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Abstract: A reliable prediction model can greatly contribute to the research of car seating system
vibration control. The novelty of this paper lies in the development of a hybrid method of an artificial
neural network (ANN) and response surface methodology (RSM) to predict the peak seat-to-head
transmissibility ratio of a seating suspension system and to evaluate its ride comfort for different
seat design parameters. Additionally, this method can remove the experimental design of the RSM
model. In this paper, four seat design parameters are selected as input parameters and arranged
using the central composite design method. The peak transmissibility ratio from seat to head at
4 Hz is chosen as the response target output value. To illustrate this hybrid method, the response
target output value of the peak transmissibility ratio is calculated from the frequency response of
a five-degrees-of-freedom (5-DOF) lumped-parameter biodynamic seating suspension model. The
input design parameters and the response target output values are used to train an ANN to establish
the relationship between the seat design parameters and the peak transmissibility ratio. At the same
time, the input design parameters and the response target output values predicted by the ANN are
used to develop the relationship between the seat design parameters and the peak transmissibility
ratio using the response surface method and linear regression models. The hybrid of the ANN and
response surface methods makes the planning or design of experiments not essential. The hybrid
model of the ANN and response surface method is more accurate and convenient than a linear
regression model for the study of seating system vibration isolation.

Keywords: system transmissibility; ANN; response surface method; linear regression; hybrid

1. Introduction

Since the 1980s, ANN algorithms have appeared as a type of deep learning, under-
gone continuous development, and been applied in various research fields. The ANN
algorithm obtains parallel and distributed information processing capabilities through
the transformation of its own network and the change in the incentive function. When
dealing with complex nonlinear problems, ANNs are more efficient and accurate than other
mathematical models. In the research area of vehicle vibration, especially seat vibration,
ANN methods have recently become effective tools for the study of vibration control and
ride comfort. For the vibration control of a vehicle seat system, ANNs are widely used
to predict the seating system vibration or ride comfort out of various design parameter
variables to improve the vibration control performance and reduce the system complexity.
It was shown that compared with the traditional complex model that requires various
sensors, a trained ANN model was able to predict the dynamic characteristics of a 7-DOF
automobile chassis suspension model well, thereby increasing the accuracy of the system
control while decreasing the system complexity [1]. In addition, in an ANN model, the
relationship between the input and target can be easily established without considering
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the nonlinearity of the system. An ANN algorithm was applied to simulate the dynamic
characteristics of the human body through developing a human body model [2]. Compared
with ordinary mathematical models, ANN models can more quickly solve the nonlinear-
ity problems of the human body. For example, a trained ANN model can predict head
acceleration from the vibration amplitudes of the hands and the seat and can be applied
to study the nonlinear dynamic characteristics of ligaments and other tissues. Moreover,
a trained human–worker static network model was applied to predict the synchronous
acceleration of the human body based on the vibration of the pelvis [3]. This human model
was used to evaluate the comfort of a seat. The experimental results also proved that the
ANN control algorithm had higher accuracy than the other control algorithms in the study.
In another study [4], an ANN module was used to train a signal to control an actuator
to generate a corresponding motion according to the response speed and displacement
changes. For parameter recognition, a trained ANN model was applied to recognize the
roughness of a road through vehicle dynamic signal recognition and parameter setting [5].
This research enabled the traditional control system to have more decision-making capa-
bilities. The introduction of ANN algorithms into controller design has greatly enriched
the development of active seat vibration control. The output target is predicted from input
variables through establishing powerful nonlinear relationships by using ANN algorithms,
thereby increasing the accuracy and performance of control systems.

On the other hand, ANNs have been applied to predict ride comfort in research on car
seat vibration control. For the study of a parametric human model, an ANN was applied to
predict the human body’s exposure to vibration dose from the longitudinal acceleration of
the cab floor and the speed of the vehicle [6]. In addition, a multi-layer feedforward ANN
with a multi-structure forward propagation (BP) algorithm was developed to predict the
most comprehensive and best seat configuration through an analysis of measured human
body parameters, sitting posture, and vibration conditions [7]. The experiments showed
that a well-trained ANN was able to predict the biodynamic response of a seated object,
and the response was a function of body weight, input vibration amplitude, and support
state. In another two studies [8,9], the vibration input and human dynamic response target
in experiments were used as training data, and ANN algorithm modeling was applied to
establish a biodynamic model through training. It was verified that the model was able to
predict the dynamic response of the human body under vibration.

The following three studies collectively discuss the application of ANNs in predicting
ride comfort. In study [10], ride comfort was estimated using an ANN combined with
anthropometric data and acceleration measurements. Similarly, the development of a
three-layer ANN model, aimed at precisely estimating the real-time ride comfort of bus
passengers, was focused on [11]. These studies demonstrate that ANNs can effectively
process and analyze complex data, enhancing the accuracy of subjective ride comfort
predictions. However, despite the precision of this method, which combines subjective
sensations with modeling predictions, it presents challenges in quantification, making it
difficult to control or optimize the system for ride comfort. These difficulties mainly stem
from the subjective nature of and variability in ride comfort, as well as the complexity of
neural network models in processing such subjective data.

Therefore, the core challenge of this research is to combine the high degree of automa-
tion and pattern recognition abilities of an ANN with the transparency and interpretability
of traditional statistical methods to quickly predict and evaluate ride comfort and reduce
the complexity and preparation process of experiments.

The combined approach of an ANN and RSM holds great potential to provide use-
ful tools for seat vibration analysis as well as for predicting biodynamic response and
parameter interaction effects. However, previous studies have not focused on the actual
output target of ride comfort performance, using seat design parameters as input variables,
which is the research gap. The main contribution of this paper is the establishment of a
hybrid approach of ANNs and RSM for the prediction of ride comfort based on seat design
parameters. The ANNs are first trained using input and output results calculated from
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a 5-DOF biodynamic seat suspension system model. The output and input results of the
ANNs are then used to develop a response surface method model. The uniqueness of the
hybrid approach lies in saving the design of experiments for response surface method
modelling. In this paper, the response target is assumed to be the peak transmission ratio
from the seat base to the head at about 4 Hz, reflecting the ride comfort.

2. Method

First, a reliable 5-DOF human body biodynamic model was established [12–14]. This
model, based on experimental results, employs a GA method for rapid parameter iden-
tification, enabling an accurate simulation of the human body’s low-frequency dynamic
response under various vibration conditions. A substantial number of data were generated
from extensive vibration experiments, encompassing the human body’s response to low-
frequency vibrations across various seat design parameters and vibration conditions. The
data were then used to train a neural network model. The neural network was designed
to establish linear or nonlinear relationships between the parameters of the dynamical
model and the vibration transmission ratio itself. Given the complexity inherent in these
relationships, using a neural network significantly reduces the difficulty of computation
and modeling. The neural network’s capability in handling large datasets and identifying
complex patterns enables it to accurately predict human vibration responses under dif-
ferent parameter combinations. Subsequently, the data generated by the neural network
model were used for RSM modeling analysis. RSM is a robust statistical tool for response
prediction, parameter sensitivity analysis, and optimization. In this study, RSM allowed us
to explore and optimize seat design parameters to minimize the impact of vibrations on the
human body. The entire research process is illustrated in Figure 1. Finally, linear regression
and response surface modelling methods were compared with each other and validated to
ensure the accuracy and reliability of the research outcomes.
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3. ANN Model

The backpropagation (BP) algorithm is a widely used method in the training of ANNs,
combined with optimization techniques like gradient descent. This algorithm works by
calculating the gradient of all weights and biases in the network relative to the loss function.
The network adjusts its weights and biases based on this gradient information to minimize
the loss function.

As a supervised learning technique, the BP algorithm requires the gradient of the
loss function to be determined for each input data point’s expected output. The algorithm
demands that the activation function of the neurons be differentiable to ensure that the
gradient can be computed. The core of a BP network is the mapping relationship between
its input and output, which often exhibits high nonlinearity. An ANN consists of multiple
layers, each containing different numbers of neurons: the input layer receives input data,
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the hidden layers further process these data, and finally, the output layer produces the result.
The connections between each neuron represent weight factors, which are continuously
adjusted during the network’s learning process.

The learning process of an ANN model is divided into two phases: forward propaga-
tion and backward propagation. In the forward propagation phase, data are transmitted
from the input layer through the hidden layers to the output layer. If the output layer fails
to produce the expected result, the system calculates the mean squared error and uses it
as the target function for the backward propagation phase. At this point, the algorithm
calculates and minimizes the partial derivatives of the weights of each layer’s neurons
concerning the target function to find the optimal combination of weights. The network
performance is optimized by adjusting the weights during this process until the error
reaches an acceptable range, at which point the network learning stops. The forward
propagation can be calculated and given by:

S =
n

∑
i=1

xiwi + b (1)

where xi represents input variables, wi is the weighting factor, and b is bias.
In ANN models, the most used activation (transfer) functions for the regression

problems are purlin, logsig, and tansig. The logsig activation (transfer) function can be
written as:

logsig (S) =
1

1 + e−s (2)

In the backpropagation process, the total error can be calculated and given by:

C =

√√√√√ n
∑
i
(yi − Si)

2

n
(3)

where yi is the expected output value.
In this study, an ANN model with a dataset of 26 was established and trained. The

training data included four parameters required by CCD and the corresponding human
dynamic response, i.e., the peak vibration transmission ratio at 4 Hz. The neural network
model was configured with a specific network topology, namely 4:6:2:1. This implies that
the model includes four inputs, the first hidden layer consists of six neurons, the second
hidden layer contains two neurons, and the output layer comprises one neuron. The entire
dataset was allocated for different stages of model training: 60% (i.e., 16 datasets) were used
for the training process. During this phase, the model’s weights and biases were adjusted
and learned based on the training data. Subsequently, 20% of the data (i.e., five datasets)
were utilized as a validation set to evaluate the model’s generalization capability during
training, ensuring that the model adapts not only to the training data but also effectively
handles new, unseen data. Finally, the remaining 20% (also five datasets) served as the
test set, used to assess the model’s final performance post-training. As shown in Figure 2,
through this configuration, the network topology structure of the model is fully utilized in
all stages of learning, validation, and testing. Such a data allocation strategy helps prevent
overfitting and ensures that the model has good generalization ability.
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4. RSM Model

In the design and analysis of car seats, previous studies often focused on design param-
eters one by one for their optimization without fully considering the interactions between
different parameters. This single-variable optimization approach fails to comprehensively
consider the combined impact of various parameters. Although this limitation can be
overcome through design of experiments (DOE), it typically compromises the quality and
cost of analysis.

RSM, as a tool combining mathematics and statistics, is widely used in engineering
for optimizing multi-variable systems and is particularly suitable for systems with clearly
defined parameter boundaries. The main purpose of RSM is to find the optimal parameter
combination of a system model for the best system performance.

The process of RSM generally includes several key steps: firstly, the design of experi-
ments, followed by the establishment of the model, then the verification of the model, and,
finally, finding the optimal combination of parameters for the best system performance
target. In addition, RSM also considers the impact of errors and adopts simple first-order or
second-order polynomial models to represent the relationships between input and output
results, thus enabling effective regression fitting. The implementation of RSM is divided
into two main phases: the first phase is the design of the response surface, while the second
phase is the optimization of the response surface.

When exploring the relationship between input variables and the response variable,
choosing the appropriate approximation function is crucial. Within a specific range, first-
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order models are typically used for low-order polynomial approximations. If the system
exhibits curvature characteristics, higher-order polynomial models, such as second-order
models, need to be adopted.

In RSM, it is assumed that the variables affecting the response value Y are x1, x2. . .xk.
In this case, Y is described as an unknown function Y = ƒ(x1, x2. . .xk) + ε, where ε represents
experimental error, and the expected value of this error is assumed to be 0. Therefore, when
E(Y) = ƒ(x1, x2. . .xk) + η is considered to be the expected response value, η represents the
response surface.

In this study, an RSM model was established to predict the peak vibration transmissi-
bility ratio at 4 Hertz under different design parameter settings. This is due to the resonance
phenomenon that occurs when the natural frequency of the seat and the human body is
close, specifically around the frequency of 4 Hz. This means that vibrations on the seat
are amplified, resulting in a stronger vibration sensation for the person sitting in it. This
vibration not only degrades ride comfort but may also lead to a range of health issues.
As shown in Tables 1 and 2, according to the statistical requirements of Box–Behnken’s
experimental design, there were a total of 26 input design parameters arranged through
a central composite design (CCD), and the corresponding peak vibration transmissibility
ratio output response target values were predicted based on the ANN model described
in previous studies. The inputs for the RSM model included seat stiffness z1 = K1, seat
damping z2 = C1, cushion stiffness z3 = K2c, and cushion damping coefficient z4 = C2c.
Meanwhile, the peak vibration transmissibility ratio at 4 Hertz was considered the target
response data for the RSM modeling.

Table 1. Parameter setting for RSM model.

Coded Parameters
(Dimensionless) Uncoded Parameters Max Min

x1 z1 = K1 (N/m) 50,000 10,000
x2 z2 = C1 (Ns/m) 10,000 5000
x3 z3 = K2c (N/m) 50,000 10,000
x4 z4 = C2c (Ns/m) 10,000 5000

A total of 26 sets of input dimensionless parameter combinations were designed
according to the CCD design of input parameters as shown in Table 2 to develop the RSM
model, where α = 1.414 is the star value. xi (i = 1–4) is the dimensionless input parameter
that changes from −1 to +1 corresponding to the dimensional input parameters zi (i = 1–4),
which changes from the minimum to maximum values. The dimensional input parameters
zi (i = 1–4) can be converted into the dimensionless input parameters xi (i = 1–4) by the
following equation. 

z0 = zmax+zmin
2

∆z = zmax−zmin
2

xi =
zi−z0

∆z ; i= 1, 2, 3

(4)

By performing multiple regression on the input and output parameters and the re-
sponse Y in Table 2, the quadratic multiple parameter regression equation of the response
Y for the four parameters was finally obtained and given by

Y = 13.8111 + 0.149x1 + 0.0317x2 + 0.2012x3 + 0.0192x4
− 0.0032x2

1 + 0.0018x2
2 − 0.0729x2

3 + 0.0017x2
4

− 0.092x1x2 + 0.0025x1x3 + 0.0013x1x4 + 0.0023x2x3
− 0.0094x2x4 − 0.00457x3x4

(5)
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Table 2. Central composite design (CCD) of input design parameters and simulated response of the
peak vibration transmissibility ratios.

Run Responses

Factors Seat
Stiffness

Seat
Damping

Cushion
Stiffness

Cushion
Damping Transmissibility

N x1 x2 x3 x4 Y
1 1 1 1 1 14.0091
2 −1 1 1 1 13.8755
3 1 −1 1 1 14.1449
4 −1 −1 1 1 13.6357
5 1 1 −1 1 13.6964
6 −1 1 −1 1 13.5659
7 1 −1 −1 1 13.8341
8 −1 −1 −1 1 13.3367
9 1 1 1 −1 14.0717
10 −1 1 1 −1 13.9392
11 1 −1 1 −1 14.1651
12 −1 −1 1 −1 13.6599
13 1 1 −1 −1 13.5723
14 −1 1 −1 −1 13.4447
15 1 −1 −1 −1 13.6705
16 −1 −1 −1 −1 13.1857
17 1.41 0 0 0 13.9689
18 −1.41 0 0 0 13.6451
19 0 1.41 0 0 13.8489
20 0 −1.41 0 0 13.7847
21 0 0 1.41 0 13.9606
22 0 0 −1.41 0 13.3759
23 0 0 0 1.41 13.8149
24 0 0 0 −1.41 13.8186
25 0 0 0 0 13.8067
26 0 0 0 0 13.8067

5. Results

It is seen from Equation (5) that all the coefficients of x1 to x4 are positive. When x1–x4
decreases, the response target output Y or the peak transmissibility ratio at 4 Hz decreases.
The sequence of the coefficients or the sequence of the effects of the four parameters on the
peak transmissibility ratio from large to small is x3, x1, x2, and x4. The nonlinear quadratic
terms x2

3 and x2
1 also have large effects on the peak transmissibility ratio. The interaction

term of x1x2 has large negative effects on the peak transmissibility ratio. When x1x2
increases, the peak transmissibility ratio decreases. This means that the coupling effects of
the seat stiffness and damping have a large influence on the peak transmissibility ratio.

The RSM model was validated through analysis of variance (ANOVA), and the results
of the statistical test are displayed in Table 3. According to the ANOVA method, the F-value
is determined by measuring the variance of the average data. If the F-value significantly
deviates, it can be more confidently asserted that there is a better fit for the function.
Subsequently, the p-value is calculated based on the F-value and the degrees of freedom
(df ). To validate any regression model from a statistical perspective, the F-value must be
as high as possible, and the p-value should be as low as possible. A p-value less than
0.05 indicates that the model has been validated for prediction.
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Table 3. ANOVA results for RSM model.

Source Sum of
Squares df Mean

Square F-Value p-Value R2 Adjusted
R2

Model 1.5 14 0.1069 136.11 <0.0001 0.9943 0.987

X1(K1) 0.4438 1 0.4438 565.24 <0.0001
X2(C1) 0.02 1 0.02 25.53 0.0004
X3(K2c) 0.8087 1 0.8087 1030.04 <0.0001
X4(C2c) 0.0074 1 0.0074 9.4 0.0107
X1X2 0.1355 1 0.1355 172.59 <0.0001
X1X3 0.0001 1 0.0001 0.1287 0.7266
X1X4 0 1 0 0.0338 0.8575
X2X3 0.0001 1 0.0001 0.1125 0.7436
X2X4 0.0014 1 0.0014 1.82 0.2044
X3X4 0.0334 1 0.0334 42.49 <0.0001
X1

2 0.0001 1 0.0001 0.1071 0.7497

X2
2 0 1 0 0.0337 0.8577

X3
2 0.0448 1 0.0448 57.12 <0.0001

X4
2 0 1 0 0.0327 0.8597

Residual 0.0086 11 0.0008
Lack of

Fit 0.0086 10 0.0009

Pure
Error 0 1 0

Cor Total 1.5 25

For this model, the F-value is high at 136.11, and the p-value is less than 10−4. Mean-
while, the R2 value is about 0.9943, close to 1. Additionally, the R2 is close to the adjusted
R2. All statistical estimators indicate that the developed RSM model has been validated
from a statistical standpoint, meaning the developed model can work well in predicting
seat vibration transmissibility.

Furthermore, in the multi-parameter regression analysis, the F-values for X1 and X3
were observed to be higher than for the other parameters, having values of 565.24 and
1030.04, respectively, and the p-values are all less than 10−4. This result shows that these
two parameters X3 and X1 have the largest and second largest impact on the response
target output. The F-values for X2 and X4 are 25.53 and 9.4, respectively, lower than the
first two, while the p-values are 0.0004 and 0.0107, both less than the threshold of 0.05.
This indicates that these two parameters are statistically significant in this model, but their
effects on the response target are slightly less. X4 and X2 have the least and second least
effects on the response target output. The same conclusion can be drawn from the analysis
of regression coefficients, where the effects of these parameters are ranked according to the
order of the absolute values of the coefficients of the parameter terms from large to small. In
the analysis of the interaction between parameters, the F-values for terms X1X2 and X3X4
were observed to be higher than for the other terms, and the p-values are all less than 0.05,
making them statistically significant. This means that the coupling effect of the seat stiffness
and damping has a large influence on the peak transmissibility ratio. The coupling effect of
the cushion stiffness and damping also has a large influence on the peak transmissibility
ratio. It can be inferred that the correlation between these two sets of parameters will
impact the response target output, but the interaction effects between other parameters are
not statistically significant in this analysis, meaning that the interaction effects between
other parameters will not affect the response target output. In the actual experiments, it
was proven that increasing or decreasing the stiffness of the seating system does indeed
increase or decrease the damping coefficient of the seat, as does the seat cushion. This
result also confirmed the reliability of the 5-DOF biodynamic model and the RSM model.
In the quadratic term analysis, the F-value and p-value for the stiffness of the seat cushion
X3

2 are of statistical significance. Therefore, it can be considered that in a nonlinear state,
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changes in the stiffness of the seat cushion will have a greater impact on the response target
output of the vibration transmissibility ratio than those in the other parameters.

A linear regression methodology (LRM) was also applied in this study for data com-
parison and validation, like the RSM model. Like RSM, LRM also requires the CCD process.
Therefore, it can directly use the ANN model for predicting the appropriate vibration
transmissibility ratios for different parameter combinations, just like the former. In terms
of data analysis, ANOVA analysis and the Student t-test were conducted for the LRM. The
ANOVA analysis and Student t-test results of the LRM model are listed in Table 4, where
the F-value of the whole LRM model is 29.90; the Significance F (p-value) of the whole LRM
model is 2.12 × 10−8, which is much less than 0.05. The multiple R2 is 0.92; meanwhile, the
R2 value is about 0.85, and the adjusted R2 is 0.82. All statistical metrics indicate that the
developed LRM model is valid from a statistical standpoint. It can be seen from Table 4 that
X3 and X1 have the largest and second largest t Stat values and have their corresponding
p-value of 0, which means that X3 and X1 have the most and second most influences on
the peak transmissibility ratio. These results are also in good agreement with those drawn
from the RSM.

Table 4. The ANOVA analysis and Student t-test results for the LRM model.

Coefficients t Stat p-Value

Multiple R 0.92 Intercept 13.76 678.02 0.00

R Square 0.85 X1 0.15 6.44 0.00

Adjusted R
Square 0.82 X2 0.03 1.37 0.19

Standard
Error 0.10 X3 0.20 8.69 0.00

Observations 26 X4 0.02 0.83 0.42

df SS MS F Significance F

Regression 4 1.28 0.32 29.90 2.12 × 10−8

Residual 21 0.22 0.01

Total 25 1.50

Through analysis by RSM and LRM models, an optimal parameter combination can be
obtained using a genetic algorithm to achieve better seat vibration isolation performance.
According to the results in Table 5, under the same optimal input parameters, the LRM,
RSM, and ANN models show predicted peak transmissibility ratio values of 13.2, 13.36,
and 13.25, respectively, which are close to the 5-DOF model prediction value of 13.1857.
The RSM model exhibits the highest prediction accuracy. Consequently, the ANN model
shows the second highest prediction accuracy. As the number of input parameters increases
for the ANN model training, the ANN model prediction accuracy will increase. However,
the computing time will also increase. This also suggests that the ANN model possesses
a superior capability in handling system nonlinearities compared to the LRM model.
The RSM’s prediction evidently demonstrates greater reliability than the LRM model in
predicting the optimal target from the optimal input parameter combination. Moreover, it
can be inferred that both the RSM model and the ANN model, which possess nonlinear
processing capabilities, display greater predictive accuracy in optimizing design parameters
than the LRM model. Thus, a novel approach that combines the strengths of both ANNs
and RSM can achieve a balance between accuracy and computing time. Furthermore, such
an approach can significantly reduce the complexity of preliminary experimental design
often encountered in RSM modelling.
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Table 5. The comparison of optimization results.

Method K1 (N/m) C1 (Ns/m) K2c (N/m) C2c (Ns/m) Y

RSM 10,000 5000 10,000 5000 13.2
LRM 10,000 5000 10,000 5000 13.36
ANN 10,000 5000 10,000 5000 13.25

5-DOF Model 10,000 5000 10,000 5000 13.1857

Despite the differences in the final target results predicted by these three methods,
their predictions on the trend in optimal parameters for the smallest peak transmissibility
ratio are consistent. Reducing the stiffness and damping coefficients of both the seat and
the cushion effectively lowers the peak transmissibility ratio of the seat system, thereby
enhancing the comfort of the seating experience.

6. Conclusions

The ANN algorithm provides a robust framework for addressing nonlinear and linear
problems. The well-trained ANN model effectively simulates the dynamic characteristics of
the 5-DOF biodynamic seating suspension system. The ANN model can accurately predict
the peak transmissibility ratio from the seat base to the head at a vibration frequency of
approximately 4 Hz from the input design parameters. The LRM and RSM models and
their parameter sensitivity analyses are validated by the ANOVA results of the models.
The ANN, LRM, and RSM models are validated by the 5-DOF biodynamic seating system
models. The parameter sensitivity studies from the LRM and RSM models show that
cushion stiffness has the largest influence on the peak transmissibility ratio. Seat stiffness
has the second largest influence on the peak transmissibility ratio. Cushion damping
has the least influence on the peak transmissibility ratio. Seat damping has the second
least influence on the peak transmissibility ratio. Large interaction influences come from
the coupling effect of seat stiffness and damping and from that of cushion stiffness and
damping. Reducing the stiffness and damping coefficients of both the seat and cushion can
effectively reduce the peak transmissibility ratio of the seat system, thereby enhancing the
ride comfort.

Furthermore, the closeness of the optimization results predicted by RSM, ANN, and
LRM further verifies the ANN’s advantages in handling nonlinear problems. The opti-
mization prediction accuracy of the RSM model is larger than that of LRM model. The
combination of the ANN and RSM models can significantly reduce the complexity of
experiment design.
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