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Abstract: Air quality is a subject of study, particularly in densely populated areas, as it has been
shown to affect human health and the local ecosystem. In recent years, with the rapid development
of technology, low-cost sensors have emerged, with many people interested in the quality of the air
in their area turning to the procurement of such sensors as they are affordable. The reliability of
measurements from low-cost sensors remains a question in the research community. In this paper, the
determination of the correction factor of low-cost sensor measurements by applying the least absolute
shrinkage and selection operator (LASSO) regression method is investigated. The results are promis-
ing, as following the application of the correction factor determined through LASSO regression the
adjusted measurements exhibit a closer alignment with the reference measurements. This approach
ensures that the measurements from low-cost sensors become more reliable and trustworthy.

Keywords: ozone (O3); nitrogen dioxide (NO2); air quality IoT; low-cost sensing systems; optimization
low-cost sensors measurements; LASSO regression

1. Introduction

In large cities with numerous human activities and various types of machinery, such
as vehicles, industrial equipment, and heating systems, air quality must be monitored, as
all of the above release gaseous pollutants into the environment [1]. Air quality has a direct
impact on the health of the population. According to the World Health Organization [2],
the poor quality of the air can cause various illnesses and even death. At a global level, air
quality is monitored by governmental organizations and research centers with air quality
monitoring systems consisting of expensive equipment. The advancement of technology
has led to the rapid growth of low-cost sensors [3], which are small in size and affordable [4].
In recent years, there has been an observed trend among citizens to monitor air quality
in their residential and work areas. To fulfill air quality monitoring requirements, they
often resort to acquiring low-cost sensors. The reliability and accuracy of measurements [5]
from low-cost sensors, especially on such a critical issue as air quality, remains a research
question and is a continuous subject of research and study by the scientific community.

Air quality sensors should be considered as a complement to formal air quality mon-
itoring instruments and not as a replacement [6]. By incorporating low-cost air quality
sensors alongside formal air quality measuring instruments, it becomes feasible to establish
an extensive monitoring network in a large city. This enables thorough spatial coverage
within an area [7–9].

The calibration of low-cost electrochemical gas quality sensors, as indicated in the
literature, can be performed through two methods. The first involves a laboratory envi-
ronment [10–13], where the sensor is exposed to a specific quantity of the target gas, and
the calibration function is derived. The second method involves field installation [14–17],
positioning them alongside reference instruments, and the calibration function is developed
through the correlation of measurements.
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In both cases, the objective in calibration [18] is to find a function F such that the
measurement values from the low-cost sensors xt approximate the values of the reference
instruments yt (Equation (1)).

yt = F (xt) (1)

In addition to the calibration process of low-cost sensors, a large number of research
works have been carried out on the optimization of measurements from them. The appli-
cation of linear regression and multiple linear regression to measurements of low-cost air
quality sensors have shown correction factors with satisfactory results on the optimized
measurements. Regression is one of the basic methods of analysis, as it is based on data used
due to their simplicity and high degree of scalability [19]. The research works [20,21] report
the use of linear regression, multivariate linear regression, and an artificial neural network
to calibrate a cluster of low-cost O3, NO2, NO CO, and CO2 sensors. Experimental results
show that the artificial neural network can mitigate the effect of cross-sensitivity. In another
work [22], calibration on a large number (more than 100) of metal-oxide ozone sensors of air
pollution was performed using multiple linear regression. The research group [23] proposes
a method for the calibration of portable gas sensors for accurate measurement of O3 and
NO2 by utilizing linear regression, least squares, and major axis linear regression. In the
research work [24], the method of correcting measurements according to the quantitative
variation in low-cost sensor measurements using linear regression is proposed.

Non-linear regression methods have been applied to optimize measurements in low-
cost gas quality sensors. The work [25] shows the application of linear regression, multiple
linear regression, and nonlinear regression to microparticles sensors, where the results of
both multiple linear regression and nonlinear regression were equally good. According
to the literature, many research papers [21,22,26–28] focus on sensor signal processing
using nonlinear machine-learning algorithms (such as random forest (RF), artificial neu-
ral networks (ANN), support vector machine (SVM) methods, and the Kalman filtering
(KF) approach) for the calibration of low-cost air quality sensors. In addition, advanced
machine-learning (ML) methods, such as neural networks, have been applied to improve
measurements from low-cost sensors, which yield better optimization as they are able
to solve complex problems due to their robust performance [29–31]. The calibration of a
low-cost sensor, when achieved by colocation next to reference instruments, requires a long
measurement period to extract an effective calibration equation. Research works report on
both remote [32] and global [33] calibration approaches, as they promise to be scalable and
robust to concept drift or even sensor drift (in the case of continuous remote calibration). In
other research works [34–36], the application of machine learning by means of a non-linear
least absolute shrinkage and selection operator (LASSO) regression method is presented,
in which both primary measurements of low-cost sensors and measurements of relative
humidity, temperature, barometric pressure, wind speed, etc., are applied as independent
variables of the LASSO function.

This work focuses on the study of optimization of measurements from low-cost
electrochemical sensors that are used to estimate Nitrogen Dioxide (NO2) and Ozone (O3)
pollutants’ concentration. This work’s contribution centers on striking a balance between
results and effort, minimizing computational burden, by the utilization of simplified
mathematical methods and applications for achieving excellent results. The used sensors
are the NO2-B43F model for NO2 and the OX-B431 model for O3 both manufactured
by Alphasense. The innovation is in the application of the least absolute shrinkage and
selection operator (LASSO) regression method [37] where the nonlinear equation involves
only one independent variable, that of the measurements. This study aims to investigate
whether the LASSO regression method can optimize the measured values with only one
independent variable and the parameters of the LASSO equation. LASSO regression is
an analysis method that modulates both variable selection and normalization in order to
improve the prediction accuracy and interpretability of the resulting statistical model. In
addition, specific methodology scaling was applied in the experiment. The object of the
study was to apply the LASSO regression to measurements both of the time scaling (period
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of 10 weeks of measurements) and seasonality scale (measurements of different months
(summer, winter)) in order to determine whether the corrected measurements are affected
by seasonality. The results are satisfactory in that the sensor readings after application of
the method show values close to the actual reference values.

2. Low-Cost Monitoring Stations and Data Collection

Three low-cost gas monitoring stations [17] were developed in order to collect data.
Initially, the three stations were installed next to official measuring points in order to
perform initial calibration according to the manufacturer’s instructions, as will be described
in this section. This procedure was run during February 2021. Sequentially, the monitoring
stations were allowed to run on the field in parallel to the official stations and the collected
data during the period 14 April–13 May were studied in the frame of this work. Details of
the above described procedure follow below in Sections 2 and 3. The low-cost stations are
identified by a unique identifier (IDs 1, 2, 3). The study, design, and implementation of the
gas-monitoring stations was carried out at the Electronic Devices and Materials Laboratory
(EDML) of the department of Electrical and Electronics Engineering at the University of
West Attica in Greece.

Each monitoring station (Figure 1) includes a microprocessor, gas pollutant sensors,
peripheral auxiliary units, and a data transmission device (Wi-Fi, GPRS). The Nucleo STM-
f091RC, STMicroelectronics, Schiphol, Netherlands, microprocessor, which offers a high
processing speed and low power consumption, was used as the CPU, while electrochemical
sensors, for NO2 (NO2-B43F) and O3 (OX-B431) manufactured by Alphasense [38], were
used as gas pollutant sensors. In addition, an optical technology sensor was used for mi-
croparticle measurements: Plantower (PMS5003) [39]; while a barometric sensor (BME280)
was used for barometric data acquisition. Finally, the auxiliary peripheral units are a GPS
for installation location and data timing, a mini-UPS in case of occasional power loss, and a
Wi-Fi or GPRS networking device for data transmission. Data are stored on an SD card in
case of network transmission loss and sent when the connection is restored.
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Figure 1. Low-cost gas and particle matter monitoring station. Figure 1. Low-cost gas and particle matter monitoring station.

To ensure the reliability and reproducibility of the results, three identical low-cost air
quality monitoring stations were installed in a densely populated neighborhood in the city
center of Athens, at a height of 6–8 m above ground level, surrounded by main roads with
heavy vehicular traffic. The measurements from the low-cost sensors were compared with
the corresponding NO2 and O3 reference values obtained from the Ministry of Environment
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and Energy of Greece (PERPA) [40]. The reference scientific air quality monitoring station
has been installed at the Ministry of Environment and Energy of Greece facilities in the
center of Athens. Since both the locations of the low-cost air quality monitoring stations and
the reference station are within the same area, they have the same air quality conditions. In
particular, the installed air pollutant measurement devices are for O3 the HORIBA APOA-
360 automatic analyzer with ultraviolet absorption measurement method, and for NO2 the
HORIBA APNA-360 automatic analyzer with a chemiluminescence measurement method.
The pollutants are measured continuously throughout the 24 h period. The response time
of the automatic analyzers is one minute, while the hourly average pollution values are
calculated hourly.

The operation of low-cost metering stations is carried out in accordance with the
following sequence. Starting the station in operation, the timing signals, the analog ports,
the digital input/output ports, and the communication buses with external devices (SPI,
I2C, UART buses) are initialized on the CPU. During initialization, parameters such as node
ID, measurement data, and GPS data are also determined. Then, the data structure packet is
created for transmission, and finally the network connection (Wi-Fi or GPRS) is established.
In the operation loop, measurements are taken every 10 s. In a 5 min period, the average of
the measurements of each sensor together with the data from the GPS are structured into a
transmission packet and sent to the server. If the acknowledgement of receipt of the packet
is successful, a check is made to see if there are any records on the memory card that can be
sent and then the operation stream is restarted. In case the acknowledgement of receipt of
the packet fails, then the data are stored in the memory card and the loop starts again.

The electrochemical sensors used are from Alphasense [41] and use a four-electrode
technology (working electrode, auxiliary electrode, counter electrode, reference electrode);
the working electrode is exposed to ambient air as the oxidation or reduction of the gas to be
measured takes place. The auxiliary electrode is an electrode with the same characteristics
as the working electrode, which is placed in an electrolyte and therefore does not come
into contact with the target gas. Because of its isolation from external conditions, it serves
as a reference for the measurements of the working electrode. The counter electrode
balances the reaction of the working electrode, where if the working electrode increases
one molecule due to oxidation by the target gas, then the counter electrode must decrease
another molecule to generate an equivalent current. The reference electrode operates
according to the potential of the working electrode so that it always operates under the
correct conditions. When the sensor is exposed to the target gas, the oxidation or reduction
phenomenon occurs at the working electrode, which results in the creation of a current
flowing from the working electrode to the opposite electrode or vice versa, depending on
the phenomenon, with respect to the target gas. The generated current corresponds to the
concentration of the target gas and can be used for calibration. An individual sensor board
(ISB) circuit, as reported by Alphasense, provides both working electrode and auxiliary
electrode measurements in mV. The conversion of the working and auxiliary electrode
voltages to the target gas concentration is suggested by Alphasense’s Equation (2) [42]
which includes the ambient temperature.

WEc = (WEu − WEe)− nT ∗ (AEu − AEe) (2)

where WEc represents the corrected value of the working electrode, WEu represents the
measured value of the working electrode, AEu represents the measured value of the
auxiliary electrode, nT represents the ambient temperature coefficient, WEe represents
the electronic zero value of the working electrode, and AEe represents the electronic zero
value of the auxiliary electrode. The values of WEe and AEe are given by the manufacturer
for each sensor. The GasMeasurement concentration measurement is given by dividing the
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corrected output voltage WEc by SensorSensitivity, as shown in Equation (3); the sensor
sensitivity is also given for each sensor by the manufacturer.

GasMeasurement =
WEc

SensorSensitivity
(3)

where GasMeasurement is the concentration measurement of the gas pollutant, WEc is the cor-
rected working electrode value of the target gas given by Equation (2), and SensorSensitivity
is given by the sensor manufacturer.

According to the manufacturer, a function must be applied when calibrating the
sensors so that the corrected values of the measurements with this function are close to the
reference values. Two correction factors [17] are calculated during the calibration period
when colocating the low-cost monitoring station close to official instruments. The formula
that yields the final corrected values by combining the two correction factors and the sensor
measurements is shown in Equation (4):

GAS_correctedMeasurement =

(
(GASMeasurement + A)

B

)
(4)

where GAS_correctedMeasurement is the calibrated gas sensor value, GasMeasurement is the
corrected measurement concentration value of the gas pollutant by Equation (3), where
A represents the level factor, which increases or decreases the measurement values to
be corrected, and B represents the scaling factor, from which the corrected values of the
measurement are derived. The last step of the procedure is the conversion of ppb to µg/m3.
The initial calibration period was carried out in February 2021, at the field, by co-installing
low-cost sensors next to a reference instrument. This process resulted in the determination
of the A and B coefficients for each low-cost gas sensor. According to the manufacturer, to
avoid incorrect gas measurements due to the cross-sensitivity of the Alphasense OX-B431
sensor, Equation (5) must be applied to the measurements in order to obtain the O3 and
NO2 concentrations, since the O3 electrochemical sensors are also triggered by NO2,

O3 ppb = O3 All − NO2 ppb (5)

where O3 ppb is the ozone concentration measurement, NO2 ppb is the NO2 concentration
value measured by the nitrogen dioxide sensor, and O3 All is the concentration value
measured by the ozone sensor.

3. Least Absolute Shrinkage and Selection Operator (LASSO) Regression

The study and the results of this paper are based on the LASSO method, offering
a balance between simplicity and accuracy. LASSO is a linear regression technique to
which a penalty term is added. The penalty term is proportional to the absolute value of
the coefficients involved in the regression model equation, which means that some of the
coefficients can be set to zero if they are considered less important. The size of the penalty
is determined by the parameter λ. The LASSO regression appears in Equation (6).

n

∑
i=1

(yi − ∑
j

xijβ j
)2

+ λ
p

∑
j=1

∣∣β j
∣∣ (6)

The parameter λ controls the amount of the penalty. When λ takes the value of zero
(0), all features are considered and the LASSO regression works like the simple standard
linear regression. As λ increases, the penalty term becomes more significant, which results
in the regression coefficients shrinking towards zero. The LASSO regression model is
particularly useful in managing high-dimensional data, where the number of variables or
characteristics is much larger than the number of observations. Traditional linear regression
models suffer from overfitting when the model is too specific and complex, resulting in a
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poor performance on new, unseen data. LASSO regression can help to address this problem
by identifying the most important variables and reducing the complexity of the model.

The implementation methodology was carried out according to the following steps.

• First, the measurements collected by the pollutant sensors were correlated with the
reference measurements. By this procedure, both the deviations of the measurements
through the time series and the correlation coefficient between the measurements from
the scatter plot were displayed;

• The value of the parameter λ was estimated by means of the cross-validation deviance
between the measurements of each low-cost sensor with the corresponding reference
measurements. The λ parameter was calculated from the average of the λ param-
eter of all sensors of each gas, through the cross-validation deviation between the
measurements of each low-cost sensor and the corresponding reference measurements;

• The estimated value of the parameter λ was applied according to the LASSO regression
to the measurements of the low-cost sensors from which the corrected measurements
were obtained by Equation (5);

• The corrected measurements were correlated with the reference measurements in
order to identify the improvement of both the deviation of the measurements through
the time series and the improvement of the correlation coefficient through the scatter
plots.

Finally, for evaluation purposes, the methods MAD (mean absolute deviation), MAE
(mean absolute error), and RMSE (root mean square error) were employed to assess the
reliability and performance of the results across all datasets.

4. Results

The measurements of NO2 and O3 air pollutants are discussed below. Measurements
at both the low-cost sensors (N1, N2, N3) and the reference sensors are conducted on an
hourly basis. The data analysis implementation is performed in the MATLAB environment.

LASSO regression is utilized on the data to identify the divergence between measure-
ments obtained from low-cost and reference sensors. This analysis aims to determine how
this divergence can be corrected by adopting and adjusting the LASSO regression, turning
it into a correction factor applicable to data from low-cost air quality sensors. This study
referred to one month’s data (14 April 2021 to 13 May 2021), because the ageing of the
sensors can impact the measurements [43]. For each low-cost sensor of both gases, NO2
and O3, the deviation λ and the coefficient B of the LASSO regression were identified. Then,
using the simple linear equation (y = ax + b), the coefficients (a, b) of the equation were
estimated according to the LASSO regression and applied to the measurements (x) from
the low-cost sensors. The measurements from the gaseous pollutant sensors are henceforth
referred to as noncorrected, whereas after the application of the LASSO regression they are
henceforth referred to as corrected.

4.1. NO2 Measurements

Regarding NO2, the noncorrected sensor values are plotted against the reference
values to identify the degree of correlation. Figures 2–4 show both time series and scatter
plots between the measurements from low-cost and reference sensors.
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To determine the optimal value of the λ coefficient, cross-validation of the LASSO fit
deviation, calculated for each sensor, between the low-cost sensor measurements and the
reference NO2 measurements was performed.

Figures 5a, 6a and 7a show the NO2 measurements’ cross-validated deviance diagram
of each low-cost sensor (N1, N2, N3) and reference, respectively. Figures 5b, 6b and 7b
show the scatter plot between the NO2 measurements of both the low-cost sensor (N1, N2,
N3) and the reference. The scatter plot also shows the trend line for λ = 0 and for λ = 0.55.
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Figure 7. NO2 N3, cross-validated deviance diagram and scatter plot with different values of λ.
(a) The cross-validated deviance diagram of NO2 measurements between low-cost N3 and reference
sensors; (b) Scatter plot of NO2 measurements between low-cost N3 and reference for λ = 0 and λ = 0.55.

Table 1 shows the values of the λ and B coefficients of the LASSO regression for each
low-cost NO2 sensor.

Table 1. λ and B coefficients of LASSO regression of NO2 low-cost sensors.

NO2 Sensors λ B

N1 0.55 0.2463
N2 0.55 0.2885
N3 0.55 0.1905

From the extracted optimized trend line (for λ = 0.55), and according to the slope of
the trend line, the coefficients of the simple linear equation y = ax + b were determined.
Since the values start from the origin of the axes, b is equal to zero. The liner coefficient a
was then estimated and applied to the measurements of each low-cost sensor of NO2.

Figures 8a, 9a and 10a show the corrected measurements of the NO2 concentration
of each sensor (N1, N2, N3) with respect to the reference measurements, respectively.
Figures 8b, 9b and 10b show the scatterplot of the NO2 concentration between the corrected
measurements of each sensor (N1, N2, N3) with respect to the reference measurements,
respectively.
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Figure 8. Node 1, NO2 corrected measurements with respect to reference measurements. (a) Time
series of N1 (NO2) corrected and reference measurements; (b) Scatterplot of N1 (NO2) corrected and
reference measurements.
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Figure 9. Node 2, NO2 corrected measurements with respect to reference measurements. (a) Time
series of N2 (NO2) corrected and reference measurements; (b) Scatterplot of N2 (NO2) corrected and
reference measurements.
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Figure 10. Node 3, NO2 corrected measurements with respect to reference measurements. (a) Time
series of N3 (NO2) corrected and reference measurements; (b) Scatterplot of N3 (NO2) corrected and
reference measurements.

The aggregated results of the scatter plots of the low-cost NO2 sensors before and after
the application of the correction factors by means of the LASSO regression are shown in
Table 2.

Table 2. Linear coefficient and correlation degree (R2), before and after LASSO regression of NO2

low-cost sensors’ measurements with respect to reference measurements.

NO2
Sensors

Before LASSO Regression After LASSO Regression

Linear Coefficient R2 Linear Coefficient R2

N1 0.8827 0.23 1.0396 0.27
N2 0.8598 0.22 0.9321 0.26
N3 0.9256 −0.028 1.081 0.05

4.2. O3 Sensors

For O3 (O3), the noncorrected sensor values were plotted against the reference values
to identify the degree of correlation. Figures 11–13 show both time series and scatter plots
between the measurements from low-cost and reference sensors.
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Figure 11. Node 1, O3 noncorrected measurements with respect to reference measurements. (a) Time
series of N1 (O3) noncorrected and reference measurements; (b) Scatterplot of N1 (O3) noncorrected
and reference measurements.
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Figure 13. Node 3, O3 noncorrected measurements with respect to reference measurements. (a) Time 

series of N3 (O3) noncorrected and reference measurements; (b) Scatterplot of N3 (O3) noncorrected 

and reference measurements. 

To determine the optimal value of the λ coefficient, cross-validation of the LASSO fit 

deviation, calculated for each sensor, between the low-cost sensor measurements and the 

reference O3 measurements was performed. 

Figures 14a, 15a, and 16a show the O3 measurements’ cross-validated deviance dia-

gram of each low-cost sensor (N1, N2, N3) and reference, respectively. Figures 14b, 15b, 

and 16b show the scatter plot between the O3 measurements of each low-cost sensor (N1, 

N2, N3) and reference. The scatter plot also shows the trend line for λ = 0 and for λ = 1.4. 

(a) 
 

(b) 

Figure 14. O3 N1, cross-validated deviance diagram and scatter plot with different values of λ. (a) 

The cross-validated deviance diagram of O3 measurements between low-cost N1 and reference sen-

sors; (b) Scatter plot of O3 measurements between low-cost N1 and reference for λ = 0 and λ = 1.4. 

Figure 13. Node 3, O3 noncorrected measurements with respect to reference measurements. (a) Time
series of N3 (O3) noncorrected and reference measurements; (b) Scatterplot of N3 (O3) noncorrected
and reference measurements.
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To determine the optimal value of the λ coefficient, cross-validation of the LASSO fit
deviation, calculated for each sensor, between the low-cost sensor measurements and the
reference O3 measurements was performed.

Figures 14a, 15a and 16a show the O3 measurements’ cross-validated deviance diagram
of each low-cost sensor (N1, N2, N3) and reference, respectively. Figures 14b, 15b and 16b
show the scatter plot between the O3 measurements of each low-cost sensor (N1, N2, N3) and
reference. The scatter plot also shows the trend line for λ = 0 and for λ = 1.4.
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Since the values start from the origin of the axes, β is equal to zero. The coefficient a was 
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Figure 15. O3 N2, cross-validated deviance diagram and scatter plot with different values of λ. (a) The
cross-validated deviance diagram of O3 measurements between low-cost N2 and reference sensors;
(b) Scatter plot of O3 measurements between low-cost N2 and reference for λ = 0 and λ = 1.4.
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Figure 16. O3 N3, cross-validated deviance diagram and scatter plot with different values of λ. (a) The
cross-validated deviance diagram of O3 measurements between low-cost N3 and reference sensors;
(b) Scatter plot of O3 measurements between low-cost N3 and reference for λ = 0 and λ = 1.4.

Table 3 shows the values of the λ and B coefficients of the LASSO regression for each
low-cost O3 sensor.

Table 3. λ and B coefficients of LASSO regression of O3 low-cost sensors.

O3 Sensors λ B

N1 1.4 0.8763
N2 1.4 0.7873
N3 1.4 0.7852

From the extracted optimized trend line (for λ = 1.4), and according to the slope of the
trend line, the coefficients of the simple linear equation y = ax + b were determined. Since
the values start from the origin of the axes, β is equal to zero. The coefficient a was then
estimated and applied to the measurements of each low-cost sensor of O3.

Figures 17a, 18a and 19a show the corrected measurements of O3 concentration
of each sensor (N1, N2, N3) with respect to the reference measurements, respectively.
Figures 17b, 18b and 19b show the scatterplot of O3 concentration between the corrected
measurements of each sensor (N1, N2, N3) with respect to the reference measurements,
respectively.
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Figure 17. Node 1, O3 corrected measurements with respect to reference measurements. (a) Time
series of N1 (O3) corrected and reference measurements; (b) Scatterplot of N1 (O3) corrected and
reference measurements.
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Figure 18. Node 2, O3 corrected measurements with respect to reference measurements. (a) Time
series of N2 (O3) corrected and reference measurements; (b) Scatterplot of N2 (O3) corrected and
reference measurements.
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reference measurements. 
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Figure 19. Node 3, O3 corrected measurements with respect to reference measurements. (a) Time
series of N3 (O3) corrected and reference measurements; (b) Scatterplot of N3 (O3) corrected and
reference measurements.

The aggregated results of the scatter plots of the low-cost O3 sensors before and after
the application of the correction factors by means of the LASSO regression are shown in
Table 4.

Table 4. Linear coefficient and correlation degree (R2), before and after LASSO regression of O3

low-cost sensors’ measurements with respect to reference measurements.

O3
Sensors

Before LASSO Regression After LASSO Regression

Linear Coefficient R2 Linear Coefficient R2

N1 1.0385 0.60 1.0719 0.61
N2 0.9787 0.63 1.0007 0.65
N3 0.9067 0.57 0.9538 0.57
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4.3. RMSE, MAD, and MAE Methods Evaluation

For the evaluation purpose of the results of LASSO regression method as a correction
factor to measurements of low-cost air quality sensors, the methods of mean absolute
deviation (MAD), mean absolute error (MAE), and root mean square error (RMSE), were
applied to measurements data. Table 5 shows the RMSE, MAD, and MAE results of both
noncorrected and corrected measurements for the three low-cost (N1, N2, N3) NO2 sensors
with respect to reference measurements.

Table 5. MAD, MAE, and RMSE methods of evaluation of NO2 measurements.

NO2

Method MAD MAE RMSE

Sensors N1 N2 N3 N1 N2 N3 N1 N2 N3

Non-corrected 2.29 3.47 2.57 11.78 12.89 10.16 0.90 1.04 1.45
Corrected 2.34 1.89 2.60 12.59 11.78 12.77 1.05 1.09 1.49

Table 6 shows the RMSE, MAD, and MAE results of both noncorrected and corrected
measurements for the three low-cost (N1, N2, N3) O3 sensors with respect to reference
measurements.

Table 6. MAD, MAE, and RMSE methods of evaluation of O3 measurements.

O3

Sensors N1 N2 N3 N1 N2 N3 N1 N2 N3

Method MAD MAE RMSE

Non-corrected 16.21 19.30 16.16 19.94 23.18 21.37 1.52 1.74 0.10
Corrected 13.78 15.98 14.92 17.03 19.59 20.05 1.54 1.69 0.13

4.4. Methodology Scaling

This section presents the results of scaling the proposed methodology. An extended
study took place both for the time scaling and the seasonality scale. Data were processed in
a bigger time frame and in different year seasons, with different environmental conditions.

4.5. Time Scaling

For the purpose of the evaluation of the time scaling of the experiment, the LASSO
regression was also applied for a period of one and a half months after the one month of
the main experiment (i.e., from 14 May 2021 to 31 June 2021) to all low-cost sensors, and
the results are presented in the figures below. Figure 20 shows the time series and scatter
plots of the NO2 noncorrected measurements of three low-cost sensors (N1, N2, N3) and
reference measurements, in the time period of 14 May 2021 to 31 June 2021. Figure 21
shows the time series and scatter plots of the NO2 corrected measurements of three low-cost
sensors (N1, N2, N3) and reference measurements, in the time period of 14 May 2021 to 31
June 2021.
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Figure 20. Time series and scatter plots of the NO2 noncorrected measurements of three low-cost 

sensors (N1, N2, N3) and reference measurements, in the time period of 14 May 2021 to 31 June 

2021. (a) Time series of N1 (NO2) noncorrected and reference measurements; (b) Scatterplot of N1 

(NO2) noncorrected and reference measurements; (c) Time series of N2 (NO2) noncorrected and ref-
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Figure 20. Time series and scatter plots of the NO2 noncorrected measurements of three low-cost
sensors (N1, N2, N3) and reference measurements, in the time period of 14 May 2021 to 31 June 2021.
(a) Time series of N1 (NO2) noncorrected and reference measurements; (b) Scatterplot of N1 (NO2)
noncorrected and reference measurements; (c) Time series of N2 (NO2) noncorrected and reference
measurements; (d) Scatterplot of N2 (NO2) noncorrected and reference measurements; (e) Time series
of N3 (NO2) noncorrected and reference measurements; (f) Scatterplot of N3 (NO2) noncorrected and
reference measurements.
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Figure 21. Time series and scatter plots of the NO2 corrected measurements of three low-cost
sensors (N1, N2, N3) and reference measurements, in the time period of 14 May 2021 to 31 June
2021. (a) Time series of N1 (NO2) corrected and reference measurements; (b) Scatterplot of N1
(NO2) corrected and reference measurements; (c) Time series of N2 (NO2) corrected and reference
measurements; (d) Scatterplot of N2 (NO2) corrected and reference measurements; (e) Time series
of N3 (NO2) corrected and reference measurements; (f) Scatterplot of N3 (NO2) corrected and
reference measurements.

Figure 22 shows the time series and scatter plots of the O3 noncorrected measurements
of three low-cost sensors (N1, N2, N3) and reference measurements, in the time period
of 14 May 2021 to 31 June 2021. Figure 23 shows the time series and scatter plots of
the O3 corrected measurements of three low-cost sensors (N1, N2, N3) and reference
measurements, in the time period of 14 May 2021 to 31 June 2021.
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Figure 22. Time series and scatter plots of the O3 noncorrected measurements of three low-cost sen-
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Figure 22. Time series and scatter plots of the O3 noncorrected measurements of three low-cost
sensors (N1, N2, N3) and reference measurements, in the time period of 14 May 2021 to 31 June
2021. (a) Time series of N1 (O3) noncorrected and reference measurements; (b) Scatterplot of N1 (O3)
noncorrected and reference measurements; (c) Time series of N2 (O3) noncorrected and reference
measurements; (d) Scatterplot of N2 (O3) noncorrected and reference measurements; (e) Time series
of N3 (O3) noncorrected and reference measurements; (f) Scatterplot of N3 (O3) noncorrected and
reference measurements.
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Figure 23. Time series and scatter plots of the O3 corrected measurements of three low-cost sensors
(N1, N2, N3) and reference measurements, in the time period of 14 May 2021 to 31 June 2021.
(a) Time series of N1 (O3) corrected and reference measurements; (b) Scatterplot of N1 (O3) corrected
and reference measurements; (c) Time series of N2 (O3) corrected and reference measurements;
(d) Scatterplot of N2 (O3) corrected and reference measurements; (e) Time series of N3 (O3) corrected
and reference measurements; (f) Scatterplot of N3 (O3) corrected and reference measurements.

4.6. Seasonality Scale

In addition, in order to determine whether seasonality affects the results, the LASSO
regression was applied during the winter month of December 2021 (i.e., from 1 December
2021 to 31 December 2021), to all low-cost sensors, and the results are shown in the
figures below. Figure 24 shows the time series and scatter plots of the NO2 noncorrected
measurements of three low-cost sensors (N1, N2, N3) and reference measurements, in the
time period of 1 December 2021 to 31 December 2021. Figure 25 shows the time series and
scatter plots of the NO2 corrected measurements of three low-cost sensors (N1, N2, N3)
and reference measurements, in the time period of 1 December 2021 to 31 December 2021.
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plot of N1 (NO2) noncorrected and reference measurements; (c) Time series of N2 (NO2) noncor-

rected and reference measurements; (d) Scatterplot of N2 (NO2) noncorrected and reference meas-

urements; (e) Time series of N3 (NO2) noncorrected and reference measurements; (f) Scatterplot of 

N3 (NO2) noncorrected and reference measurements. 
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Figure 24. Time series and scatter plots of the NO2 noncorrected measurements of three low-cost
sensors (N1, N2, N3) and reference measurements, in the time period of 1 December 2021 to 31
December 2021. (a) Time series of N1 (NO2) noncorrected and reference measurements; (b) Scatterplot
of N1 (NO2) noncorrected and reference measurements; (c) Time series of N2 (NO2) noncorrected
and reference measurements; (d) Scatterplot of N2 (NO2) noncorrected and reference measurements;
(e) Time series of N3 (NO2) noncorrected and reference measurements; (f) Scatterplot of N3 (NO2)
noncorrected and reference measurements.



Signals 2024, 5 80

Signals 2024, 5, FOR PEER REVIEW  21 
 

 

 
(e) 

 
(f) 
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plot of N1 (NO2) noncorrected and reference measurements; (c) Time series of N2 (NO2) noncor-
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Figure 25. Time series and scatter plots of the NO2 corrected measurements of three low-costs sensors
(N1, N2, N3) and reference measurements, in the time period of 1 December 2021 to 31 December
2021. (a) Time series of N1 (NO2) corrected and reference measurements; (b) Scatterplot of N1
(NO2) corrected and reference measurements; (c) Time series of N2 (NO2) corrected and reference
measurements; (d) Scatterplot of N2 (NO2) corrected and reference measurements; (e) Time series of
N3 (NO2) corrected and reference measurements; (f) Scatterplot of N3 (NO2) corrected and reference
measurements.

Figure 26 shows the time series and scatter plots of the O3 noncorrected measurements
of three low-cost sensors (N1, N2, N3) and reference measurements, in the time period of
1 December 2021 to 31 December 2021. Figure 27 shows the time series and scatter plots
of the O3 corrected measurements of three low-cost sensors (N1, N2, N3) and reference
measurements, in the time period of 1 December 2021 to 31 December 2021.
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Figure 26. Time series and scatter plots of the O3 noncorrected measurements of three low-cost sensors
(N1, N2, N3) and reference measurements, in the time period of 1 December 2021 to 31 December
2021. (a) Time series of N1 (O3) noncorrected and reference measurements; (b) Scatterplot of N1 (O3)
noncorrected and reference measurements; (c) Time series of N2 (O3) noncorrected and reference
measurements; (d) Scatterplot of N2 (O3) noncorrected and reference measurements; (e) Time series
of N3 (O3) noncorrected and reference measurements; (f) Scatterplot of N3 (O3) noncorrected and
reference measurements.
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Figure 27. Time series and scatter plots of the O3 corrected measurements of three low-cost sensors 
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Figure 27. Time series and scatter plots of the O3 corrected measurements of three low-cost sensors
(N1, N2, N3) and reference measurements, in the time period of 1 December 2021 to 31 December 2021.
(a) Time series of N1 (O3) corrected and reference measurements; (b) Scatterplot of N1 (O3) corrected
and reference measurements; (c) Time series of N2 (O3) corrected and reference measurements;
(d) Scatterplot of N2 (O3) corrected and reference measurements; (e) Time series of N3 (O3) corrected
and reference measurements; (f) Scatterplot of N3 (O3) corrected and reference measurements.

5. Discussion

The application of the LASSO regression method for determining the correction factor
to measurement data from low-cost air quality sensors, in particular electrochemical NO2
and O3 sensors, has been shown to improve the measurements from these sensors.

The experiment was carried out on one month’s data. For NO2, the corrected mea-
surements with the correction factor derived from the LASSO regression compared to the
noncorrected measurements showed an improvement in the correlation coefficient (R2) of
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up to 4%, while the linear coefficient in the scatter plots of the corrected measurements
in relation to the reference measurements shows a value closer to one (1). For O3, the
corrected values using LASSO regression showed that the degree of correlation (R2) could
be improved by up to 2%, while the linear coefficient within the scatter plots of the corrected
measurements in relation to the reference measurements also shows for these sensors a
value closer to one (1) than for the noncorrected measurements. Although both remote and
global calibration approaches promise scalability and robustness to deviation, the LASSO
regression method shows satisfactory results with minimal computational power.

Although for both types of low-cost sensors, the correlation coefficient (R2) does not
show a significant improvement, the linear coefficient contributes to the improvement of the
measurements, as the corrected measurements are very close to the reference measurements,
resulting in more realistic and trustworthy measurements. This observation occurs both for
the time scaling in the month of the experiment (April 2021) and in the summer months
(May, June 2021), as well as the seasonality scale between the summer months and the
winter month (December 2021), which means that the correction with the LASSO regression
method is not affected by time extension or seasonality.

To evaluate the correction factor using the LASSO regression method, the MAD,
MAE, and RMSE methods were applied to both noncorrected and corrected measurements.
Tables 5 and 6 for NO2 and O3, respectively, show that, for NO2, the values of the MAD,
MAE and RMSE methods between corrected and noncorrected values show very small
deviations which do not significantly affect the result. For O3, the RMSE method showed
very little divergence between the noncorrected and corrected measurements, while in the
MAD and MAE methods the improvement is evident according to the results in Table 6.
This correction achieved by the correction factor, which was identified by applying the
LASSO regression, has the direct effect of improving the measurements to be closer to the
real ones.

6. Conclusions

Air quality in large cities is an important issue as it can affect the health of citizens
living in these areas. The development of technology has led to the rapid evolution
of low-cost sensors. Inquiry into the trustworthiness and reliability of measurements
obtained from low-cost sensors is a subject of research interest. Many research groups
have presented, through their work, calibration and correction methods for low-cost sensor
measurements to improve the reliability of measurements. In this work, the procedure
for correcting measurements using the least absolute shrinkage and selection operator
(LASSO) regression method from low-cost sensors, in particular from electrochemical NO2
and O3 sensors, is presented. In particular, the LASSO regression method was used in our
experiment to identify a correction factor which was then applied to the measurements of
the low-cost sensors to optimize the measurements from them.

The proposed methodology provides excellent results, as the results have shown that
the correction factor identified using the LASSO regression contributes to the correction of
measurements in low-cost electrochemical sensors. Although for both types of low-cost
sensors (NO2 and O3) the improvement in the degree of correlation is not significant, the
R2 improvement for NO2 of up to 4%, and the R2 improvement for O3 of up to 2%, it
was observed that the linear correlation coefficient improves as it approaches the value
of one (1). This resulted in the optimization of measurements from low-cost sensors, as
the corrected measurements appear very close to the reference measurements. In addition,
the methodology scaling shows excellent results, firstly at the time scaling of the total of
two and a half months of corrected measurements by the LASSO regression method, and
secondly at the seasonality scale of optimization of correction measurements by LASSO
regression both of the summer and winter months. Implementing simplified mathematical
processes in correcting the measurements, striking a balance between effort and results,
proved to have an excellent performance. The methods MAD, MAE, and RMSE were
applied to both uncorrected measurements and corrected measurements with the above
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mentioned method. The results showed negligible variation under the RMSE method,
while for the MAD and MAE methods the corrected measurements show an improvement.

All field calibration methodologies have limitations arising from factors such as aging,
the duration of the time period, specific environmental conditions, and seasonal variations.
The proposed methodology can represent the core method of an adaptive methodology
well using remotely available data and recalibration strategies. Extending this study could
involve incorporating numerous cost-effective sensors, to provide a larger training data set,
and conducting assessments at various locations exhibiting distinct atmospheric conditions.

The quality of air in the modern day needs to be monitored, and the use of low-cost
sensors is becoming more and more widespread as many people are turning to the supply
of such sensors because they are affordable. Measurements from low-cost sensors can be
reliable and trustworthy by applying appropriate optimization models.
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