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Abstract: Unmanned aerial vehicles (UAVs) equipped with RGB, multispectral, or thermal cameras
have demonstrated their potential to provide high-resolution data before, during, and after wildfires
and prescribed burns. Pre-burn point clouds generated through the photogrammetric processing of
UAV images contain geometrical and spectral information of vegetation, while active fire imagery
allows for deriving fire behavior metrics. This paper focuses on characterizing the relationship between
the fire rate of spread (RoS) in prescribed burns and a set of independent geometrical, spectral, and
neighborhood variables extracted from UAV-derived point clouds. For this purpose, different flights
were performed before and during the prescribed burning in seven grasslands and open forest plots.
Variables extracted from the point cloud were interpolated to a grid, which was sized according to the
RoS semivariogram. Random Forest regressions were applied, obtaining up to 0.56 of R2 in the different
plots studied. Geometric variables from the point clouds, such as planarity and the spectral normalized
blue–red difference index (NBRDI), are related to fire RoS. In analyzing the results, the minimum value
of the eigenentropy (Eigenentropy_MIN), the mean value of the planarity (Planarity_MEAN), and
percentile 75 of the NBRDI (NBRDI_P75) obtained the highest feature importance. Plot-specific analyses
unveiled distinct combinations of geometric and spectral features, although certain features, such as
Planarity_MEAN and the mean value of the grid obtained from the standard deviation of the distance
between points (Dist_std_MEAN), consistently held high importance across all plots. The relationships
between pre-burning UAV data and fire RoS can complement meteorological and topographic variables,
enhancing wildfire and prescribed burn models.

Keywords: digital aerial photogrammetry; drones; fire behavior; wildfires; machine learning

1. Introduction

Wildfires often have severe impacts on a wide range of valued assets, including natural
ecosystems [1], wildlife [2], firefighters [3], and nearby communities [4]. The development
of a wildfire depends on variables such as weather conditions (wind, rainfall, relative
humidity, and temperature), fuel properties (structure, fuel moisture, and distribution),
and site factors (soil moisture and topography) [5]. Of these, only fuels can be modified
through management actions; the pattern and timing of ignition, fire suppression activities,
or fuel treatments may all play a key role in influencing wildfire regimes [6]. In many parts
of the world, the increasing risks and impacts of wildfires have led to a greater emphasis on
proactive fuel and fire management approaches, such as fuel treatments or prescribed fires,
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to mitigate the negative effects of a wildfire [7]. In many cases, prescribed burning can be
one of the most effective methods of fuel reduction [8]. Nevertheless, prescribed burning
can be challenging, requiring prior knowledge of the regulations, an evaluation of the
burning area, and the preparation of a burning technical plan [7,8]. This planning model
relies on predicted fire behavior, which informs how the burn should be implemented
(firing sequence) [8]. In this regard, one of the critical factors for the success and safety of
these operations is the fire rate of spread (RoS) [9]. The RoS is therefore an essential metric
for the useful modeling of prescribed burns and wildfires [10].

In recent decades, the scientific community has developed several models to predict
the RoS of fires using different concepts and methodologies. These models are mainly
based on biophysical variables (terrain fragmentation, vegetation type, topography, or
meteorological variables) and fuel variables (fuel continuity, fuel amount, or fuel mois-
ture) [11–13]. Therefore, fire modeling requires, in addition to knowledge of meteorological
and topographic conditions, the characterization of fuels. In this context, the role of live
and dead fuels plays an important role in inhibiting or promoting the spread of fire [14].

In recent years, Earth observation products have been increasingly applied to improve
our understanding of wildfire occurrence, underlying drivers, and behavior [15,16]. Cur-
rent applications include the use of coarse-scale MODIS multispectral satellite imagery
to examine how live fuel moisture might affect ROS distributions [14]. Related work,
also with coarse-scale data, have leveraged advances in machine learning techniques to
examine phenology effects on fire occurrence [17]. More recently, Hodges and Lattimer
developed a wildland fire spread model based on convolutional neural networks using the
model of Rothermel and results from FARSITE as input [18]. Similarly, Khanmohammadi
et al. applied machine learning methods to predict the RoS in grasslands using seven
environmental variables (meteorological and biophysical) [19].

Wildland and prescribed firefighting operations have traditionally relied on manned
aerial vehicles or ground crews for control, ignition, and suppression, with inherent risks
to human life [3]. In recent years, unmanned aerial vehicles (UAVs) have been increasingly
used to monitor, detect, and fight forest fires [3,16,20]. Rapid advances in electronics,
computer science, and digital cameras have allowed UAV-based remote sensing systems
to provide a promising substitute for conventional fire monitoring on all phases of a
wildfire (pre-fire, active fire, and post-fire). The versatility of this equipment allows it to be
equipped with cameras (RGB, thermal, multispectral, or hyperspectral) or LiDAR sensors
while being able to meet critical spatial and spectral resolution requirements. The high
spatial resolution of UAVs enables the identification of patterns and features that may
remain imperceptible at lower resolutions [16]. This is achieved by capturing data from
a closer distance from the object, in contrast to other platforms like satellites or airplanes,
where such flexibility is either impossible or very costly. Currently, UAVs equipped with
thermal cameras are widely adapted for tasks such as the identification of hotspots, the early
detection of wildfires, monitoring fire behavior, or nighttime operations [3,20]. The use of
thermal imaging cameras is being combined with conventional methods for data collection
in wildfires, since variables such as the fire RoS that were traditionally measured visually
by technicians can now be measured through thermal cameras equipped in UAVs [9]. UAVs
allow the acquisition of coincident data on fuels (pre-burn) and fire behavior (active fire)
with higher spatial and temporal resolution. UAVs can also be used to measure post-fire
impacts [9].

The development of the use of UAVs has been accompanied by improvements in
digital image processing techniques. Algorithms such as Structure from Motion (SfM)
allow the extraction of point clouds, 3D objects, or orthophotos [21]. Point clouds derived
from UAV-based digital aerial photogrammetry (UAV-DAP) provide 3D information, useful
for the detection of differences in vertical structures (i.e., plant height, plant patterns, and
leaf distribution). In addition to geometric information, UAV-DAP point clouds can contain
spectral information extracted from the original pixel value [22]. Thus, from overlapping
images, it is possible to obtain a spectral point cloud, which provides both geometric
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and spectral information of the analyzed environment [23,24]. The integration of spectral
and geometric information in photogrammetric point clouds increases the diversity of
variables and can improve classifications and segmentations compared to the exclusive
use of orthophotography or traditional LiDAR data [25,26]. However, compared to LiDAR
data, UAV-DAP is more sensitive to light conditions and does not have the same levels
of accuracy and penetration capability [22]. In recent years, LiDAR sensors that combine
RGB cameras to colorize clouds have become commercially available [27], combining the
advantages of both technologies, but their price remains a constraint.

Based on these recent developments, it seems likely that the use of geometric and
spectral information obtained from UAV-DAP point clouds could be useful for the improve-
ment of current fire RoS prediction models. Accordingly, this study aimed to analyze the
relationship between fire RoS and optical and geometric data obtained prior to prescribed
burning. For this purpose, we explored the relationship between the observed fire RoS
obtained during several prescribed burns (active fire) as the dependent variable and geo-
metrical and spectral variables extracted from UAV-DAP point clouds prior to prescribed
burning (pre-burn) as independent variables. Once the regression models were calculated,
the most influential variables for predicting the fire rate of spread were studied. We hope
that the outcomes of this study can contribute to improving the planning and execution of
prescribed burns at fine scales, as well as enhancing wildfire modeling and understanding
the relationships between fuel and fire behavior.

2. Materials and Methods
2.1. Study Sites

Our study focused on data collected from seven plots on prescribed burns at two
study sites in western Montana (USA) and southern Oregon (Figure 1). The two plots
were located at The Nature Conservancy’s Sycan Marsh Preserve (referred to as Sycan
henceforth), and five plots in the University of Montana’s Lubrecht Experimental Forest
(Lubrecht henceforth). Lubrecht’s study area plots range from 45 to 209 m2, while plot sizes
in the Sycan study area were 2269 m2 for plot 1 and 4070 m2 for plot 2 (Table 1).
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Figure 1. Locations of the study areas in the northwest of the USA, visualizing Lubrecht’s plots with
a blue cross and Sycan’s plots with an orange cross (A). Thirteen Anderson fire behavior fuel models
(FBFM) of Sycan (left) and Lubrecht (right) (B). Areas where RoS was obtained in the five Lubrecht
plots (C) and the two Sycan plots (D). The coordinate reference system was EPSG:32610 (C,D).
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Table 1. Description of the data acquisition conditions in the plots, specifically including the following:
study area, plot number, plot dimensions, acquisition date, slope, weather conditions, ambient
temperature, wind speed, and wind direction obtained from RTMA [28].

Study
Area

Plot
Number Plot Dimensions (m2) Acquisition Date (UTC) Slope (%) Cloud

Cover (%)

Ambient
Temperature

(◦C)

Wind Speed
(m·s−1)

Wind
Direction (◦)

Sycan Plot 1 2269.16 23 October 2018 14:35–14:55 12.3 71.13 −1.88 1.89 268.7

Sycan Plot 2 4070.18 23 October 2018 16:26–16:49 10.5 42.45 1.27 1.13 142.1

Lubrecht Plot 1 45.52 4 May 2017 15:13–15:25 53.2 10.55 −3.91 0.87 93.3

Lubrecht Plot 2 149.21 4 May 2017 14:33–14:56 17.6 11.79 −4.39 0.86 93.05

Lubrecht Plot 3 115.43 4 May 2017 14:04–14:29 14.05 13.03 −4.87 0.86 92.8

Lubrecht Plot 4 122.41 4 May 2017 13:34–13:51 3.5 18.45 −5.26 0.69 145.2

Lubrecht Plot 5 208.61 4 May 2017 13:12–13:27 17.6 23.87 −5.65 0.53 197.6

The Sycan Preserve is a 12,000 ha wetland located in the headwaters of the Klamath
Basin in southern Oregon. The elevation of the plots located in this ecological site is around
1500 m with respect to the ellipsoidal WGS84 vertical datum, with an average annual
temperature of 5.9 ◦C and an average annual rainfall of about 405 mm. On the other hand,
Lubrecht is a forest of almost 9000 ha, located around 50 km northeast of Missoula, Montana,
in the Blackfoot River drainage. The elevation of this study area is around 1280 m, with an
average annual temperature of 5.3 ◦C and an average annual rainfall of about 430 mm. The
similar climatic conditions in the two study areas allowed the development of a similar
forest typology, dominated by Pinus ponderosa subsp. ponderosa Douglas ex C. Lawson
(commonly called Columbia ponderosa pine) in the upper stratum and grass species in
the lower stratum, mainly Pseudoroegneria spicata (Pursh) Á. Löve and Festuca idahoensis
Elmer. Specifically, the Sycan study area is a grassland, dominated by grasses with a low
presence of ponderosa pine and other shrubs, while the Lubrecht study area is an open
forest, dominated by ponderosa pine in its upper stratum. The chosen plots represent a
variety of western USA surface fuels that typically experience low- and mixed-severity fire.

2.2. Overview of the Methods

A general overview of the methodology is shown in Figure 2. The methodology is
divided according to the data collection time (before or during prescribed burning) [8].

In the pre-burn phase, a UAV flight was performed using an RGB camera at the
Lubrecht site and a multispectral camera at the Sycan study area. The objective was to
compare the values of the RoS using different spectral, radiometric, and spatial resolution
data. Before the UAV flights, eight ground control points (GCPs) per plot were placed,
and their positions were measured using a GPS receiver. A photogrammetric process
was carried out using Agisoft Metashape software version 1.7.1 (Agisoft, St. Petersburg,
Russia) to obtain the point clouds of the study areas. This process involved four steps: the
radiometric calibration of the multispectral images, the reconstruction of the flight scene
through the alignment of the images, the point cloud densification, and then the extraction
of spectral, geometric, and neighborhood variables from the point cloud. During prescribed
burning, a static, hovering UAV flight with a thermal camera was flown to the center of
each plot. To georeference these data, additional GCPs were placed. Next, the radiometric
calibration and georectification of the images were carried out. Finally, flaming combustion
was thresholded, and the fire RoS was derived in vector format. Only the most relevant
steps in obtaining the fire RoS are explained here. Additional methodology can be found
in Moran et al. [9]. The polygonal data representing the fire RoS were interpolated to a
grid, sized according to their semivariogram range, and integrated with a set of variables
derived from the pre-burn point cloud. Finally, a regression per plot was performed in
which the dependent variable was the RoS and the independent variables were the spectral,
geometric, and neighborhood variables obtained from the photogrammetric point cloud.
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2.3. Plot Selection

Fieldwork was carried out in May 2017 in Lubrecht and in October 2018 in Sycan,
performing an aerial data collection with an unmanned aerial vehicle (UAV). For this study,
the methodology was tested at two different scales, so the plots of the Lubrecht and Sycan
areas were of different sizes (Table 1). These areas were defined by the zones where the
fire RoS values were obtained in the study conducted by Moran et al. [9]. The locations of
these plots were chosen to minimize the occlusion of the tree canopy and on the basis of
adequate surface fuel continuity.

2.4. Data Collection

A total of eight GCPs were placed in each plot. Initially, four points were placed
in the corners of each square plot. The remaining four GCPs were then positioned in a
smaller square, maintaining the same shape but with dimensions reduced to 1/3 of the
original. Distances between GCPs were measured with measuring tape and a TruPulse
360◦B laser rangefinder (Laser Technology Inc., Centennial, CO, USA). The accuracy of this
rangefinder is ±0.2 m within a maximum range of 2000 m. Once the plot dimensions were
measured, the GCPs were placed at the corners. Their coordinates were obtained using
two GNSS receivers, Emlid Reach RS (Emlid Tech Kft., Budapest, Hungary), with an RTK
setup. According to the manufacturer, this setup has a nominal accuracy of 7 mm + 1 ppm
horizontally and 14 mm + 2 ppm vertically.

The data acquisition was different depending on the study area. At Sycan, multispec-
tral and thermal data were collected. At Lubrecht, RGB and thermal data were collected.
For the collection of multispectral (Sycan) and thermal (Sycan and Lubrecht) data, we
used a DJI Matrice M100 UAV (SZ DJI Technology Co., Shenzhen, China). The M100 was
equipped with a Micasense RedEdge camera (Micasense Inc., Seattle, WA, USA) for the
multispectral pre-burning data acquisition at Sycan. This camera has five sensors with
different bands: blue (475 nm), green (560 nm), red (668 nm), red edge (717 nm), and near
infrared (840 nm). These five sensors (4.8 × 3.6 mm) have a resolution of 1.2 MP with a
focal length fixed at 5.5 mm, a sensor pixel size of 3.75 µm, and a color depth of 16 bits.
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For the pre-burning collection of RGB data in Lubrecht, we used a DJI Phantom 4 (SZ DJI
Technology Co., Shenzhen, China). The Phantom 4 has a built-in camera with a CMOS
sensor (1/2.3′′), a resolution of 12.4 MP, a focal length of 20 mm, and a color depth of 8 bits.
Regarding the pre-burning flight plan, the two Sycan plots followed a cross-grid flight
pattern with a nadir camera angle. The flight height was 180 m above the ground for plot
1 and 120 m for plot 2. On the five Lubrecht plots, a more detailed data acquisition was
performed using the Phantom 4. A cross-grid flight pattern with a nadir camera angle was
also performed in this shot, but an oblique perimeter shot was added, changing the camera
angle to 15◦ off-nadir. This shot was taken at a height of 10 m above the ground.

Once these data were collected, the plots were burned using a drip torch to achieve
a coherent and stable fire front, extending it perpendicularly to the plot edge and the
expected spread direction. During the burning of the plots, the M100 was equipped
with a DJI Zenmuse XT (SZ DJI Technology Co., Shenzhen, China), an uncooled VOx
microbolometer sensor with a spectral range between 7.5 and 13 µm. This camera has a
resolution of 0.3 MP with a focal length fixed at 9 mm, with a sensor pixel size of 17 µm. In
this case, the UAV was positioned at the center of the plots at a fixed altitude above ground
(18–20 m), and the temporal resolution was fixed at 5 s at Sycan and 1 ± 0.13 s at Lubrecht.

2.5. Photogrammetric and Thermal Image Processing

Photogrammetric processing was applied to RGB and multispectral images taken
prior to prescribed burning. The workflow starts with a radiometric calibration of the
multispectral images. Radiometric calibration compensates for sensor black level, sensor
gain, exposure settings, sensor sensitivity, and lens vignette effects. This calibration was
conducted using MicaSense’s algorithms [29]. The radiometrically calibrated images of
Sycan were input into the software Agisoft Metashape, while the RGB images of Lubrecht’s
plots were input into Pix4D version 4.3.27 (Pix4D SA, Prilly, Switzerland). The processes
within both software are similar, with relatively consistent results in our experience, depen-
dent more on image quality and GCPs than the algorithmic differences in the software. The
photogrammetric processes in both software starts with identifying, matching, and moni-
toring the movement of common features between images using a custom algorithm [30]
derived from the scale-invariant variable transform (SIFT) algorithm [31]. The next step is
to determine the interior orientation parameters of the camera (focal length, main point,
and lens distortion) and the exterior orientation parameters (projection center, coordinates,
and rotation angles around the three axes), subsequently improving their positions with
a bundle-adjustment algorithm [30]. This process is a particular optimization of the SfM
algorithm [32]. The GCPs collected in the field were used in this phase to improve the
orientation of the images, as well as to scale the photogrammetric block and provide it with
absolute coordinates. These processes were carried out in Agisoft by setting the alignment
process to “Highest”, while in Pix4D, the “Keypoints image scale” option was set to “Full”.
During this process, the 3D coordinates of the features extracted in the first processing step
were obtained, creating a point cloud commonly referred to as a tie point cloud. Finally,
once we obtained the final position and orientation of the images, a pair-wise depth map
computation was performed [30] using the tie point cloud to generate an approximate
digital terrain model from which new points were obtained, creating a dense point cloud.
This process was set to “Ultra high” in Agisoft and “High” in Pix4D.

For the active fire thermal imagery obtained from the Zenmuse XT sensor, processing
followed the methods described by Moran et al. [9]. Fire and tree occlusion caused variable
strategies for image stabilization and rectification. The lower altitudes for the Lubrecht plots
meant GCPs could be used in nearly all cases to georectify and stabilize in one step. For the
Sycan plots, GCP visibility was inconsistent and necessitated video stabilization techniques
and a georectification of the image stacks rather than individual images. For this purpose,
the warp stabilizer algorithm included in Adobe After Effects (Adobe Inc., San Jose, CA,
USA) was applied to stabilize the images. For the radiometric calibration of thermal
images, proprietary software was used to calculate the radiant temperature utilizing factory
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calibrations and verification with black-body emitters in laboratory settings. The software
was parameterized with an emissivity constant at 0.98, entering average values of ambient
temperature and relative humidity taken during data capture.

2.6. Fire Variable Processing

Once the images were georectified and radiometric calibration was applied, the flam-
ing combustion was determined. For this purpose, temperature thresholding and edge
detection techniques were combined. First, edge detection following Canny’s method [33]
was applied to each thermal image. This method identified the flaming front, transient
flames, and pre-frontal heat. Then, pixel values along the defined edge of the flame front
were extracted, and a two-class k-means clustering was applied to determine the flaming
combustion threshold automatically [34].

A vector-based approach was applied to obtain the fire RoS, which relied on pairing
points defined as fire lead or fire back edge. This approach first calculated the progression
of the fire breakthrough polygons, and then, these polygons were enhanced based on the
focal points, lead edge points, and back edge points (Figure 3A). Once the RoS estimates
were derived, the thermal pixels were aggregated to analytical units (polygons) based on
the method described in Moran et al. [9].
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Figure 3. Visualization of Sycan plot 2: 2D vector information of fire rate of spread (RoS) polygons,
EPSG:32610 (A). RoS polygons interpolated to a 7 m grid (B), EPSG:32610. Side view of the RGB 3D
point cloud (C). 3D point cloud visualizing the normalized blue–red difference index (NBRDI) (D).

2.7. Point Cloud Processing

The clouds were clipped within the area of each plot where the fire RoS was calculated,
and variables were subsequently extracted from the point clouds. These variables were
divided into geometric, spectral, and neighborhood variables. Neighborhood variables
were further divided into neighborhood spectral and geometric variables, calculated at
point level.
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From the Lubrecht RGB point clouds, a total of 16 spectral variables were obtained,
the blue, green, and red band values, together with the spectral indices described in Table 2.
From the Sycan multispectral point clouds, 27 spectral variables were calculated, which
were the values of the blue, green, red, RedEdge, and NIR bands, along with the spectral
indices listed in Table 2.

Table 2. Spectrum (RGB or multispectral (MS)), name, description, equation, and references of the
spectral neighborhood variables.

Spectrum Name Description Equation Reference

MS ARVI Atmospherically Resistant
Vegetation Index

(ρnir − ρrb)
(ρnir + ρrb)

, ρrb = ρred − (ρ blue−ρred)
2

[35]

RGB and MS BI Brightness ρred + ρgreen + ρblue [36]

RGB CIVE Color Index of Vegetation 0.441 × ρred − 0.881 × ρgreen + 0.385 × ρblue +
18.787 [37]

MS DVI Differential Vegetation Index ρnir − ρred [38]

MS EVI Enhanced Vegetation Index [2.5 × (ρ blue − ρred)]
(ρ nir + 6 × ρred − 7.5 × ρblue + 1)

[39]

RGB GLI Green Leaf Index
(2 × ρ green − ρred − ρblue)

(2 × ρgreen + ρred + ρblue)
[40]

MS GNDVI Green Normalized Difference
Vegetation Index (ρ nir − ρgreen

)
/(ρ nir + ρgreen

)
[41]

RGB and MS GR Green Divided by Red ρgreen/ρred [36]

MS IPVI Infrared Percentage Vegetation
Index ρnir/(ρ nir + ρgreen

)
[42]

RGB MGVRI Modified Green–Red Vegetation
Index

(ρgreen
2 − ρred

2)
(ρgreen2 + ρred

2)
[43]

MS MSAVI Modified Soil-Adjusted
Vegetation Index

(
2 × ρnir + 1 − [(2 × ρnir + 1)2−

8 × (ρnir − ρred)]
0.5)/2

[44]

MS MSR Modified Simple Ratio Index
ρred

(ρnir/ρred)
0.5 [45]

RGB and MS NBRDI Normalized Blue–Red Difference
Index

(ρ red − ρblue)
(ρ red + ρblue)

[46]

MS NDVI Normalized Difference
Vegetation Index

(ρnir − ρred)
(ρnir + ρred)

[47]

RGB and MS NGBDI Normalized Green–Blue
Difference Index

(ρ green − ρblue)

(ρ green + ρblue)
[48]

RGB and MS NGRDI Normalized Green–Red
Difference Index

(ρ green − ρred)

(ρ green + ρred)
[49]

RGB NormG Normalized Greenness
ρgreen

(ρgreen + ρred + ρblue) [50]

MS OSAVI Optimized Soil-Adjusted
Vegetation Index

(ρnir − ρred)
(ρnir + ρred + 0.16)

[51]

MS RDVI Renormalized Difference
Vegetation Index

(ρnir − ρred)

(ρnir + ρred)
0.5 [52]

RGB and MS RGRI Red–Green Ratio Index ρred/ρgreen [53]

MS RVI Ratio Vegetation Index ρred/ρnir [54]

RGB SAVI Soil-Adjusted Vegetation Index
(1.5 × (ρ green − ρred))

(ρgreen + ρred + 0.5) [55]
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Table 2. Cont.

Spectrum Name Description Equation Reference

MS SARVI Soil and Atmospherically
Resistant Vegetation Index

[1.5 × (ρnir − ρrb)]
(ρ nir + ρred + 0.5) , ρrb = ρred −

[
(ρ blue−ρred)

2

]
[55]

MS SR Simple Ration Vegetation Index ρnir/ρred [56]

MS SRxNDVI Simple Ratio × Normalized
Difference Vegetation Index

(ρnir
2 − ρred)

(ρnir + ρred
2)

[57]

RGB VARI
Visual Atmospheric Resistance

Index
(ρgreen − ρred)

(ρgreen + ρred − ρblue)
[58]

RGB vNDVI Visible Normalized Difference
Vegetation Index 0.5268× ρred

−0.1294 × ρgreen
0.3389 × ρblue

−0.3118 [59]

The neighborhood of a point was defined as p ∈ R3, with R3 being the set of points
inside a sphere s, of center p, and a radius of 0.10 m for Sycan plots and 0.01 m for Lubrecht
plots. The different radius chosen in each study area was due to the different point densities.
Two neighborhood spectral indices were calculated for each point cloud. If the point cloud
was RGB, the mean and standard deviation of the NGRDI of the neighborhood of each
point were obtained. In the case of multispectral clouds, the mean and standard deviation
of the NDVI were calculated. The latter vegetation index was chosen due to its relationship
with fuel moisture content [60].

The same geometric variables were obtained for the RGB and multispectral point
clouds, since the geometric information of the point cloud is independent of the type of
spectral information that it contains. These neighborhood geometric variables are described
in Table 3. Therefore, a total of 44 variables were obtained from Sycan multispectral clouds
and 34 variables from Lubrecht RGB clouds.

Table 3. Name, description, and equation of the geometrical neighborhood variables, where Sp is the
set of points in a neighborhood.

Name Description Equation

Dist_mean Mean distance of the point with its neighboring points d
(
Sp, p

)
= 1

n

(
n
∑

i=1
d
(

Sp,i, p
))

Dist_std Standard deviation of the point with its neighboring points
√ (

∑n
i=1 (d(Sp,i ,p)−d(Sp ,p))

2
)

n−1

Z_std Standard deviation height of the point and its neighbors

√(
∑n

i=1

(
z(S p,i

)
−z(Sp))

2
)

n−1

Dif_Z Neighborhood maximum height minus neighborhood
minimum height max(z(S p))− min

(
z
(
Sp

))
Sum_λ Sum of eigenvalues λ1 + λ2 + λ3

Omnivariance Three-dimensional distribution of the points in the
neighborhood

3
√

λ1 × λ2 × λ3

Eigenentropy Shannon entropy of the normalized eigenvalues −
3
∑

i=1
λi × ln(λ1)

Anisotropy Change in the neighborhood in different directions (λ 1 − λ3)/λ1

Planarity Two-dimensionality of the neighborhood on the x and y axes (λ 2 − λ3)/λ1

Linearity Neighborhood dimensionality on one axis (λ 1 − λ2)/λ1

Surface Variation Surface roughness in all three dimensions λ3/(λ 1 + λ2 + λ3)
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Table 3. Cont.

Name Description Equation

Sphericity Resemblance of the neighborhood to the shape of a sphere λ3/λ1

Verticality Z component of the normal vector 1 − nz

2.8. Data Fusion and Regression

Once the point cloud variables and the fire RoS vector polygons were obtained
(Figure 3A), we performed a spatial interpolation, homogeneously distributing the vari-
ables on a grid to sample the data spatially. Semivariograms of the RoS polygons were
computed to determine the appropriate grid scale [61]. In considering the centroid of each
RoS polygon, a semivariogram for the centroids of the RoS was calculated, fitting it to three
different curve models (Gaussian, exponential, and stable) [62]. These models provide
additional information on the scale of the spatial correlation and assist in the selection of the
optimum grid size. The model (Gaussian, exponential, or stable) was selected based on the
root mean square error (RMSE) (3) of the fitted curve. The optimum grid size was selected
based on the adjusted semivariogram range of each model. After selecting the grid size for
each plot, an interpolation of the RoS polygons was performed, assigning the interpolated
value to the grid (Figure 3B). The point cloud analysis yielded a comprehensive set of
grid metrics, including the maximum, minimum, mean, and the 25th, 50th, 75th, and 90th
percentiles. Specifically, 294 variables were derived from the Sycan multispectral plots,
which is an increase from the initial 44 variables calculated from these multispectral clouds.
Similarly, the analysis of the Lubrecht RGB plots resulted in 224 variables obtained from the
original 34 variables calculated from the RGB clouds. This process was carried out using
an ad hoc algorithm written in the Python programming language, using the pandas [63]
and geopandas [64] libraries.

After the extraction of variables, a dimensional reduction process was carried out by
applying univariate linear regression models and screening the variables using the F and
p-values. Through dimensional reduction, the number of variables was reduced to 50 per
plot. The regression process was carried out using Random Forest (RF) [65], implemented
using the Python Sci-kit library [66]. The RF regression algorithm is an ensemble learning
method that fits several decision trees on subsamples of the input dataset, averaging them to
improve the predictive accuracy and control overfitting [65–67]. The dataset was randomly
split to obtain 80% of training samples and 20% of testing samples. To obtain a better
model fit, a hyperparameter optimization was performed for the following parameters:
number of trees in the forest (200 or 500), number of variables to consider when looking
for the best split (“auto”, “sqrt” or “log2”), and maximum tree depth (5, 10, or “None”).
The accuracy of each combination of hyperparameters was assessed using cross-validation
with 10 folds. The chosen hyperparameters for each method were those with the highest
mean cross-validated score. To evaluate the accuracy of the regression, the coefficient of
determination (R2), mean absolute error (MAE), and RMSE were calculated:

R2 =
∑(yi − ŷi)

2

∑(yi − y)2 (1)

MAE =
∑n

i=1|yi − ŷi|
n

(2)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(3)

MAE% =
MAE

ymax − ymin
× 100 (4)
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RMSE% =
RMSE

ymax − ymin
× 100 (5)

where n is the number of observations; yi is the value of the fire RoS of observation i; ŷi is
the fire RoS value approximated through the model regression of observation i; ŷi is the
mean of the fire RoS observations; ymax is the maximum value of the fire RoS in all the
observations; and ymin is the minimum value of the fire ROS in all the observations.

3. Results
3.1. Photogrammetric Point Cloud Processing

Seven point clouds were obtained during the photogrammetric process, one per
plot. Due to the different cameras and flight plans used, point clouds with different
characteristics were obtained depending on the study area (Table 4). Thus, the Sycan
multispectral point clouds had an average of 29,878,242 points, while that of the Lubrecht
clouds was 242,800,056 points. The plot dimensions, camera model, and flight height were
the main parameters affecting the number of points per cloud. The average point cloud
density in Sycan was 354.17 points·m−2, and in Lubrecht, it was 737,066.62 points·m−2.

Table 4. Study area, plot number, flight pattern, camera, flight height (m), total points, density
(points·m−2), and number of points after the clipping of the point clouds processed.

Study Area Plot Number Flight Pattern Camera Flight
Height (m) Total Points Density

(points·m−2)
Points after

Clip

Sycan Plot 1 Cross-grid MS 180 23,104,435 307.96 1,193,082
Sycan Plot 2 Cross-grid MS 120 36,652,049 400.38 1,745,488

Lubrecht Plot 1 Cross-grid RGB 10 351,691,433 556,473.79 68,509,611
Lubrecht Plot 2 Cross-grid RGB 10 191,301,913 759,134.58 140,705,771
Lubrecht Plot 3 Cross-grid RGB 10 213,785,391 712,617.97 120,964,486
Lubrecht Plot 4 Cross-grid RGB 10 227,097,818 811,063.64 166,984,447
Lubrecht Plot 5 Cross-grid RGB 10 230,123,724 846,043.10 213,593,584

3.2. Grid Size Determination

From the derived RoS polygons, the fire RoS varied between 0 and 2.7 m·s−1 at the
two Sycan plots, while it ranged from 0 to 0.1 m·s−1 at the Lubrecht plots. Figure 4 shows
the semivariograms obtained from the Sycan plots. In plot 1, the curve with the best fit was
obtained with the stable model (semivariogram RMSE, 0.10), obtaining a range of 1.47 m.
Plot 2 obtained a better fit with the Gaussian model (semivariogram RMSE, 0.07) with a
range of 7.34 m. Finally, plots 1 and 2 combined obtained a better fit using the Gaussian
model (semivariogram RMSE, 0.08) with a range of 6.64 m. The range value was rounded
to integers for all plots. The range value obtained for all Lubrecht plots was 1 m.
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3.3. Fire Rate of Spread Regression

Table 5 shows the hyperparameters used in the regression model that generated the
highest coefficient of determination. The most repeated combination of hyperparameters
were the maximum number of variables in auto, 500 decision trees (estimators), and no
limit on the tree depth for the Sycan plots and the maximum number of variables in auto,
the number of estimators being 200, and the maximum tree depth set to 10 for the Lubrecht
plots. The models obtained a range of R2 between 0.56 (combined plots 1 and 2 of Sycan)
and −0.23 (plot 4 of Lubrecht). Analyzing the results by study area, we can see that the most
significant determination coefficients were obtained from the Sycan plots, highlighting plot
2 (R2 = 0.48) and the combination of plots 1 and 2 (R2 = 0.56). For these plots, low values of
MAE and RMSE were obtained, considering the range of fire advance velocities detected
(between 0.01 and 2.70 m·s−1). Similarly, in the Lubrecht plots, low values of MAE and
RMSE were also obtained, being the values obtained close to the arithmetic mean of the
velocities detected during the prescribed burning. Despite the statistics of the Lubrecht
plots, negative or very low values of R2 suggest that the predictions made by the models
are close to random, tending to be around the mean of the observations.

Table 5. Study area, plot, fire RoS range, and grid size hyperparameters used in the RoS regression
model that obtained the highest coefficient of determination (R2), mean absolute error (MAE), and
root mean square error (RMSE).

Study Area Plot RoS Range
(m·s−1)

Grid
Size (m) Hyperparameters R2 MAE

(m·s−1)
RMSE
(m·s−1) MAE% RMSE%

Sycan 1 0.01–2.70 1 ‘max_variables’: ‘auto’, ‘n_estimators’:
500, ‘max_depth’: None 0.23 0.139 0.186 5.17 6.91

Sycan 2 0.01–2.16 7 ‘max_variables’: ‘auto’, ‘n_estimators’:
500, ‘max_depth’: None 0.48 0.262 0.369 12.19 17.16

Sycan 1 & 2 0.01–2.70 7 ‘max_variables’: ‘auto’, ‘n_estimators’:
200, ‘max_depth’: None 0.56 0.162 0.257 6.02 9.55

Lubrecht 1 0.001–0.078 1 ‘max_variables’: ‘auto’, ‘n_estimators’:
200, ‘max_depth’: None 0.13 0.003 0.004 3.90 5.19

Lubrecht 2 0.001–0.079 1 ‘max_variables’: ‘auto’, ‘n_estimators’:
200, ‘max_depth’: 10 0.06 0.004 0.005 5.13 6.41

Lubrecht 3 0.002–0.139 1 ‘max_variables’: ‘auto’, ‘n_estimators’:
500, ‘max_depth’: 10 0.15 0.002 0.004 1.46 2.92

Lubrecht 4 0.001–0.090 1 ‘max_variables’: ‘auto’, ‘n_estimators’:
200, ‘max_depth’: 10 −0.23 0.003 0.004 3.37 4.49

Lubrecht 5 0.002–0.100 1 ‘max_variables’: ‘auto’, ‘n_estimators’:
200, ‘max_depth’: None −0.18 0.002 0.003 2.04 3.06

Lubrecht 1, 2, 3, 4 & 5 0.001–0.139 1 ‘max_variables’: ‘auto’, ‘n_estimators’:
200, ‘max_depth’: 10 0.05 0.003 0.004 2.17 2.90

3.4. Feature Importance and Performance of the Models

To determine the variables providing the most information to the models, we com-
puted the importance of the permutation obtained for each variable in each plot [65].
Figure 5 shows that the variables with the highest importance of the normalized permuta-
tion across all plots were mainly 13: Eigenentropy_MIN, Planarity_MEAN, NBRDI_P75,
Dist_std_MEAN, Dist_std_MAX, Anisotropy_MEAN, NGBDI_P50, SARVI_MIN, Omni-
variance_MEAN, ARVI_MIN, NGBDI_P25, Verticality_P90, and Planarity_MIN, repeating
the point cloud neighborhood variables Dist_std and Planarity twice. Conducting a sep-
arate analysis for each plot revealed that the model associated with plot 2 employs a
more extensive combination of geometric and spectral variables than the other models.
Conversely, the model combining information from plots 1 and 2 had a lower number
of variables, indicating more efficient modeling using a smaller set of features. In this
study area, which achieved the highest R2 (0.56), we found eight geometric neighbor-
hood variables (Eigenentropy_MIN, Planarity_MEAN, Dist_std_MEAN, Dist_std_MAX,
Anisotropy_MEAN, Omnivariance_MEAN, Verticality_P90, and Planarity_MIN) and five
spectral variables (NBRDI_P75, NGBDI_P50, SARVI_MIN, ARVI_MIN, and NGBDI_P25)
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with a normalized permutation importance greater than 0.05. From these variables, several
were used independently of the plot, such as Planarity_MEAN (used in plots 1, 2, and 1
and 2 combined), Dist_std_MEAN (used in plots 1 and 1 and 2 combined), Dist_std_MAX
(plots 1 and 2) and Planarity_MIN (plots 1 and 2). The variables extracted from the point
cloud that were most frequently repeated were the eigenentropy (MAX, MEAN, MIN, P25,
P50, and P90), linearity (MAX, MEAN, P25, P50, P75, and P90), planarity (MEAN, MIN,
P25, P50, P75, P90), and NBRDI variables (MEAN, P25, P50, P75).
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The performances of the models can be analyzed in Figure 6, which plots the predicted
versus observed results of the Sycan plots. In these graphs, the number of samples varies
depending on the plot due to the use of a different grid size in plot 1 (1 m), compared to
plots 1, and 1 and 2 combined, where the grid size was 7 m. No graph shows outliers in
the prediction, obtaining close results to the line of perfect agreement. Figure 6 shows the
learning curves of the plots, after calculating the R2 obtained for the models by adding each
of the variables analyzed. Features were entered into the model based on their permutation
importance. The plot 2 curve stabilizes using eight variables, obtaining an R2 of 0.31. In
the case of plots 1 and 2 combined, the learning curve stabilizes when using 10 variables,
obtaining an R2 of 0.41.

3.5. Result Summary

In summarizing the results, photogrammetric processes were applied to obtain seven
point clouds. Each one corresponds to a specific plot in two study areas, with variations in
camera characteristics and flight plans (Table 4). Plot dimensions (mean size of 128 m2 in Lu-
brecht and 3169.67 m2 in Sycan) and flight height (10 m in Lubrecht and 120–180 m in Sycan)
significantly influenced the number of points obtained in each cloud (mean ≈ 242.8 M in
Lubrecht plots and mean ≈ 29.88 M in Sycan). Camera characteristics (RGB in Lubrecht
and multispectral in Sycan) caused a difference in the number of RoS-related features
(224 in Lubrecht and 294 in Sycan). The fire RoS polygons were adjusted to a grid based
on the range parameter of their semivariogram, obtaining a grid size in all plots of 1 m,
except in plot 2 and plots 1 and 2 combined of Sycan, where the grid size was 7 m (Table 5).
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The R2 values for the RoS models ranged from 0.24 to 0.56 in Sycan and −0.23 to 0.15 in
Lubrecht. The features with the highest normalized permutation importance in the three
models of Sycan were Eigenentropy_MIN, Planarity_MEAN, and NBRDI_P75 (Figure 5).
Plot-specific analyses unveiled distinct combinations of geometric and spectral features,
although certain features, such as Planarity_MEAN and Dist_std_MEAN, consistently
held high importance across all plots, proving relevant for all regression models. The
training curves of the models (Figure 6) show how the regression models stabilized after
incorporating ten variables, achieving an R2 of 0.34 in plot 2 and 0.41 in the combination of
plots 1 and 2.
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4. Discussion

The use of new technologies in fire modeling allows us to obtain fine-scale features,
helping to obtain more accurate predictions of fire behavior. Rapid advances in computa-
tional, sensing, and processing techniques require new studies to help in processing and
interpreting the increased amount of available data at finer scales. This study analyzed
pre-burning fine-scale UAV-DAP data to predict fire RoS. The primary objective was to
establish relationships between the fire RoS and features derived from point clouds.

4.1. RoS Spatial Correlation

Geometric, spectral, and spatial neighborhood metrics at fine scales extracted from
the point cloud were interpolated to a grid for which its size was determined using the
semivariogram of the fire RoS variable (Figure 4). Data availability influences the precision
of spatial variability representation; therefore, semivariograms may exhibit distinct curves
based on the mathematical models they fit [61]. Specifically, the Gaussian model assumes
a smooth and continuous spatial process, while the stable model accommodates heavy-
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tailed distributions and significant skewness, making it more robust to outliers. In practice,
semivariograms from different plots exemplify this variability: Sycan plot 1, with fewer
data points, obtained a better fit to the stable model, resulting in a range of 1 m. A low
range indicates that spatial correlation between data points diminishes rapidly with distance.
In contrast, plot 2 and the combined plots exhibit a better fit with the Gaussian model,
suggesting a smoother spatial process due to potentially larger datasets, resulting in a range
of 7 m. Conversely, a high range indicates that spatial correlation between data points extends
over longer distances. Thus, the choice of model and observed range in the semivariogram
reflect the interplay between data availability and spatial correlation characteristics.

4.2. Data Acquisition and Model Generation

Different spectral, radiometric, and spatial resolution data were utilized from the two
test sites, including RGB and multispectral data, and 8-bit and 16-bit radiometric resolution
images for Lubrecht and Sycan, respectively. In the tests carried out, promising results were
obtained for the Sycan plots, whereas inconsistent outcomes were found for the Lubrecht
plots. Weather conditions were almost constant during the prescribed burns in both study
areas, and the wind speed was very low (Table 1), which does not explain the different
results obtained. The different results obtained can be explained as follows:

1. Plots size. The plots have a total area of 6339.35 m2 in Sycan and 641.18 m2 in Lubrecht.
The lack of model training data (means of 112 samples from the Lubrecht plots vs.
2810 samples from the Sycan plots) reduces the capacity of the models. This fact was
observed in the Sycan plots, where the combination of the data from the two plots
with a 7 m grid obtained the best fit.

2. Plot characteristics. The different characteristics of the study areas (grasslands in
Sycan and open forest in Lubrecht) may have affected the correct modeling of the
RoS. In Lubrecht, we found less fuel type variability within the plots, while in Sycan,
we found higher variability. This higher variability is related to the different RoS
velocities detected in the plots. At Sycan, mean velocities of 0.18 m·s−1 and peak
velocities of 2.7 m·s−1 were reached, while in the Lubrecht plots, mean velocities of
0.01 m·s−1 and maximum velocities of 0.139 m·s−1 were obtained.

3. Spatial and spectral resolution. The different scales of the data collection at Lubrecht
(very fine scale), with a flight height of 10 m, and Sycan (fine scale), with a flight
height of 180 (plot 1) and 120 m (plot 2), may have affected the results obtained. The
higher spatial resolution of Lubrecht did not imply an improvement of the results,
so a significant increase in the spatial resolution does not necessarily improve the
RoS prediction models. On the other hand, the difference in spectral resolution
between the captures with an RGB camera and a multispectral camera does not seem
to have affected the results, since the spectral features with the greatest permutation
importance can be obtained with both cameras (e.g., the NBRDI, which only needs
information from the blue and red bands).

4.3. Importance of the Features

The extraction of metrics from the UAV-DAP point cloud allowed us to estimate
the fuel from geometric, spectral, and spatial neighborhood metrics at fine scales. The
results obtained for the Sycan models reveal the remarkable potential of the structure and
greenness of the vegetation, as defined through UAV-DAP-derived geometric and spectral
metrics, to explain RoS variability.

Spectral variables allowed us to record and identify the status of the fuel (greenness),
providing information to the model of the vegetation through vegetation indices. The posi-
tive results observed for Sycan stem from the execution of more extensive prescribed burns,
which allowed for greater heterogeneity in both fuel composition and fire propagation
velocities. This fuel heterogeneity has been key to modeling fire RoS behavior. In this sense,
Figure 3A,D show the inverse relationship between fire RoS and vegetation indices, such as
NBRDI. Relating the NBRDI values of grass cover (Figure 3D) to surface fire (Figure 3A), we
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found that higher NBRDI values were associated with live fuels, explaining why they have
a lower RoS value. Conversely, herbaceous areas with lower NBRDI values were related to
higher RoS. These results are in accordance with previous studies in which MODIS images
were used, demonstrating the capability of spectral variables to predict the RoS using the
perpendicular moisture index (PMI). They found that the RoS shows significant decreasing
trends with an increasing PMI [14]. Despite the notable difference in scale with respect to
our study (the pixel size of MODIS is 500 m), the inverse relationship between the fire RoS
and vegetation indices has the same behavior.

The results obtained underscore the importance of the geometric variables such as
the planarity, which obtained the greatest permutation importance in the models. These
geometric variables capture the landscape’s spatial arrangement and distribution, including
topographical features and the structure of vegetation. The inclusion of such geometric
variables enhances the predictive accuracy of RoS models by accounting for the heterogene-
ity of the landscape and its influence on the behavior of wildfires. Regarding geometric
and spatial neighborhood metrics, to the best of the authors’ knowledge, this is one of the
first investigations to study the relationship between variables extracted from the spatial
distribution of points in a point cloud (LiDAR or photogrammetric) with the fire RoS.

The results suggest the potential of variables derived from UAV-DAP to understand
fire behavior. Nevertheless, the use of UAV-DAP variables alone cannot fully explain
the fire RoS, but they provide relevant information that can complement meteorological,
topographical, and biophysical data. The findings of this study provide promising insights
toward understanding the relationships between fuel and fire behavior at fine scales.
This information may contribute to planning and implementing safer and more effective
prescribed burns.

4.4. Model Comparison

The complexity of fire behavior makes it challenging to model. Pioneer models such
as the Mk 3/4 Grassland Fire Danger Meter [13] obtained a MAE of 1.58 m·s−1, within a
RoS ranging from 0.01 to 9.3 m·s−1, resulting in a MAE% of 17.01% in the estimation of RoS
in 187 Australian fires [10]. The RoS error of the Mk 5 Grassland Fire Danger Meter [68]
and the CSIRO Grassland Fire Spread Model [69] have also been measured with the same
wildfire dataset, resulting in MAEs of 0.64 m·s−1 and 0.95 m·s−1 and MAE%s of 6.89% and
10.23%, respectively. American models, such as the one published by Rothermel in 1972 [12],
obtained a MAE of 0.22 m·s−1 in grasslands, within a RoS ranging from 0.06 to 0.5 m·s−1,
resulting in a MAE% of 50%. More recently, Anderson et al. [70] published a model for
temperate shrublands, obtaining a MAE of 0.15 m·s−1 ranging from 0.08 to 1.67 m·s−1,
yielding a MAE% of 9.43%. Khanmohammadi et al. [19] obtained a MAE of 0.65 m·s−1

using a Gaussian support vector machine (SVM) for regression in 238 grassland wildfires,
with a RoS range from 0.14 to 4.72 m·s−1, yielding a MAE% of 14.19%. Comparing with the
results obtained in this study, specifically from the combination of Sycan plots 1 and 2, we
obtained a MAE of 0.16 m·s−1, with a RoS range between 0.01 m·s−1 and 2.70 m·s−1, which
results in a MAE% of 6.02%. These statistics are consistent with the results previously
obtained by other authors.

4.5. Key Findings

In this study, we focused solely on the variables obtained from the UAV-DAP point
cloud, excluding the consideration of other factors, including meteorological variables,
that play a fundamental role in the fire RoS [71]. Our objective was to provide a unique,
fine-scale perspective on fuels that could complement models relying on meteorological
variables in future work. Geometric variables are indicators of the structure and density
of the vegetation, whereas spectral indices are related to the physiological status and
density of the vegetation, so they complement others not considered in this study, such as
meteorological variables.
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One of the most critical parameters for obtaining efficient variables derived from the
UAV-DAP point cloud was the extension of the study area. Data obtained from small areas
are not sufficient to establish a proper relationship with the RoS; a minimum area is needed,
and this is a constraint when using drones, due to their limited autonomy [3]. We recommend
that, for model generation, the training data should cover an extent greater than or equal
to that flown in Sycan. The extent of the data capture mainly depends on the technical
characteristics of the drone, as well as the flight plan followed. For instance, when assuming
a flight plan similar to the one used in Sycan, with a height range of 120–180 m following a
cross-grid pattern, some multispectral drones, such as the DJI Mavic 3M, can map an area
of up to 80 hectares in a single flight by following the flight plan software Drone Deploy
version 5.14.0 (DroneDeploy, Inc., San Francisco, CA, USA). This represents a significantly
larger area than that flown in this study. The models generated were plot specific, requiring
the creation of new ones when fuel conditions and topographies differ. In this sense, the
good results obtained for Sycan demonstrate the effectiveness of the methodology for fuels
categorized under the Anderson Fire Behavior Fuel Model 2 (Figure 1), making it possible to
apply the models generated in this study to other environments with similar characteristics.
From the results obtained, the fire RoS can be predicted without the use of meteorological
predictions. Based on the results obtained, RoS prediction is promising even without the
inclusion of biophysical, topographic, or meteorological variables. However, mainly with
respect to meteorological conditions, it should be noted that the impact of their variation
with respect to model training conditions needs to be further investigated. This is something
that should be deeply studied in future work.

5. Conclusions

This study aimed to analyze relationships between the fire RoS and UAV-DAP data
obtained prior to prescribed burning. The dependent variable, the fire RoS, was derived
from thermal images captured using UAVs during a prescribed burn. Independent variables
were extracted from RGB images, and multispectral 3D point clouds were generated before
the burn.

We found that geometric and spectral variables extracted from the point clouds are
related to the fire RoS, such as the planarity or the NBRDI variables. The fine scale with
which the variables derived from the point clouds were obtained allowed us to characterize
the fire RoS with a high level of detail. The fuel heterogeneity and extension of the study
area were key to the correct generation of the models. These results encourage further
research on combining the variables with the greatest importance obtained in this study,
which provide relevant information about the structure, density, and state of the vegetation,
as well as meteorological, topographical, and biophysical data in order to predict the fire
RoS. In future work, we will compare models generated using variables derived from
UAV-DAP point clouds with other fire RoS models.

The incorporation of UAV-DAP data into fire RoS models improves our understand-
ing of fire behavior and fuel dynamics. The fine scale of UAV-DAP data enables the
development of new techniques and methodologies that can improve prescribed burning
management strategies, mitigating associated risks.
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