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Abstract: Brain responses to discrete stimuli are modulated when multiple stimuli are presented in
sequence. These alterations are especially pronounced when the time course of an evoked response
overlaps with responses to subsequent stimuli, such as in a rapid serial visual presentation (RSVP)
paradigm used to control a brain–computer interface (BCI). The present study explored whether
the measurement or classification of select brain responses during RSVP would improve through
application of an established technique for dealing with overlapping stimulus presentations, known
as irregular or “jittered” stimulus onset interval (SOI). EEG data were collected from 24 healthy adult
participants across multiple rounds of RSVP calibration and copy phrase tasks with varying degrees
of SOI jitter. Analyses measured three separate brain signals sensitive to attention: N200, P300,
and occipitoparietal alpha attenuation. Presentation jitter visibly reduced intrusion of the SSVEP,
but in general, it did not positively or negatively affect attention effects, classification, or system
performance. Though it remains unclear whether stimulus overlap is detrimental to BCI performance
overall, the present study demonstrates that single-trial classification approaches may be resilient to
rhythmic intrusions like SSVEP that appear in the averaged EEG.

Keywords: electroencephalography (EEG); brain–computer interface (BCI); event-related potential
(ERP); N200; P300; alpha attenuation; stimulus onset interval (SOI) jitter; steady-state visual evoked
potential (SSVEP); attention

1. Introduction
1.1. Rapid Serial Visual Presentation (RSVP)

Brain–computer interface (BCI) systems make use of neurophysiological signals to
accomplish myriad goals [1]. Consequently, there are many varieties of BCI, such as
implantable systems to restore spinal function [2], serve as a speech neuroprosthesis [3], or
act as a digital switch [4]. Complementary to implantable systems, scalp-recorded EEG-
based BCIs remain popular and accessible options for numerous applications [5]. Among
their possible uses, EEG-based BCIs can assist with state monitoring [6,7] or augmentative
and alternative communication (AAC-BCI) for individuals with disabilities [8,9]. One
established AAC-BCI paradigm is rapid serial visual presentation (RSVP) [10–13], which
presents a user with a rapid sequence of images (e.g., letters) and seeks to differentiate
user intent to select one of the presented stimuli by capturing the so-called P300 response.
Though RSVP relies on a user’s ability to process visual stimuli, it has the benefit of being
gaze independent, meaning that it is accessible to individuals who have limited ocular
motility [14]. This advantage is in contrast to the conventional matrix speller that benefits
from functional eye movement [15].
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1.2. Problems with Overlapping Adjacent Brain Responses

A possible limitation of RSVP is that rapidly presented visual stimuli have the potential
to interfere with one another. Indeed, it is well established that brain responses to isolated
stimuli can be modulated when preceded or followed by other stimuli, as a result of either
order or pace [16–18]. In one highly-relevant study [17], the author detailed the extent to
which event-related potential (ERP) responses can distort one another when stimuli are
presented in rapid succession. That is, when there is a short delay between the onset of
the first stimulus and the onset of the second (stimulus onset latency; SOI), then the first
ERP response has not completed before the second is evoked. This proximity results in
overlap between the responses and makes it difficult to differentiate or measure isolated
responses. To this point, recent research has described differences in attentional N200 and
P300 ERP amplitudes between different presentation rates during RSVP, as well as a drastic
reduction in an attention-related alpha attenuation effect during faster presentations (i.e.,
shorter SOIs) [19].

1.3. Stimulus Onset Interval “Jitter”

Despite a general understanding that short SOIs might pose a problem for the mea-
surement of ERPs, there has been little to no effort to control for such interference in the
context of RSVP BCIs. To be sure, it is altogether unclear whether overlapping evoked
responses are necessarily detrimental to the function of such systems, since a classifier
only needs to differentiate a target from non-targets, not quantify the true amplitude or
latency of a specific ERP component. In fact, the rhythmic presentation of visual stimuli will
often generate a steady-state visual-evoked potential (SSVEP), which can itself be used to
guide BCI function [20]. However, assuming some relationship between fidelity of evoked
responses and system performance, one classic approach to the problem of measuring
overlapping ERPs has been to randomize or “jitter” SOI within a pre-determined range,
such as in the adjacent response (ADJAR) technique [17,21] (not to be confused with P300
“latency jitter” [22–25]). Put simply, randomizing the amount of overlap between responses
by jittering SOIs should minimize constructive and destructive interference between re-
peated stimulus presentations, reduce measurable presence of an SSVEP, and result in more
accurate estimates of target-related responses.

1.4. Aims and Hypotheses

The objective of the current study was to determine whether the application of jittered
SOIs would meaningfully affect electrophysiological measures of attention observed during
an RSVP paradigm, where attentional responses to discrete stimuli typically overlap with
one another, and whether these changes would improve performance of the BCI system.
In the context of this investigation, “attention” is defined as selective visual attention to
the presentation of a target letter stimulus. Likewise, SOI refers to the time elapsed be-
tween the onset of two sequential stimuli, which some groups refer to instead as stimulus
onset asynchrony (SOA) [11,26]. Our study analyzed three EEG-based signals known to
be evident during RSVP: N200, P300, and alpha attenuation [11,19]. The N200 and P300
are endogenous ERPs known to reflect contextual deviation and the recognition of target
stimuli, respectively [27]. Alpha rhythms are neural oscillations in the approximate range
of 8–13 Hz that are thought to result from thalamocortical synchronization [28]. Posterior
alpha attenuation is known to correspond with attentional allocation and shifts in visu-
ospatial attention [29,30]. All three of these signals are known to show increased response
amplitudes to target stimuli, compared to non-target stimuli in RSVP. We hypothesized
that N200 and P300 attentional responses would show larger amplitudes in the jittered
conditions, compared to non-jittered stimulus presentations. Similarly, we predicted that
attentional alpha attenuation responses would be larger for jittered stimulus presentations
than for non-jittered presentations. We predicted that machine learning classification of
these three attentional markers would improve with the application of jittered SOIs that
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decrease the SSVEP component in averaged ERPs, and that participants would have higher
accuracy rates during on-line copy phrase tasks in the jittered conditions.

Secondary aims of this study included exploratory examinations of individual differ-
ences in the alpha attenuation signal, and also measurement of variance in the ERPs. A
slowed-down version of the RSVP task was presented at the end of each visit to collect
non-overlapping electrophysiological markers, but this task existed as a non-experimental
addition only. Results of the slowed-down task are discussed intermittently; however,
there is significant difficulty in measuring an experimental baseline effect of stimulus
overlap without qualitatively changing the RSVP task (see Section 4.3). To supplement the
primary alpha attenuation analysis, we also performed a comparison of “responder” and
“non-responder” groups (see Section 3.7.2). The motivation for expanding our scrutiny
of this measure was two-fold: firstly, compared to the literature on the N200 and P300
responses, alpha attenuation in RSVP is less understood. As such, the present investigation
is an opportunity to document important characteristics of this measure. Secondly, differ-
ences between slow and fast letter presentations in RSVP were much more dramatic for
alpha attenuation than for N200 or P300 in a previous report [19], and individual differ-
ences have been previously identified as a potential contributing factor to similar alpha
measures [19,31].

2. Materials and Methods

To address the objectives of the present study, a sample of generally healthy adult
research participants were recruited to participate in a single 2.5 h experimental visit at
Oregon Health & Science University (OHSU) in Portland, OR, USA. All study activities
were reviewed and approved by the OHSU Institutional Review Board (IRB; protocol
#24803). A waiver of authorization was obtained to conduct screening procedures. All
study participants provided written informed consent prior to engaging in the primary
testing procedure. Individuals were compensated USD 40 in cash for completing the study.

2.1. Participants: Recruitment and Screening

Twenty-four participants enrolled in the study following recruitment via physical
flyers posted at OHSU, advertising on local research opportunities email listservs, and also
word of mouth. Demographic information for the study cohort is presented in Table 1. A
majority of participants were white and highly educated. Enrollment was balanced with
regard to gender.

Table 1. Demographics. A summary of participant characteristics for the present study. The sample
represented a wide range of ages and was balanced with regard to gender. However, participants
were predominantly white, non-Hispanic, and highly educated.

Participants (n = 24)

Age: mean years ± SD (range) 38.71 ± 17.82 (18–76)

Gender
Female 12
Male 11

Non-Binary 1

Race
American Indian or Alaska Native 1

Asian or Asian American 1
White 19

Other/Multiple 3

Ethnicity
Hispanic/Latino 3

Not Hispanic/Latino 21
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Table 1. Cont.

Participants (n = 24)

Education
Some college but no degree 2

Associate degree 1
Bachelor’s degree 10

Postgraduate degree 11

All individuals who expressed interest in the study were required to complete a tele-
phone screening with a study coordinator prior to enrollment. Eligibility criteria stipulated
that participants must (1) be age 18–80 years old; (2) agree to abstain from alcohol and drug
use on the same calendar day as the study visit; (3) be fluent in English; (4) self-identify
as generally healthy; and (5) have normal or corrected-to-normal vision. Additionally,
an individual was ineligible to participate in the study if they (1) had a significant med-
ical or neurological disease that would interfere with the study outcomes (as discussed
with the senior author, a trained neurologist); (2) were regularly taking medications or
substances known to compromise the study outcomes or EEG (e.g., benzodiazepines);
(3) reported regular insomnia and poor sleep behaviors; or (4) scored < 31 on the modified
Telephone Interview for Cognitive Status (TICS-m) [32] or < 3 on the judgement subtest of
the Neurobehavioral Cognitive Status Exam (NCSE) [33].

2.2. Procedure

Eligible participants who completed a phone screening scheduled a single 2.5 h exper-
imental visit to OHSU. Upon arrival, participants provided written informed consent and
completed a limited set of intake questionnaires, including a demographics questionnaire.
Participants reported the number of hours they had slept the night before the visit and
completed a near-field Snellen visual acuity test (binocular) to confirm that they had at least
20/30 visual acuity. All individuals confirmed that they had abstained from alcohol, mari-
juana, and other recreational drug use on the day of the visit. After intake, research staff
helped participants to don an EEG cap before proceeding with the primary visit procedure.

The visit procedure consisted of three repetitions of the RSVP calibration task (Figure 1),
each of which was followed by two attempts at an RSVP copy phrase task (see Section 2.3).
That is, participants would complete a calibration, then attempt to spell two different words
in copy phrase using a model trained on the calibration data, before finally moving on
to the next calibration. Each of the three repetitions corresponded with a test condition:
(1) letters presented at a steady rate of 5 Hz, with no jitter applied to the SOI; (2) letters
presented at 5 Hz, with a “small” uniform distribution jitter of ±50 ms; and (3) letters
presented at 5 Hz, with a “large” uniform distribution jitter of ±100 ms. In order to control
for order effects due to fatigue and/or practice, the sequence of these three conditions was
pseudo-randomly balanced across the 24 participants, such that each of the six possible
permutations of condition order occurred exactly four times. Participants were not informed
of the condition types or order.

Before and after each round of calibration and copy phrase, participants provided self-
report estimates of their sleepiness, according to the Stanford Sleepiness Scale (SSS) [34,35].
Sleepiness is one aspect of vigilance (or fatigue) that is known to have an impact on BCI
performance [6]. Participants were also asked at these same intervals to rate their levels of
both head (or headache) pain and general pain. After completing the third assigned test
condition, participants responded to a brief series of user experience questions. Specifically,
participants were asked (1) if they perceived a difference in various rounds of calibration
and copy phrase tasks; (2) if so, what that difference was; (3) if they had a preference for or
against any particular round of calibration or copy phrase; and (4) to rank the conditions
from best to worst, even if they perceived no differences or had no strong feelings.
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Figure 1. Task Schematic for RSVP calibration. (A) Procedural outline of a single inquiry sequence
during the RSVP calibration task. A yellow target letter prompt is presented for 1 s, followed by a red
fixation cross for 500 ms, and then a random inquiry sequence of 10 letter stimuli. The target was
present in 90% of calibration inquiry sequences. (B) SOI ranges varied across the three experimental
conditions. Vertical dashed lines indicate the bounds of the possible appearance of the next stimulus
(“stimulus B”) in a given sequence. Ranges in the “small” and “large” jitter conditions were uniform
random distributions. Participants completed each of the three conditions in a pseudo-random order,
where each condition consisted of a calibration followed by two attempts at the copy phrase task.

After completing the user experience questions, participants completed one final
round of calibration with the letters presented at a significantly slower rate of one per
second, with no jitter. This “slow” instance of the calibration task was recorded in order to
elicit non-overlapping brain responses for the sake of visual and secondary comparisons.
However, since this version of calibration generally seemed to be far more fatiguing than
the test conditions, it was always presented at the end of the visit, so as not to interfere with
the other presentations. Likewise, this “slow” version of the task was not accompanied by
any copy phrase tasks, since its primary purpose was to collect non-overlapping profiles of
the ERP and alpha attenuation responses for the individual participants.

2.3. RSVP Task
2.3.1. RSVP Task: Practice

All participants viewed instructional videos for the RSVP calibration and copy phrase
tasks immediately preceding the first instance of each task. The instructional videos lasted
approximately three minutes apiece. In addition to offering an explanation of the tasks, the
RSVP calibration video also included a scripted series of four practice sequences, similar
to those used in the test version of the task. Participants were asked to verbally indicate
whether a specific target letter was present or absent from the given sequences. The purpose
of this practice was to confirm that individuals understood the objective of RSVP and were
able to complete the task with letters presented at a pace comparable to that of the test
calibrations. Participants were required to achieve 75% accuracy before proceeding to the
first test calibration. All participants passed the practice presentation after a single attempt:
22 participants achieved 100% accuracy and the remaining 2 participants achieved three
out of four correct responses.
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2.3.2. RSVP Task: Calibration

RSVP calibration tasks each consisted of 100 inquiry sequences, where a single inquiry
sequence comprised a target letter prompt onscreen for 1 s, followed by a fixation cross
for 500 ms, and then a series of ten letter stimuli presented one after another at a pace
determined by the test condition (no jitter; “small” jitter; or “large” jitter). Participants were
instructed to take note of the target prompt, watch for that same character in the subsequent
letter stream, and mentally react to the target character when they saw it appear onscreen.
The experimenter asked participants to do their best to refrain from physically reacting to
the letter presentations and to wait until between sequences to blink, yawn, cough, etc.

Letter stimuli included all 26 characters of the English alphabet, as well as the character
“_” to indicate a space. All letter stimuli appeared at the center of the screen, while a counter
at the upper-left corner of the screen kept track of the number of inquiries completed out of
the total 100. In 90% of inquiry sequences, the ten flashing letters comprised one target to
match the most recent prompt, as well as nine non-target stimuli. In the remaining 10%
of inquiries, however, only non-target characters were presented. Target and non-target
characters were determined and sequenced randomly for each inquiry. There was a 2 s
blank delay period between the disappearance of the final stimulus of one inquiry sequence
and the onset of the target prompt for the next inquiry.

In the “no-jitter” condition (Figure 1B), the ten letter stimuli following the fixation
cross were presented at a steady rate of 5 Hz (i.e., a fixed SOI of 200 ms), with no substan-
tial blank interval between the offset and onset of adjacent characters. In the “small”
jitter condition, these same letters were presented using a uniform random range of
150–250 ms (200 ± 50 ms). For the “large” jitter condition, this uniform range was in-
creased to 100–300 ms (200 ± 100 ms) per character. Jitter ranges of 100 and 200 ms were
selected because they, respectively, constituted 50% and 100% of the fixed SOI duration in
the no jitter condition. Lastly, in the supplementary “slow” calibration at the end of the
visit, letter stimuli were presented at a pace of 1 per second, with no jitter. Additionally, the
number of inquiry sequences for the slow calibration was reduced from 100 down to 50, in
order to help with participant fatigue.

2.3.3. RSVP Task: Copy Phrase

With the exception of the final slow calibration, each instance of RSVP calibration was
immediately followed by two attempts at RSVP copy phrase, each with matching condition
presentation parameters (e.g., the small jitter calibration was followed by two copy phrase
sessions with the same SOI ranges). The paradigm was highly similar to calibration,
with the primary exception that there were no target prompts before fixation. Instead,
participants used a model trained from the most recent calibration (see Section 2.7.1) and
attempted to use their mental strategy to select characters from the flashing letter streams.
Participants had the objective to copy the words “HELLO” and “WORLD” to complete
the phrase “HELLO_WORLD”. The purpose of separating these two words into separate
sessions was to reduce participant frustration in cases where errors were made on the
first word, especially since there was no opportunity to backspace or correct erroneous
selections in this particular version of the task. A reference phrase at the top of the screen
showed participants both their target phrase and also their progress as they moved through
the task.

2.4. Stimuli

All BCI tasks were presented on a 16′′ laptop monitor cycling at 165 Hz and placed at
an approximate viewing distance of 70 cm, though head position was not constrained. The
presentation computer was a Lenovo Legion 5 Pro with an 11th Gen Intel i7-11800H CPU @
2.30 GHz and 16 GB of RAM running Windows 11 Home (64 bit). Application processes
utilized an NVIDIA GeForce RTX 3050 laptop GPU to ensure presentation fidelity. All letter
stimuli were rendered in Overpass-Mono font at the center of the screen. Letter stimuli
were drawn in white against a solid black background, with the exceptions that target
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prompts in calibrations were yellow, and all fixation crosses were drawn in red. Assuming
a screen distance of 70 cm, the monospace font constrained letter stimuli to appear within
an imaginary box that subtended 2.05◦ by 3.27◦ visual angle, or approximately 2.5 cm wide
by 4.0 cm tall on the screen. Characters had a stroke width of approximately 0.4 cm, or
roughly 0.33◦.

2.5. Electrophysiological Recordings

EEG data were recorded at 10/20 sites F7, FCz, Pz, P4, Oz, PO7, and PO8 from a
DSI-VR300 dry electrode cap (Wearable Sensing, San Diego, CA, USA) with linked ear
reference (A1 and A2) and ground at A1. The recording sites were selected primarily to
ensure good measurement of the P300 response [36], but custom modification of our system
moved the standard DSI-VR300 P3 site to F7 in order to capture limited EOG and eye blink
activity. Data were collected at a sampling rate of 300 Hz, 16-bit A/D conversion, and
signal quality was adjusted prior to recording to be within the ranges recommended by the
manufacturer. Signal quality was assessed in the Wearable Sensing DSI-Streamer software
(v.1.08.44), but all experimental recordings were collected using the acquisition client in
BciPy using version 2.0.1rc2 [37].

2.6. Electrophysiological Processing

The majority of offline analyses were conducted using BrainVision Analyzer Pro-
fessional Edition (v. 2.1.0.327; BrainVision LLC, Morrisville, NC, USA). To mirror past
work which examined highly similar ERP and alpha attenuation outcomes [19], our across-
participant analyses focused on electrode site Pz and also a “pooled” occipitoparietal signal,
which was the average of sites Pz, P4, Oz, PO7, and PO8. Within-participant examinations
of alpha attenuation retained data from each of the 5 recording occipitoparietal recording
electrodes. Offline analyses were conducted on calibration recordings only; EEG data
recorded during copy phrase were only used online for real-time target classification and
letter selection. One participant had consistently poor contact at site Oz, so that site was
removed from the pooled signal and all other analyses for that individual.

2.6.1. ERP Analyses

In accordance with established recommendations for attentional N200 and P300 stud-
ies [38], EEG recordings were filtered 0.1–45 Hz with a 60 Hz notch (Butterworth zero-phase
infinite impulse response filter; 48 dB/octave). Filtered recordings were downsampled
from 300 Hz to 150 Hz and segmented into 1 s test epochs ranging from −200 to +800 ms,
relative to the onset of each letter stimulus (t = 0 ms). Test epochs were then baseline
corrected using the 200 ms prior to stimulus onset (−200 to 0 ms), separated according to
target class, and averaged within each condition. In order to estimate ERP amplitudes, a
semi-automatic peak detection tool labelled weighted local maxima (0.50 weight strength)
for N200 (200–350 ms) and P300 (300–550 ms) in the averaged target letter epochs. Labels
were visually inspected and adjusted as necessary to correct cases of high-frequency peak
capture or other general inaccuracies. Finally, N200 and P300 amplitudes for target and non-
target averages were estimated as the mean signed voltage (in microvolts; µV) ± 4 sampled
points from the labelled N200 and P300 peak latencies of the respective target responses.
These estimates allowed us to analyze not only the ERP responses to target and non-target
letter stimuli, but also the target attention effect, which we defined as the difference between
measured target and non-target amplitudes.

To approximate signal variance, we measured the standard deviation of each partici-
pant’s grand-averaged test epochs. As well, we generated a second variance metric, which
took an average of the standard deviation measured across all available epochs at each
sampled point within the window of 200–600 ms post-stimulus onset. The logic behind
using these two measures was that the standard deviation of the grand average would
offer a general sense of noise, while the average standard deviation of the smaller window
would offer a picture of variability within the window of the attentional ERPs.
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2.6.2. Time–Frequency Analyses

In order to measure target-related alpha attenuation, EEG data were reprocessed to
generate time–frequency estimates of alpha activity. EEGs were filtered and downsampled,
similar to the ERP analyses, with a single change that the high-pass filter was raised
from 0.1 Hz to 1.0 Hz. Filtered data were segmented into 2.5 s test epochs ranging from
−1250 to +1250 ms, relative to the onset of each letter stimulus (t = 0 ms), and then
separated according to target class. Individual epochs were transformed into scaleograms
via continuous wavelet transform (CWT) using a complex Morlet mother wavelet (c = 5),
with frequencies ranging 4–16 Hz in 48 linear steps. CWT output was normalized to
uniform scale power (unit energy normalization), such that different frequency layers all
possessed an energy value of 1, and complex-valued output was transformed to real-valued
voltage. Lastly, mean and standard deviation information were extracted from a 500 ms
baseline window of −600 to −100 ms and used to transform all time–frequency samples
within each of the test epochs into Z-scores.

To more pointedly examine the target-related alpha attenuation response derived from
time–frequency decomposition, we defined “alpha activity” as the average of all Z-scored
samples within the response window of 300–800 ms post-stimulus onset [19]. In turn,
the alpha attenuation response was defined as the difference in alpha activity responses
following target versus non-target stimuli. Rather than look at the entire alpha band
(~8–13 Hz), values were taken on a per-participant basis from the wavelet layer nearest to
that participant’s individual alpha frequency (IAF) [39]. To identify each participant’s IAF, a
fast Fourier transformation (FFT) was performed on all available 2.5 s inquiry epochs for the
pooled occipitoparietal signal and averaged within each of the calibration recordings. The
FFT was parameterized in Brain Vision to utilize a 20% Hanning window, periodic variance
correction, and produce non-complex voltage output normalized relative to a frequency
range of 4–20 Hz. Local amplitude maxima were identified 7–13 Hz and manually reviewed
to correct cases of obvious peak capture by noise or a harmonic of the SSVEP signal. There
was no apparent IAF in 19/96 calibration recordings, so in these cases a default IAF value
of 10 Hz was established to broadly approximate alpha activity. Importantly, the resolution
of the FFT was limited computationally to 0.293 Hz, so estimates of IAF were interpreted
accordingly as approximations. The result of this IAF process was that each participant
had four estimates of IAF: one per each of the calibration recordings.

2.6.3. Artifact Rejection

Although artifact minimization is ostensibly an important part of EEG and ERP
preprocessing, there are surprisingly few BCI systems that use online tools to deal with
transient artifacts such as EOG and EMG [40,41]. Nevertheless, to ensure that our results
in this study were not contaminated by or attributable to gross artifact (e.g., blinking,
EOG, EMG, poor electrode contact), offline across- and within-participant analyses made
use of artifact rejection in EEG preprocessing. The only exceptions to this rule were that
classifiers made use of the entire data set, in order to better match the current iteration of
BciPy software, and align more realistically with real use cases, where artifact rejection
is often absent. As applied, artifact rejection occurred after epoch segmentation for both
the ERP and time–frequency analyses, but prior to separation of the stimuli into target
and non-target classes. We applied semi-automatic review, triggered by any violations
of pre-defined criteria: voltage slope > 50 µV/ms; change in voltage > 125 µV within a
span of 50 ms; absolute voltage > 75 µV; and lack of activity, defined as absolute voltage
< 0.5 µV sustained for at least 100 ms. Flagged violations were reviewed by experienced
research staff and removed from the analysis if there was any apparent artifact (EOG, EMG,
blinking, movement artifact, or other non-descript EEG noise) coincident with the ERP and
alpha attenuation effect windows.

Overall rejection rates were similar across the test conditions for both ERP and alpha
analyses, according to two-tailed paired-samples t-tests (all p values ≥ 0.40). Because of
unequal target class representation in the RSVP paradigm, we also looked more specifically
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at target rejection rates. Again, there were no significant differences in target rejection rates
between the test conditions for the ERP or time–frequency analyses (all p values ≥ 0.077).
The majority of participants retained at least two-thirds of their target stimuli across
the various calibration recordings in both the ERP and alpha analyses following artifact
rejection. We included all participants in the primary analysis, regardless of target rejection
rates. Further discussion is included in Section 3.7.1.

2.7. BCI Classifiers

Machine learning classification of the ERP data was performed offline to provide clas-
sification models for copy phrase tasks, as well as to generate offline estimates for statistical
comparisons. Alpha data were classified offline as well, but not used to drive the copy
phrase task. For offline comparisons, we generated estimates of balanced accuracy in order
to accommodate the approximately 9-to-1 non-target-to-target unbalanced class ratios:

accbal = (acctarget + accnon-target)/2 (1)

Statistical tests utilized mean balanced accuracies following 10-fold cross validation.
Python code for the BCI classifiers used in this project can be found online [42,43].

2.7.1. BCI Classifiers: ERP Data

Online classification methods for ERP data in BciPy have been outlined in previous
work [6,37]. Time series inquiry data collected during calibration were filtered 1–20 Hz
with a 60 Hz notch and divided into 500 ms epochs ranging 0–500 ms, relative to each
discrete stimulus onset. Processed data from channels Pz, P4, Oz, PO7, and PO8 were then
subject to principal component analysis (PCA), regularized discriminant analysis (RDA),
and kernel density estimation (KDE). Resultant models were used within condition to drive
classification in copy phrase tasks.

2.7.2. BCI Classifiers: Alpha Data

In order to generate offline classification estimates for alpha, we utilized PyWavelets
version 1.4.1 [44] to perform pre-processing steps similar to those outlined in Sections 2.6.2
and 2.7.1. Data from channels Pz, P4, Oz, PO7, and PO8 were filtered 1–20 Hz and seg-
mented before CWT with a Morlet mother wavelet scaled to each individual participant’s
IAF (scaled wavelets were not normalized in Python). Data were Z-scored with the same
temporal windows as those outlined in Section 2.6.2. These time series representations
of alpha activity were then fed into a logistic regression classifier with L2 regularization,
which we selected because it was the most performant option from a previous report [19].
Similar to the ERP classifier, we output mean balanced test accuracies to use for statistical
comparisons. Lastly, in an attempt to maximize classifier performance, we re-ran logistic
regression models and allowed the start of Z-scoring baseline and effect windows to shift
on an individual-by-individual basis between −1050 and −600 ms and between +150 and
+550 ms, respectively (this approach is also outlined in [19]). Compared to the default
windows, these “tuned” windows were shifted iteratively by the system to maximize
accuracy estimates.

2.8. Statistical Analyses

Data were scrutinized using SPSS Statistics, v.27 (IBM Corporation, Armonk, NY, USA).
All across- and within-participant electrophysiological measures were tested for normality
with Shapiro–Wilk tests and visually screened for outliers using box plots. The across-
participant ERP measures were mixed: roughly one-third of N200 measures were either
non-normal or contained outliers, and approximately one-eighth of P300 measures were
either non-normal or contained outliers. On the other hand, only one-third of the mean
alpha activity measures were normally distributed and without outliers. An overwhelming
majority of the within-participant alpha amplitude measures contained outliers as well,



Signals 2024, 5 27

and were not normally distributed, according to both Shapiro–Wilk and Kolmogorov–
Smirnov tests.

Because distributions for the electrophysiological measures contained ubiquitous
outliers and were not consistently normal, we decided to utilize non-parametric tests
to compare differences in median values between our measures. This approach is simi-
lar to previous work examining comparable measures [19]. Friedman tests were used to
determine the presence of condition effects for the EEG measures, followed by pairwise com-
parisons with Bonferroni correction in cases where there were significant differences. We
used two-tailed related samples Wilcoxon signed-rank tests to compare across-participant
measures, and Mann–Whitney U-tests to compare differences in median alpha amplitude
between target and non-target responses within individual RSVP recordings. To satisfy
assumptions of Mann–Whitney U, measures were visually inspected to confirm a general
similarity in shape across distributions. Relationships between alpha and ERP responses
were quantified with Spearman’s rank–order correlations. Similarly, Spearman’s rank–order
correlations were used to relate electrophysiological measures and self-report data.

3. Results

All participants completed the planned calibration and copy phrase tasks. All partici-
pants reported sleeping at least six hours the night prior to the visit, with a single exception
of one individual who reported four hours of sleep. Neither age nor hours slept prior to
the study visit correlated with the ERP target effects or alpha attenuation measures in the
experimental conditions (all absolute rs(22) values ≤ 0.371; all p values ≥ 0.075). Generally,
changes in self-reported sleepiness (SSS), headache pain, and general pain did not predict
any of the electrophysiological attention effects. There was only a single significant excep-
tion to this pattern, such that decreases in general pain related to decreases in the alpha
attenuation effect in the pooled signal for large jitter calibrations (rs(22) = −0.417, p = 0.043),
though notably this was an inversion of the expected relationship. There were no significant
effects of jitter condition on any of the self-report measures of sleepiness, headache pain, or
general pain assessed before or after the 5 Hz test calibration sessions, or for changes in
those measures pre-/post-calibration (all χ2(2) values ≤ 3.391; all p values ≥ 0.183).

3.1. ERP Analyses
3.1.1. ERP Analyses: N200

Averaged ERP waveforms are presented in Figure 2; illustrative scalp topographies are
shown in Figure 3. Wilcoxon signed-rank tests indicated that there were no significant N200
target effects at site Pz within any of the experimental conditions or supplementary slow
calibration (all p values ≥ 0.092). In the pooled signal, however, we observed significant
N200 target effects within every calibration (all p values ≤ 0.002). A related samples
Friedman test indicated that there were no significant differences in the N200 target effect
distributions at Pz among the no jitter (Mdn = 0.186), small (Mdn = −0.580), or large jitter
(Mdn = −0.796) conditions, χ2(2) = 1.583, p = 0.453. In the pooled signal as well, there were
no meaningful changes in the N200 target effect across the no jitter (Mdn = −1.643), small
(Mdn = −1.949), or large jitter (Mdn = −2.064) conditions, χ2(2) = 2.333, p = 0.311.
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windows used to identify the N200 (200–350 ms) and P300 (300–550 ms) responses; variance shading 
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the final column offers an example of non-overlapping ERP responses for visual comparison. Of 
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Figure 3. Stereotyped scalp topographies for (A) N200, (B) P300, and (C) alpha attenuation re-

sponses. Images were derived from grand averages of the 1 Hz slow calibration, where responses 

Figure 2. ERP grand averages. Evoked responses, averaged across all participants and separated by
experimental condition and signal source. Highlighted windows correspond to the peak detection
windows used to identify the N200 (200–350 ms) and P300 (300–550 ms) responses; variance shading
illustrates standard error. The first three columns illustrate the experimental test conditions, while the
final column offers an example of non-overlapping ERP responses for visual comparison. Of note, the
N200 and P300 attention effects seem similar in size across all three test conditions. Residual artifact
from the SSVEP is visible in the no jitter condition (especially in the pooled signal), but gradually
dissipates with increasing jitter range.
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Figure 3. Stereotyped scalp topographies for (A) N200, (B) P300, and (C) alpha attenuation responses.
Images were derived from grand averages of the 1 Hz slow calibration, where responses to subsequent
stimuli did not overlap. Even with a limited electrode set, the topographic maps show how N200
activation is maximal in the posterior sites, while P300 and alpha attenuation are more pronounced
in the parietal electrodes.

3.1.2. ERP Analyses: P300

Significant P300 target effects were measured in all experimental conditions and the
slow calibration, both at Pz and in the pooled signal (all p values < 0.001). A Friedman test
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indicated that there were no significant differences in the P300 target effect distributions
at Pz across the no jitter (Mdn = 8.482), small (Mdn = 7.041), or large jitter (Mdn = 8.763)
conditions, χ2(2) = 3.250, p = 0.197. Looking at the pooled signal, there again were no
meaningful changes in the P300 target effect across the no jitter (Mdn = 5.382), small
(Mdn = 4.270), or large jitter (Mdn = 5.564) conditions, χ2(2) = 3.083, p = 0.214.

3.1.3. ERP Analyses: Signal Variance

There were significant effects of condition on standard deviation of the grand averaged
epochs for both targets and non-targets, at both Pz and in the pooled signal (all χ2(2)
values ≥ 8.083; all p values ≤ 0.018). In the pooled signal, small jitter target averages
(Mdn = 2.30) demonstrated smaller standard deviations than no jitter targets (Mdn = 2.64),
Z = 3.031, adjusted p = 0.007. Similarly for pooled signal non-targets, small jitter variance
(Mdn = 0.88) was smaller than no jitter (Mdn = 1.15), Z = 3.175, adjusted p = 0.004, and
the same was true for the large jitter condition (Mdn = 0.79), Z = 5.052, adjusted p < 0.001.
At Pz, standard deviations of small jitter target averages (Mdn = 3.05) were smaller than
either no jitter targets (Mdn = 3.78), Z = 2.454, adjusted p = 0.042, or large jitter targets
(Mdn = 3.41), Z = −2.742, adjusted p = 0.018. For non-targets measured at Pz, standard
deviation estimates were significantly lower in the large jitter condition (Mdn = 0.88) than
in the no jitter condition (Mdn = 1.03), Z = 2.742, adjusted p = 0.018.

Unlike the grand averages, there were no effects of condition on the point-by-point
averages of standard deviations within the window of 200–600 ms post-stimulus onset. The
only item of note was a trend in the pooled signal toward smaller average ERP non-target
standard deviations for the small (Mdn = 8.97) and large jitter (Mdn = 8.99) conditions,
compared to no jitter (Mdn = 9.37), χ2(2) = 5.250, p = 0.072.

3.2. Time–Frequency Analyses

Peak alpha estimates (IAFs) ranged 7.32–12.01 Hz across participants, but remained
relatively stable (within 0.5 Hz) across conditions for 16/24 participants. Of the eight
participants who demonstrated fluctuating IAF values, only four evinced a range >1 Hz, and
two of those four were the result of a default estimate due to a missing peak. We performed
preliminary tests of the IAF estimates, but excluded data points where the lack of a clear IAF
was manually set to 10.00 Hz, so as not to artificially affect the distributions. There were no
differences among IAF estimates in the no jitter (Mdn = 9.96), small (Mdn = 9.81), or large
jitter (Mdn = 10.25) recordings, χ2(2) = 1.830, p = 0.401. Spearman’s rank–order correlations
indicated a significant relationship between IAF and the alpha attenuation effect only in the
pooled signal for the no jitter condition (rs(17) = 0.503, p = 0.028). Correlations between age
and IAF estimates did not reach statistical significance, though there was a trend toward
significance in both the no jitter (rs(17) = −0.451, p = 0.053) and small jitter conditions
(rs(16) = −0.417, p = 0.085), such that older participants tended toward lower-frequency
IAF estimates.

3.2.1. Alpha Effects: Across Participants

Average alpha activity waveforms are presented in Figure 4; illustrative FFT plots are
shown in Figure 5. The alpha attenuation effect was significant in the slow calibration for
both signal sources (p values ≤ 0.003). Among the experimental conditions, however, the
alpha attenuation effect never quite reached statistical significance. At most, the difference
between target (Mdn = 0.190) and non-target (Mdn = 0.230) alpha activity at Pz in the small
jitter condition was trending toward significance, Z = −1.857, p = 0.063. The same trend was
also evident between target (Mdn = 0.029) and non-target (Mdn = 0.187) stimuli at Pz in the
large condition, Z = −1.771, p = 0.076. Friedman tests revealed no significant changes in the
alpha attenuation distributions among the no jitter (Mdn = −0.042), small (Mdn = −0.120),
or large jitter (Mdn = −0.130) conditions at Pz, χ2(2) = 0.750, p = 0.687, and no changes in
alpha attenuation distributions across the no jitter (Mdn = −0.051), small (Mdn = −0.085),
or large jitter (Mdn = −0.100) conditions for the pooled signal, χ2(2) = 0.333, p = 0.846.



Signals 2024, 5 30

Signals 2024, 5, FOR PEER REVIEW  13 
 

 

between target (Mdn = 0.190) and non-target (Mdn = 0.230) alpha activity at Pz in the small 

jitter condition was trending toward significance, Z = −1.857, p = 0.063. The same trend was 

also evident between target (Mdn = 0.029) and non-target (Mdn = 0.187) stimuli at Pz in the 

large condition, Z = −1.771, p = 0.076. Friedman tests revealed no significant changes in the 

alpha attenuation distributions among the no jitter (Mdn = −0.042), small (Mdn = −0.120), 

or large jitter (Mdn = −0.130) conditions at Pz, χ2(2) = 0.750, p = 0.687, and no changes in 

alpha attenuation distributions across the no jitter (Mdn = −0.051), small (Mdn = −0.085), or 

large jitter (Mdn = −0.100) conditions for the pooled signal, χ2(2) = 0.333, p = 0.846. 

 

Figure 4. Alpha attenuation responses, averaged across all participants and separated by experi-

mental condition and signal source. Highlighted windows correspond to the baseline (−600 to −100 

ms) and effect (300 to 800 ms) windows used to z-score the time series data and quantify alpha 

attenuation, respectively; variance shading illustrates standard error. The first three columns illus-

trate the experimental test conditions, while the final column offers an example of non-overlapping 

attenuation responses for visual comparison. A pronounced alpha attenuation effect is visible in the 

non-overlapping column, but either greatly reduced or completely absent from the experimental 

test conditions. 

Figure 4. Alpha attenuation responses, averaged across all participants and separated by exper-
imental condition and signal source. Highlighted windows correspond to the baseline (−600 to
−100 ms) and effect (300 to 800 ms) windows used to z-score the time series data and quantify alpha
attenuation, respectively; variance shading illustrates standard error. The first three columns illus-
trate the experimental test conditions, while the final column offers an example of non-overlapping
attenuation responses for visual comparison. A pronounced alpha attenuation effect is visible in the
non-overlapping column, but either greatly reduced or completely absent from the experimental
test conditions.
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Figure 5. FFT plots of real voltage amplitude (y-axis) over frequency (x-axis) in the pooled signal.
Panel (A) shows spectral activity in the slow calibration (solid) compared to output from the no jitter
calibration (dashed line). The SSVEP signature is clearly visible over 5 Hz in the no jitter signal. As
well, the 1st harmonic of the SSVEP is visible at 10 Hz, overlapping with alpha activity. (B) Comparing
the same no jitter condition as in panel (A) (bold) to large jitter (dashed) shows that the SSVEP and
associated harmonic are greatly reduced. Indeed, the FFT average for the large jitter condition in
panel (B) looks very similar to that of the slow calibration in panel (A).
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3.2.2. Alpha Effects: Within Participants

We used Mann–Whitney U-tests to examine differences between target and non-target
alpha activity responses within individual calibration sessions. In this way, we were able
to scrutinize alpha attenuation responses at the level of the individual in all three test
conditions, as well as the slow calibration. The incidence of significant alpha attenuation
effects was maximal in the slow calibration, both at Pz (8/24) and also in the pooled signal
(8/24), with an additional two trending significant effects (p < 0.10) in both signal sources.
One participant, however, demonstrated significant increases in alpha following target
stimuli in both signal sources for the slow calibration. Across the test condition calibrations,
the number of significant alpha attenuation effects was reduced. At site Pz, there were 3/24
significant attenuation effects in the no jitter condition, 2/24 in the small jitter condition,
and 3/24 in the large jitter condition (Figure 6). Similarly, the pooled signal demonstrated
6/24 significant target-related attenuation effects in the no jitter condition, 1/24 in the
small jitter condition, and 2/24 in the large jitter condition. With the exception of site Pz in
the small jitter condition, among the test conditions, there was always a single additional
instance of a significant alpha activity difference in the opposite direction, and even two
instances of such at Pz during the no jitter calibration.
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Figure 6. Within-participant alpha attenuation effects, illustrated as changes in median alpha activity
Z-scores between the non-target and target classes at recording site Pz. Solid lines represent significant
within-participant changes; dashed lines signify that a class difference did not reach statistical
significance. Patterns were not dramatically different in the pooled signal. Attenuation effects are
most pronounced in the slow calibration (1 Hz). Significant alpha attenuation was evident for a
handful of individuals in each of the test conditions, but there was no clear benefit from SOI jitter.
Three separate participants showed significant increases in alpha activity following target letter
stimuli: two in the no jitter condition; one in the large jitter condition.

3.3. Correlations between Across-Participant ERP Target Effects and Alpha Attenuation

Regardless of signal source, neither N200 nor P300 attention effects were significantly
predictive of alpha attenuation in any of the three experimental conditions or the slow
calibration (all absolute rs(22) values ≤ 0.375; all p values ≥ 0.071). Similarly, N200 and
P300 target effects did not significantly relate to one another in any of the test conditions (all
absolute rs(22) values ≤ 0.349; all p values ≥ 0.095). However, in the slow calibration, N200
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and P300 target effects were significantly correlated in the pooled signal (rs(22) = 0.522,
p = 0.009).

3.4. Classification

Machine learning classification estimates of ERP and alpha-oriented time–frequency
data were generated using all available EEG data from calibration recordings. These
estimates did not make use of artifact rejection procedures, so as to better emulate real-
world use cases.

3.4.1. Classification: ERPs

A Friedman test showed no statistically significant differences in the mean balanced
test accuracy distributions among the no jitter (Mdn = 0.756), small (Mdn = 0.747), or large
jitter (Mdn = 0.781) calibrations, χ2(2) = 1.750, p = 0.417. The slow calibration had lower
model accuracies (Mdn = 0.669) than any of the three experimental 5 Hz conditions (all
p values < 0.001). PCA/RDA/KDE classification estimates of the ERP signals (i.e., mean
balanced accuracies) showed significant positive associations with the N200 attention
effects measured in the pooled signal in the no jitter (rs(22) = −0.634, p < 0.001), small
jitter (rs(22) = −0.535, p = 0.007), and large jitter (rs(22) = −0.509, p = 0.011) calibrations.
At site Pz, however, there was only a marginal relationship between N200 target effects
and classifier balanced accuracies in the no jitter calibrations (rs(22) = −0.371, p = 0.074).
Classification accuracies were significantly positively correlated with P300 target effects in
all experimental conditions, both at Pz and in the pooled signal (all rs(22) values ≥ 0.479; all
p values ≤ 0.018). Lastly, classifier-balanced accuracies were strongly positively correlated
with accuracy during the copy phrase tasks in all test conditions: no jitter (rs(22) = 0.795,
p < 0.001); small jitter (rs(22) = 0.541, p = 0.006); and large jitter (rs(22) = 0.547, p = 0.006).

3.4.2. Classification: Alpha

We observed no significant differences among no jitter (Mdn = 0.557), small (Mdn = 0.554),
or large jitter (Mdn = 0.539) mean balanced accuracy estimates from calibrations, χ2(2) = 4.750,
p = 0.093. With window parameter tuning, there again were no notable differences among
balanced accuracy distributions in the no jitter (Mdn = 0.548), small (Mdn = 0.557), or large
jitter (Mdn = 0.560) calibrations, χ2(2) = 0.583, p = 0.747. Regardless of whether we used
default or tuned windows, balanced accuracy estimates from the alpha classifier did not
correlate with alpha attenuation effects measured offline in Brain Vision (all absolute rs(22)
values ≤ 0.373; all p values ≥ 0.073).

3.5. Copy Phrase Performance

No statistically significant differences were observed among overall accuracy rates
in the no jitter (Mdn = 0.90), small (Mdn = 0.90), or large jitter (Mdn = 0.80) copy phrase
tasks, χ2(2) = 1.853, p = 0.396. P300 target effects measured from both signal sources
during calibration significantly predicted copy phrase accuracy rates in all experimental
conditions (all rs(22) values ≥ 0.453; all p values ≤ 0.026), with the single exception that the
effect did not quite reach significance in the pooled signal during the small jitter condition
(rs(22) = 0.386, p = 0.062). N200 target effects measured during calibrations did not predict
copy phrase performance, with the single exception that N200 target minus non-target
differences in the pooled signal predicted accuracy rates during the no jitter condition
(rs(22) = −0.532, p = 0.007).

3.6. User Experience Questionnaire

In total, 13 out of 24 participants reported some perceived difference between the
experimental conditions, and 12 of these individuals cited at least some element of speed
or pace as a difference. However, only three participants articulated any perceptions of
unevenness in the timing of stimulus presentations (e.g., “wobble”, as one individual
described it). Out of the 24 participants, 14 responded that they had a preference for one
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of the conditions, though sometimes respondents cited internal factors (e.g., boredom or
fatigue) as their reasons for picking one condition over another. There was not a statistically
significant difference in participant rankings of the different conditions (Mdn = 2.00 for all
conditions), χ2(2) = 1.583, p = 0.453.

3.7. Supplementary Analyses
3.7.1. Supplementary Analyses: Artifact Rejection

There is a known trade-off between increasing signal quality and loss of statistical
power associated with the removal of samples—so much so that some advocate foregoing
artifact removal altogether [45]. In the ERP analysis, 6/96 calibration recordings lost more
than one-third of target epochs, and an additional 5/96 lost more than one-half of target
epochs. In the alpha analysis, these counts increased to 12/96 and 7/96, respectively.
Due to high rates of artifact rejection for a subset of participants, we removed individual
recordings with >50% target stimuli rejection rates and re-ran key tests of condition effects
on the electrophysiological measures. No more than two recordings were ever removed per
condition. Friedman tests indicated that there were no changes to our previous results, and
that there were no significant effects of condition on N200 or P300 target effect distributions,
or on the alpha attenuation distributions.

3.7.2. Supplementary Analyses: Alpha “Responder” and “Non-Responder” Groups

Previous investigations have suggested that the alpha and other time–frequency
measures are subject to individual differences [31,46]. As such, it is possible that the
attenuation effect might only be visible in a subset of individuals, so-called “responders”.
To ensure that our across-participant results were not unduly blunted, we partitioned
our sample according to “responders” and “non-responders”, where a “responder” was
defined as a participant who showed a significant target-related alpha attenuation effect in
at least 2/5 occipitoparietal recording electrodes during the 1 Hz slow calibration, where the
alpha attenuation effect is most visible [19]. With this criterion, we identified 9 responders
and 15 non-responders in our sample (Figure 7). Two non-responders showed significant
differences in target versus non-target alpha activity, though in the opposite direction.
Across the recording sites in the slow calibration, the alpha attenuation effect was most
often significant at electrode P4, followed closely by Pz. Because of the prominence of
the attenuation effect at P4, we decided to use that site for this particular supplementary
analysis, in an attempt to maximize group differences.

All responders demonstrated significant target-related alpha attenuation effects at
P4 in the slow calibration. However, these effects dissipated in the test conditions, where
only 3/9, 1/9, and 2/9 responders demonstrated significant effects in the no jitter, small,
and large jitter conditions. One additional responder demonstrated a significant target-
related increase in alpha activity during the no jitter calibration. For non-responders, 2/15
individuals showed significant alpha effects during the slow calibration, but both were
in the wrong direction. The only significant instances of target-related alpha attenuation
observed in the non-responder group were in the no jitter (1/15) and large jitter condition
calibrations (2/15). Even so, there were actually more numerous cases of significant inverse
effects in both the no jitter (2/15) and large jitter (3/15) conditions. Non-responders showed
no significant effects in the small jitter condition.

Using the responder and non-responder designations, we re-ran key across-participant
condition comparisons for alpha attenuation measures in the separate groups. As expected,
non-responders showed no significant target effects in any of the three test conditions (all
p values ≥ 0.256), and no significant effect of condition on target versus non-target alpha dif-
ferences in either the pooled signal or Pz (both χ2(2) values ≤ 2.533; both p values ≥ 0.282).
For responders, there again were no significant differences between target and non-target
alpha responses in the no jitter and large jitter conditions (all p values ≥ 0.110). How-
ever, in the small jitter condition, target effects were trending in both signal sources
(both p values ≤ 0.066). Responders demonstrated no significant effect of condition on
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alpha attenuation distributions in either signal source (both χ2(2) values ≤ 1.556; both
p values ≥ 0.459).
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Figure 7. Differences between responder and non-responder alpha attenuation estimates. (A) Alpha
attenuation estimates at site P4 during the slow calibration. Solid lines denote significant target versus
non-target differences; dashed lines signify a lack of significant change. (B) Box and whisker plots of
alpha attenuation estimates (median target alpha z-scores minus median non-target z-scores) across
tests conditions, separated according to responder and non-responder groups. Alpha attenuation
appears to be somewhat more pronounced for responders across the test conditions, but there are no
clear effects of jitter on alpha attenuation in either group.
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4. Discussion

This study compared the performance of a BCI RSVP system across three different
ranges of jittered SOI. We measured changes in three electrophysiological markers of
attention: N200, P300, and alpha attenuation. We also quantified differences in signal
classification and typing performance between the test conditions. Supplementary analyses
scrutinized variance of the ERPs and individual differences in the alpha attenuation effect.

4.1. Summary of Findings

Null hypotheses were retained (see Section 1.4). We observed expected significant
target effects for ERPs N200 and P300 in all test conditions. The N200 was localized more
posterior than the parietal maximal P300, and P300 target effect was more consistently
related to classifier performance than the N200. However, we found no effect of SOI jitter
on the size of these target effects. The overall variability of ERP averages was decreased in
the jittered conditions, but there was no effect of condition on the average variance of the
attentional ERPs. Alpha attenuation effects were not quite significant in the test conditions
and were unaffected by jitter. Machine learning classification was more performant for
ERPs than for the alpha data, but neither showed obvious improvement with increasing
jitter range. Intrusion of SSVEP artifact in the electrophysiological measures was visibly
reduced in the jittered conditions. However, typing performance was similar between the
test conditions and, subjectively, participants were not consistently aware of or concerned
with SOI jitter.

4.2. Adjacent ERP Overlap, Jittered SOI, and SSVEP

Our research hypotheses were formed under the assumption that systematic distor-
tion of averaged ERPs—which we observed as increased signal variance in the non-jitter
condition—would translate to changes in performance of a BCI RSVP system. We also
suspected that this rhythmic distortion, which we conceptualized as unwanted SSVEP
artifact, contributed to changes in an alpha attenuation effect which were observed previ-
ously between slow and fast RSVP paradigms [19]. However, because our measures were
generally unchanged by jittered SOIs, one should consider possible problems with the logic
underpinning our assumptions. Specifically: (1) jittered SOI is not a one-size-fits-all solu-
tion to adjacent ERP overlap; (2) it is unclear whether SSVEP artifact has deleterious effects
on event-related responses during RSVP; and (3) there are notable differences between the
current design and previous investigations which may help to explain our results.

With regard to the first of these points, high-pass filtering can attenuate unwanted
long-latency potentials, though in the case of P300 measurement, this solution perhaps is
not practical [38]. Additionally, in cases of random stimulus presentation, target versus
non-target differences are understood to be somewhat resilient to distortions caused by
adjacent ERP overlap, though not necessarily all types of order effects [17]. Critically, this
scenario accurately describes the current RSVP design, where the classifier is focused on
class differences. Some have even concluded that detection of a relevant target response
can occur without precise knowledge of the timing of stimulus onset [24].

As for SSVEP artifact, we acknowledge that many ERP-based RSVP systems continue
to function with acceptable accuracy [13], despite a general lack of concern over overlap-
ping adjacent ERPs. ERP- and SSVEP-based BCIs are generally characterized as separate
mechanisms, to be sure, and have even been fused in hybrid designs [47]. Of importance to
the question of jittered SOI, code-modulated visual-evoked potentials (c-VEP) also use ir-
regular pseudo-randomized stimulus presentation durations, but there is no consensus that
c-VEP is functionally beneficial relative to routine SSVEP [48]. Dramatic changes in alpha
attenuation between slow and fast RSVP presentations [19], on the other hand, may very
well be the result of qualitative endogenous changes in the task (e.g., cognitive load), rather
than exogenous factors, such as interference from the SSVEP or an associated harmonic.

Lastly, we would like to consider our results as they relate to previous relevant investi-
gations. To our knowledge, no previous work has explored jittered SOI in the context of the
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RSVP BCI paradigm, so we have no ideal candidates for comparison. The visual changes
observed in our ERP waveforms with increased jitter latencies were ostensibly similar
to those illustrated previously [17]. As noted above, however, stimulus randomization
can be an effective tool for dealing with overlap when looking at target versus non-target
differences. Additionally, compared to relevant discussion in [17] which assumed equal
target and non-target likelihoods, the present RSVP design possessed unequal classes. As
well, while previous reports described changes to ERP attention effects with increasing
SOI durations, the present study used dramatically shorter latencies overall than [18],
and another comparison of different SOA values on ERPs and VEPs did so using a block
design [26]. Increasing N200 and P300 amplitudes observed in that study and a lack of such
effects in the present study might be explained by our use of uniform random distributions,
which result in an unchanging mean SOI value across conditions.

4.3. Limitations and Future Directions

Multiple factors limit the generalizability of the present report. First, the findings
of this study are limited by a small sample size, and participants in our sample were
generally healthy adults. Future investigations would benefit from increased sample
sizes and the inclusion of persons from clinical populations, such as individuals with
neurodegenerative conditions like amyotrophic lateral sclerosis (ALS), especially when
investigating AAC-BCI paradigms. Second, though we sought to address problematic
adjacent ERP overlap with jittered SOI, it is difficult to estimate baseline effects of overlap
in RSVP without fundamentally altering the paradigm. Slowing down presentation rates
(as we did in our non-experimental 1 Hz slow calibration) often results in increased fatigue,
and the cognitive demands of the task may be qualitatively different from those at faster
presentation rates (e.g., sustained attention, vigilance, or stimulus discrimination). Future
testing would benefit from exploration of alternative designs that address overlap, but do
not alter presentation rate, such as presenting RSVP stimuli at different spatial locations [49],
or something akin to a modified matrix speller. Lastly, there were limitations in our
analyses. Our online ERP classifier used for copy phrase was restricted to a window
of 0–500 ms, which did not wholly match our offline measurements of N200 and P300,
although these different approaches did correlate significantly. Our use of a regularized
discriminant in the RSVP paradigm, generally speaking, might not match results from
similar manipulations of other visual presentation paradigms, like a matrix speller, or
results from machine learning approaches other than the regularized discriminant. As well,
the logistic regression approach used to classify our alpha attenuation effect was clearly
ineffective. Logistic regression is a relatively simple approach to class prediction, and it is
likely that more sophisticated methods would demonstrate better performance. Likewise,
it is possible that the temporal windowing constraints used for offline alpha analyses were
not as well suited to our classifier. Future work should seek to identify an optimal approach
to classification for the alpha attenuation measure.

5. Conclusions

Prior research suggests that temporal overlap of brain responses to sequential stimuli
can adversely affect measurement of those brain responses. However, data from the present
study show that performance during a BCI RSVP paradigm using a regularized discrim-
inant classifier was almost completely unaffected by one known remedy for temporal
overlap: SOI jitter. These findings indicate that SOI jitter does not significantly improve
classification of ERPs or event-related alpha attenuation during RSVP. Likewise, the appli-
cation of jitter did not significantly increase electrophysiological responses to target stimuli
during RSVP in the current context, though these results also suggest that jitter would not
be detrimental in other similar use cases. It remains unclear if temporal overlap of stimuli
is detrimental to BCI RSVP performance.
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