that their approach yielded higher accuracies
since CNN extracts better features for classification rather than manually
picking features for model training.

CNN + Naïve
Bayes—Gaussian 77.98%

CNN + Support Vector
Machine 78.075%

CNN + Decision Trees 73.922%

CNN + Random Forest 79.88%

CNN + k Nearest
Neighbor (kNN) 82.92%

CNN + AdaBoost 80.79%

Tahmassebi et al. [12] NSGA II—knee model 73.96%

This study aims to classify confused learners from non-confused learners using
Genetic Programming. They developed models from the NSGA-II algorithm
and multi-objective genetic programming approach. Based on the fitness and
complexity measures, the authors defined three models of which the
third—knee model—produced the highest accuracy. They concluded that this
model can be a good substitute for traditional algorithms as it has an 80%
shorter computational run time.

3. Results

The authors observed that in comparison to the growing popularity of emotion recogni-
tion systems using EEG, confusion emotion recognition has less popularity. The publication
frequency of this research domain shows an upward trend from 2017 and a steep down-
ward trend during the year 2020 while increasing again in 2021. It can be speculated that
the global pandemic situation would have had an impact on this research domain in 2020.

Of the articles published between 2013 and 2023 (Table 2), only five of the researchers
were found to have produced their own datasets by conducting human tests. Others
focused on achieving higher prediction accuracies using shallow learning and deep learning
techniques and compared different algorithms. Table 2 shows the timeline of the published
literature.

3.1. Datasets

Only five EEG databases or datasets linked to confusion emotion recognition in a
learning environment have been published up until this point (Table 3). The datasets
mainly took three approaches to induce confusion among their learners: (i) Wang and
his group of researchers [4] used an approach where the students were presented with
new information via brief videos. They made their participants self-learn new concepts.
Some videos had content removed in between to increase confusion; (ii) Zhou et al. [6,7]
and Dakoure et al. [8] made their participants solve logical reasoning problems to induce
confusion. They used famous cognitive ability tests (Raven, and Sokoban tests) as a source
of a confusion emotion-inducing stimulus [6–8]; and (iii) Benlamine et al. [9] induced
confusion in their participants by making them play a serious adventure computer game,
yet the authors had a minimal explanation of how they induced confusion via the game
environment in cognitive terms.

The below table provides a detailed summary of those databases/datasets.
It was noted that only [4] is publicly accessible and can be downloaded from [5]. It is

the only dataset that encourages further research in confusion emotion recognition within
an educational setting, which is the rationale behind the extensive citations of this dataset
in numerous studies that did not gather EEG data. This led to the emergence of a research



Signals 2024, 5 253

community where numerous studies evaluated and compared the machine learning and
deep learning predictions made using this dataset.

3.2. Approaches for EEG Preprocessing

Preprocessing in the context of EEG data typically refers to reducing noise from the
signals to identify the relevant signals. Preprocessing of EEG data is crucial for many
important reasons: (i) since spatial information is lost when EEG is acquired from the
device that is attached to the scalp, the EEG signals may not accurately reflect the signals
coming from the brain; (ii) weaker EEG signals can be hidden by the noise that EEG data
frequently contain, e.g., blinking or muscle movement artifacts can taint the data and
distort the image; and (iii) pertinent EEG signals can be separated from random EEG
signals [10–12].

There are no standard EEG preprocessing techniques since EEG preprocessing is still an
active area of research [12]. However, many researchers working with EEG data commonly
use down-sampling, re-referencing, and artifact removal as mandatory preprocessing
techniques. A short summary of these techniques is provided in Table 3.

The preprocessing techniques that were followed by the researchers who created the
EEG datasets related to learner confusion emotion are as follows:

It was observed that only two publications discussed their preprocessing method; it was
not mentioned even in the widely used, publicly available dataset [4]. The accuracy of the
EEG data in the dataset is, hence, questionable as to whether the artifacts had been removed
and whether the dataset contains only the relevant signals related to confusion emotion.

3.3. Types of EEG Features

A feature is a unique or distinguishing measurement, transformation, or component
that is taken from a pattern’s segment. During the feature extraction process, a feature
vector is created from a regular vector [13]. An efficient feature extraction pipeline needs
to be followed during emotion recognition from EEG due to the weak, nonlinear, and
time-varying nature of the signals [14]. Features from the EEG signals are classified
generally into three categories: frequency domain (FD), time domain (TD), and time–
frequency domain (TFD). The FD represents the amplitudes of EEG signals in their relevant
frequency domain. This provides valuable insights into the underlying characteristics such
as dominant frequencies, harmonics, and other spectral features of the signal. However,
transforming a signal into its FD results in a loss of time information. The drawback is that
this domain assumes the signal is stationary, meaning that the statistical properties of the
signal remain constant over time. Real-world signals are mostly non-stationary. This leads
to misinterpretations about the signal [15].

The time domain describes how EEG signals vary with time. TD analysis has the ca-
pacity to simulate all nonlinearities; however, the computation can be time-consuming [16].

Features in the time–frequency domain (TFD) have now widely been used in EEG
signal processing as TFD accurately analyzes non-stationary waves. TFD combines in-
formation from the time and frequency domains and simultaneously allows for localized
analysis in the time–frequency domain. This way, the signal’s temporal information is not
lost [17].

The feature categories commonly used from each domain are summarized in Table 6.
It was observed that the majority of the researchers utilized PSD values in the frequency

domain for implementing the models. Time domain features were rarely used, and time–
frequency domain features have never yet been used for confusion emotion recognition. A
detailed summary of the features utilized by each researcher is illustrated in Table 7.

Wang et al.’s [4] dataset, which many of the researchers used to conduct their own
research, consists of EEG data in the form of PSD values. They stated that when training
models use features in the time series domain, the models tend to overfit. They assumed
that this was caused by there not being enough EEG data samples in the dataset.
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Yang et al. [8] and Benlamine et al. [19] used time domain features for model training.
Ref. [8] introduced a new algorithm model that analyzes time series features together with
data from audio and video features of lectures to detect learners’ confusion states. Ref. [19]
trained existing ML algorithms.

3.4. Machine Learning (ML) Architectures and Performance Comparison

ML algorithms have been the most popular among researchers in this domain. The
most common algorithm type deployed was supervised classification such as Support
Vector Machines, Naïve Bayes, Random Forest, k Nearest Neighbor, and Gradient Boosting.
Unsupervised learning and ensemble learning were found to be infrequently used in the
studied literature Table 7 summarizes all the ML algorithms that had been utilized.

3.5. The Need for Deep Learning

The literature says that deep learning (DL) networks can extract more distinct and
interpretable features from EEG signals [23,31]. EEG signals tend to have a poor signal-to-
noise ratio, which might make it difficult to distinguish important signals from other noisy
features like artifacts. Also, they are complex, meaning that the neural oscillations behave
nonlinearly and are very dynamic. DL algorithms are designed in such a way that they
progressively extract high-level features from EEG signals by using multiple processing
layers to learn representations of the data [31–34]. This indicates that DL models also work
effectively with inputs not used for training the model. Due to this, these models can
efficiently work with inputs from real-world data samples. Traditional ML models do not
have this ability, and thus, tend to overfit [35–37]. This was observed even in the publications
in this domain, where many authors stated that the ML models tended to overfit.

Table 8 shows research that compared ML and DL algorithms in their studies. Ben-
lamine et al. [9] and He et al. [26] compared the prediction accuracy of ML and DL classifiers
and concluded that DL algorithms are much more accurate (Table 8). Yet, neither offered a
convincing justification as to the reason why DL algorithms offered better accuracy than
ML algorithms.

It was noted that many studies relied heavily on Convolutional Neural Networks
(CNNs). This algorithm, even though it is a classifier, is deployed in the domain of emotion
recognition to extract features from raw signals. The convolutional layers’ activation maps
before the final fully connected layer are used as the features for training the model [37–40].
Long Short-Term Memory (LSTM) is the second most used DL algorithm by the researchers.
This is an extended form of a Recurrent Neural Network (RNN), which has the ability to
learn long-term dependencies in time series data. LSTM was used mostly to determine the
correlations in the EEG feature vector [39–43]. Bi-directional Long Short-Term Memory (Bi-
LSTM), which consists of two LSTM algorithms that take inputs in forward and backward
directions, can learn feature representations within a shorter time span. Researchers also
state that Bi-LSTMs are better at learning emotional information than LSTMs [43–47]. The
next Section provides a detailed synopsis of the DL algorithms used so far in this domain.



Signals 2024, 5 255

Table 10. Summary of the identified research gaps and the suggested recommendations.

Research Gap Associated Research Problem Suggested Research Works for Future

Bias–Variance Dilemma in existing Confusion
Emotion Models

Model having hindered performance.
The model’s prediction performance is unreliable for
new and unseen data.

Metadata such as demographics play an important
role in human emotional states [48]. Hence, they can
be considered as inputs for model training.
Use advanced EEG feature preprocessing techniques
to remove noise in EEG data.
Use advanced feature selection techniques to identify
the optimal EEG features that can predict
confusion emotion.
Construct models having bias–variance tradeoff.

Limited research on the development of
cost-sensitive confusion emotion models

Good-performing models are unaffordable for end
users.

Research on constructing cost-sensitive models
having a tradeoff between cost and model
performance.

Limited datasets
Unable to test developed models on independent
datasets for their prediction reliability on new and
unseen data.

Conduct human experiments to collect EEG
recordings and create datasets.

Low Generalizability in existing confusion emotion
models

Models would not perform well if new data having
different levels of complexities were provided.

Collect EEG recordings among a broader
demographic population of learners.
Test the models on EEG recordings from real-world
populations rather than recordings obtained from a
laboratory experiment setup.

3.6. Deep Learning Architectures and Performance Comparison

The literature shows that the trend for research on confusion emotional detection is
now shifting from ML to DL, and research publications during the last two years show
the higher prediction accuracies of DL that ML failed to achieve. We also observed that
much of the research focuses on finding how to improve DL algorithms to achieve better
accuracies. Table 9 reviews the current research that deploys DL algorithms for confusion
emotional state detection.

4. Discussion and Future Directions

EEG-based confusion emotion recognition of learners is an emerging research domain.
The authors reviewed seventeen articles that were published in this research domain from
its first publication [5] to the year 2023 and were able to extract trends and highlight major
issues that the present domain experienced, mainly in the sections of datasets, widely used
EEG features, and the ML and DL algorithms utilized for confusion emotion recognition.

The research questions were answered as follows:

4.1. Answering Research Question One

“What is the present context of EEG-based confusion emotion recognition systems?”
It was observed that this research domain is still limited and growing at a slow pace

due to the smaller number of publications (only seventeen) that were identified till the
present. Only five research works [5,16,19,24,25] were dedicated to creating datasets and
of the five, only one dataset [5] is still available publicly. Other publications comprised
research works that built confusion emotion classifiers using Wang et al.’s [5] dataset
(Figures 3 and 4).

A crucial question lies concerning the slow pace of this research domain. Although
deriving a specific and conclusive answer cannot be reached, it was assumed that this is
occurring due to the following reasons:

(a) Limited creation of datasets that collect EEG recordings by conducting human ex-
periments. This is due to the following reasons: (i) difficulty in stimulus design
for inducing confusion within an educational setting; (ii) unavailability of standard-
ized psychological procedures for deliberate induction of confusion through learning
activities; and (iii) practical problems and challenges relating to EEG acquisition re-
main, such as the need for the necessary technological infrastructure, legal approvals,
time, and financial commitment for the acquisition of a significant number of EEG
recordings from participants [46].
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(b) Limited publicly accessible datasets: datasets that are publicly accessible help over-
come obstacles related to EEG acquisition. The unavailability of datasets may demoti-
vate those researchers who are interested in conducting research in this domain yet
cannot overcome the above obstacles. The availability of a wide range of datasets
offers diversified opportunities to analyze EEG data and extract uncovered informa-
tion that would promote more research. Hence, in any study field, the increased
availability of datasets is just as crucial as developing the datasets themselves.
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The following can be summarized regarding the present context of the research do-
main: (i) EEG signals for the analysis were captured either from the frontal side of the brain
using a single-channel EEG headset or from different parts of the brain via multi-channel
EEG headsets; (ii) after acquisition, the EEG signals were preprocessed mainly using the
Fast Fourier transformation (FFT) method; and (iii) the preprocessed signals were then classi-
fied using supervised ML or DL classification algorithms. The most commonly deployed ML
and DL algorithms are shown with their usage percentages in Figures 5 and 6, respectively.
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All works utilized supervised binary classification ML/DL algorithms to identify
confused learners from non-confused learners. The average prediction accuracies for the
most common machine learning and deep learning algorithms that were trained using
Wang et al.’s dataset [5] are illustrated in Figures 3 and 4, respectively.

The tendency to use DL algorithms has now increased more than ML. The literature
published closer to the present date mainly studies applying different DL algorithms
to improve the accuracy of detection, but the cost of ML and DL algorithms were not
compared. When considering the nature of the input features used for model training,
the features of EEG signals were independently extracted and combined afterward into a
single feature vector. The input features were either Power Spectral Density (PSD)/EEG
frequency ranges or statistical measures of the EEG signals.
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4.2. Answering Research Question Two

“What existing major research gaps are yet to be addressed and what are their associ-
ated research problems”?

The following major research gaps were revealed that had not yet been addressed.
Research gap 01—Bias–Variance Dilemma in existing confusion emotion models: The

bias–variance dilemma is a conflict between model bias and variance where model variance
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increases when bias is being reduced, and vice versa [49,50]. This conflict prevents the
model’s ability to learn beyond the training dataset, thus reducing the reliability and
prediction accuracy of the model [51]. This dilemma causes the model either to overfit
(provides accurate predictions for training data but not for new data) or underfit (generates
erroneous predictions for both new and unseen data).

The authors observed that works by [5,20–22,26] developed models that had a pre-
diction accuracy within the range of 50% and [20,24,27] had models that had prediction
accuracies between 90% and 100%. The high variation in the reported ML prediction
accuracies concerned the author as to why it might happen. It was assumed that this could
be due to the bias–variance dilemma. The assumption was supported by the conclud-
ing remarks of [27], which stated that achieving 100% accuracy levels might be due to
overfitting. Another solid support for the above assumption was provided by [21]. Their
initial model developed using XGBoost had an accuracy level of 52%. In order to boost
performance, they optimized the model using Tree Parzan Estimator (TPE) and boosted the
performance to 58%. However, the authors did not mention the bias–variance dilemma.
However, the theory on the bias–variance dilemma states that model optimization using
TPE or hyperparameter tuning algorithms reduces this dilemma resulting in a boost in the
prediction accuracy of the model if underfitted [50].

A critical root cause for the bias–variance dilemma could be the quality of the dataset [47].
If the dataset consists of noise and is not preprocessed sufficiently, this would lead to the cre-
ation of this dilemma [48]. The above reason could be the reason for the dilemma experienced
by the models in [52]. Both studies utilized the dataset of Wang et al. [5]. It did not describe
feature preprocessing in a detailed manner. Since EEG recordings are highly susceptible to
noises and artifacts, a proper preprocessing pipeline is required for better accuracy of the EEG
recordings. Hence, the quality of the EEG data samples in the dataset is questionable, and it is
suspected that this lower quality led to the creation of the bias–variance dilemma.

An associated research problem for this could be that by not including an examination
of the bias–variance dilemma in the machine learning development pipeline, the developed
models would become affected by the dilemma, therefore causing the model to either
overfit or underfit, and thus making the predictions for new and unseen data unreliable.

The authors only focused on the bias–variance dilemma in machine learning algo-
rithms. Deep learning algorithms were given less focus as the authors intended to bridge
the research gaps that were in machine learning algorithms in order to achieve the aim of
the study.

Research gap 02—Limited research on the development of cost-sensitive confusion
emotion models: It was revealed that models developed with DL algorithms had better
accuracy than ML algorithms (Tables 7 and 9). However, DL models are much more expen-
sive than ML models as they are computationally expensive [53] and heavily dependent
on computing power, requiring powerful hardware for processing Ga. Although the per-
formance of DL models is higher, their operational costs mean that it is unaffordable for
end users to utilize DL models in their day-to-day activities [54]. This is a problem when
designing models that fit real-world use. Since the end users of the models developed in
this study are educators, it is crucial to develop cost-effective models that perform well.
The above type of models can be designed utilizing the theories of cost-sensitive machine
learning [50]; however, these have not yet been utilized in existing works till the present
day, to the best of the authors’ knowledge.

Research gap 03—Limited diversified datasets comprising EEG recordings of learners
engaged in diversified learning activities: It was revealed that till the present, there are only
four datasets that consist of EEG data samples related to learners’ confusion levels. Of the
four datasets, the only dataset publicly available is Wang et al.’s [5] dataset. This dataset
comprises 12,811 data samples that are utilized for model training and testing in existing
works that have built models using various ML and DL algorithms.

This dataset has its own issues that are identified as follows: (i) It comprises data
extracted from a well-defined sample: a group of ten college students whose subject majors
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were not specified. They were asked to learn from MOOC videos with topics; however,
they failed to specifically mention the subjects covered in the videos. They stated that
their audience would be confused; however, they did not justify the confusion induction
stimulus. When a well-defined population is used to extract training data, ML and DL
algorithms are prone to overfit, and the generalizability of the model is influenced by the
EEG recordings of the human subjects who participated in the experiment [49]; (ii) Metadata
on demographics of the participants such as age group, gender, ethnicity, and psychological
factors during the time of the experiment are not reported. Metadata provides complete and
detailed information about the population on which the algorithms were trained, tested,
and validated. This is crucial for assuming that algorithm performance can be extrapolated
to different populations [49]. Also, integrating metadata into algorithm development
would have implications for increased classification accuracy as it would closely reflect the
practice of an educator who analyzes students not only through cognitive perspectives but
also through demographics [49].

The unavailability of another dataset similar to that of [5] leads to a problem, whereby
the developed models cannot be tested for their levels of generalizability, which requires
new and unseen data.

Research gap 04—Existing confusion emotion models were not tested on new, previ-
ously unseen data: It was revealed that none of the research works reported evaluating the
trained model performance within a real-world population. This could be due to: (i) un-
availability of datasets other than the dataset used for model development or (ii) resource
unavailability for the authors to test the developed system on new and unseen data. The
trained models were evaluated against the data from the dataset itself. The majority of the
evaluation utilized either a 5-fold or 10-fold evaluation technique to predict the model’s
ability to predict given new instances. Although this approach tests the model’s prediction
performance, which was trained on a particular complexity, it does not test the performance
of the model if it is given data having different complexities than the one trained on (e.g.,
data consisting of similar patterns but not the same as those of the training dataset) [9].
Due to this, it is questionable whether the trained models would have good performance if
given independent datasets.

4.3. Answering Research Question Three

“Can the identified research gaps be filled? If so, what could be the recommendations
that can pave ways for future research?”

Yes, the identified gaps can be filled through technological solutions. Table 10 presents
a summary of the identified research gaps, their associated problems, and the suggested
works to bridge the gaps as future work in this research domain.

5. Conclusions

Confusion is an emotion state experienced frequently during the learning process. Ed-
ucational psychologists believe that this emotion stimulates when a learner finds it difficult
to align new knowledge with the existing knowledge stored in the brain [2]. This review
paper focused on the works conducted in the research domain of electroencephalography
(EEG)-based confusion emotion recognition using artificial intelligence among learners.
It was identified that this domain is still in its infancy stage. The first research work con-
ducted was in 2013 by Wang et al. [4]. Of the articles published between 2013 and the
year this review was conducted (2023), there were only 17 research works published. This
review paper focused on all the 17 studies on confusion emotion recognition of learners that
were conducted. This review provided a detailed summary of these research works with
reference to utilizing the EEG features, features extraction methods, system performance,
and algorithms for confusion emotion recognition in learners. Algorithm comparison was
performed based on two categories: ML and DL. A comparison table of the models built,
performance graphs, and information about publicly available datasets is also provided.
Major research gaps in this domain were identified and are explained elaborately in this
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review concerning their possible root causes. The authors provided recommendations to
bridge the research gaps and believe that the recommendations would be an ideal way for
future researchers to develop efficient systems for the recognition of confusion emotion in
practical learning environments.
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Appendix A

Table A1. Publications selected for Systematic Review.

No. Year of
Publication Authors Name of Journal/Conference

Proceedings Title Citation

1 2013
Wang, Haohan, Yiwei Li, Xiaobo Hu,

Yucong Yang, Zhu Meng, and
Kai-min Chang

AIED Workshops
Using EEG to Improve Massive

Open Online Courses
Feedback Interaction

[5]

2 2016 Yang, Jingkang, Haohan Wang, Jun Zhu,
and Eric P. Xing arXiv preprint arXiv:1611.10252

Sedmid for Confusion Detection:
Uncovering Mind State from Time

Series Brain Wave Data
[8]

3 2017 Ni, Zhaoheng, Ahmet Cem Yuksel, Xiuyan
Ni, Michael I. Mandel, and Lei Xie

8th ACM International
Conference on Bioinformatics,
Computational Biology, and

Health Informatics

Confused or not confused?
Disentangling brain activity from

EEG data using bi-directional
LSTM recurrent neural networks.

[9]

4 2018 Yun Zhou; Tao Xu; Shiqian Li; Shaoqi Li

2018 40th Annual International
Conference of the IEEE

Engineering in Medicine and
Biology Society (EMBC)

Confusion State Induction and
EEG-based Detection in Learning [10]

5 2021 Nabil Ibtehaz, Mahmuda Naznin

NSysS’21: Proceedings of the
8th International Conference on

Networking, Systems
and Security

Determining confused brain
activity from EEG sensor signals [11]

6 2018 A. Tahmassebi, A. H. Gandomi and A.
Meyer-Baese

IEEE Congress on Evolutionary
Computation (CEC), Rio de

Janeiro, Brazil

An Evolutionary Online
Framework for MOOC

Performance Using EEG Data
[12]

7 2019 Zhou, Yun, Tao Xu, Shaoqi Li, and
Ruifeng Shi

Universal Access in the
Information Society

Beyond engagement: an
EEG-based methodology for

assessing user’s confusion in an
educational game

[13]

8 2019 Bikram Kumar, Deepak Gupta, Rajat
Subhra Goswami

International Journal of
Innovative Technology and

Exploring Engineering

Classification of Student’s
Confusion Level in E-Learning

using Machine Learning
[14]

9 2019
Erwianda, Maximillian Sheldy Ferdinand,
Sri Suning Kusumawardani, Paulus Insap

Santosa, and Meizar Raka Rimadana.

International Seminar on
Research of Information

Technology and Intelligent
Systems

Improving confusion-state
classifier model using xgboost and
tree-structured parzen estimator

[15]

10 2019 Wang, Yingying, Zijian Zhu, Biqing Chen,
and Fang Fang.

Cognition and Emotion volume
33, no. 4.

Perceptual learning and
recognition confusion reveal the
underlying relationships among

the six basic emotions.

[16]

11 2019 Claire Receli M. Reñosa; Argel A. Bandala;
Ryan Rhay P. Vicerra

2019 IEEE 11th International
Conference on Humanoid,

Nanotechnology, Information
Technology, Communication

and Control, Environment, and
Management
(HNICEM)

Classification of Confusion Level
Using EEG Data and Artificial

Neural Networks
[17]

12 2021 Dakoure, Caroline, Mohamed Sahbi
Benlamine, and Claude Frasson

International FLAIRS
Conference Proceedings, vol. 34

Confusion detection using
cognitive ability tests [18]
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Table A1. Cont.

No. Year of
Publication Authors Name of Journal/Conference

Proceedings Title Citation

13 2021 Benlamine, Mohamed Sahbi, and Claude
Frasson

In Intelligent Tutoring Systems:
17th International Conference,

Proceedings. Springer
International Publishing

Confusion Detection Within a 3D
Adventure Game [19]

14 2021 He, Shuwei, Yanran Xu, and Lanyi Zhong

IEEE 2nd International
Conference on Artificial

Intelligence and Computer
Engineering (ICAICE)

EEG-based Confusion
Recognition Using Different
Machine Learning Methods

[20]

15 2022
Daghriri, Talal, Furqan Rustam, Wajdi
Aljedaani, Abdullateef H. Bashiri, and

Imran Ashraf

IEEE Electronics volume 11, no.
18

Electroencephalogram Signals for
Detecting Confused Students in

Online Education Platforms with
Probability-Based Features

[21]

16 2022 Hashim Abu-gellban; Yu Zhuang; Long
Nguyen; Zhenkai Zhang; Essa Imhmed

2022 IEEE 46th Annual
Computers, Software, and
Applications Conference

(COMPSAC)

CSDLEEG: identifying confused
students based on EEG using

multi-view deep learning
[22]

17 2022 Xiuping Men, Xia Li International Journal of
Education and Humanities

Detecting the confusion of
students in massive open online

courses using EEG
[23]

18 2022 Na Li, John D. Kelleher, Robert Ross arXiv preprint:2206.02436
Detecting interlocutor confusion

in situated human-avatar
dialogue: a pilot study

REJECTED
(Reason 03 of

Exclusion Criteria)

19 2022 Na Li, Robert Ross arXiv preprint:2206.01493
Transferring studies across
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