
Citation: Pham, T.-H.; Nguyen, K.-D.

Soil Sampling Map Optimization with

a Dual Deep Learning Framework.

Mach. Learn. Knowl. Extr. 2024, 6,

751–769. https://doi.org/10.3390/

make6020035

Academic Editor: Salim Lahmiri

Received: 15 February 2024

Revised: 19 March 2024

Accepted: 26 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Article

Soil Sampling Map Optimization with a Dual Deep Learning
Framework
Tan-Hanh Pham and Kim-Doang Nguyen *

Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA;
tpham2023@my.fit.edu
* Correspondence: knguyen@fit.edu

Abstract: Soil sampling constitutes a fundamental process in agriculture, enabling precise soil
analysis and optimal fertilization. The automated selection of accurate soil sampling locations
representative of a given field is critical for informed soil treatment decisions. This study leverages
recent advancements in deep learning to develop efficient tools for generating soil sampling maps.
We proposed two models, namely UDL and UFN, which are the results of innovations in machine
learning architecture design and integration. The models are meticulously trained on a comprehensive
soil sampling dataset collected from local farms in South Dakota. The data include five key attributes:
aspect, flow accumulation, slope, normalized difference vegetation index, and yield. The inputs
to the models consist of multispectral images, and the ground truths are highly unbalanced binary
images. To address this challenge, we innovate a feature extraction technique to find patterns and
characteristics from the data before using these refined features for further processing and generating
soil sampling maps. Our approach is centered around building a refiner that extracts fine features and
a selector that utilizes these features to produce prediction maps containing the selected optimal soil
sampling locations. Our experimental results demonstrate the superiority of our tools compared to
existing methods. During testing, our proposed models exhibit outstanding performance, achieving
the highest mean Intersection over Union of 60.82% and mean Dice Coefficient of 73.74%. The
research not only introduces an innovative tool for soil sampling but also lays the foundation for
the integration of traditional and modern soil sampling methods. This work provides a promising
solution for precision agriculture and soil management.

Keywords: soil sampling; precision agriculture; multi-spectral imaging; deep learning; highly
unbalanced segmentation

1. Introduction
1.1. Background and Motivation

Soil is the essential cornerstone of agriculture as it provides nutrients, retains moisture,
and offers natural support for plants. Its role extends beyond physical support, as it hosts
vital microbial communities that aid in nutrient cycling and disease suppression. Soil’s
carbon storage capacity contributes to climate change mitigation, while its influence on
pH levels and crop suitability guides farming practices. Sustainable agriculture relies on
soil health, and responsible soil management mitigates environmental impacts. In general,
soil plays a diverse role, encompassing crop nourishment, water management, ecological
support, carbon storage, and the foundation of sustainable farming practices.

To support soil health assessment in agriculture, soil sampling is one of the most
important activities that helps us understand and optimize soil composition and nutrient
levels. In soil sampling, identifying locations to take soil samples is very important, as
it might lead to critical soil analysis results and decisions in soil management. There are
scientific methods for collecting soil samples based on field coordinates and past-season
data. For example, composite sampling, cluster sampling, and stratified sampling [1]. The

Mach. Learn. Knowl. Extr. 2024, 6, 751–769. https://doi.org/10.3390/make6020035 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make6020035
https://doi.org/10.3390/make6020035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0009-0002-0499-3882
https://orcid.org/0000-0001-6230-2432
https://doi.org/10.3390/make6020035
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make6020035?type=check_update&version=1


Mach. Learn. Knowl. Extr. 2024, 6 752

soil samples are then sent to laboratories for analysis to determine soil-health indicators.
Despite being the standard practices for soil sampling, these methods are expensive and
difficult to use extensively for farmers, so they may have limited precision and spatial
coverage [2,3].

Recently, to investigate the spatial prediction of soil nutrient maps, the authors of [4]
used machine learning algorithms such as random forest and gradient boosting algorithms.
They used soil nutrient maps of sub-Saharan Africa with a 250 m spatial resolution. Based
on these maps, nutrient distributions were estimated, including carbon, nitrogen, phospho-
rus, calcium, etc. Similarly, machine learning techniques were employed in [5] to predict
global maps of soil properties, utilizing soil samples collected from over 240,000 locations
worldwide. The application of machine learning in predicting soil nutrient maps has seen
significant development, supporting agricultural development and soil management [6–10].

Despite efforts to provide global soil nutrient maps [8,9], these existing methods still
do not sufficiently support farmers and producers in soil management and treatment
on their farms. In addition, most soil studies have focused on analyzing soil attributes
and properties without addressing soil sampling maps [11–13]. Therefore, farmers and
producers lack an efficient and automatic tool to guide them to optimal locations for
collecting samples.

Motivated by the evident gap in existing methods, we developed a soil sampling tool
that enables the generation of soil sampling maps on the field [14]. While our previous
investigation pioneered the application of machine learning to agriculture, it has several
limitations. Firstly, the backbone of the tool is heavy because of its mechanism, resulting
in prolonged training times. Secondly, the model’s accuracy when applied to test soil
datasets is suboptimal. To address these deficiencies, this work aims to develop a novel
methodology for selecting optimal sampling locations in a given field with improved
accuracy and efficiency. Furthermore, we also establish an extensive array of soil datasets,
enhancing the model’s applicability across a broader range of geographic areas.

1.2. Literature Review of Methodologies

Over the past decade, deep learning has been developing rapidly across various do-
mains such as finance, medicine, and education [15–17]. In agriculture, its applications have
been profound, covering areas from agricultural production to supply management [18,19].
Such techniques have proven crucial for addressing intricate challenges like crop detection,
fruit segmentation, and produce classification. For example, in [20,21], deep learning
algorithms were applied for apple detection and segmentation. For agricultural device
optimization, the authors of [22–24] used deep learning techniques to estimate the cone
angle of the spray and the droplet characteristics.

One of the most common methods used to build deep learning algorithms for computer
vision is convolutional neural networks (CNNs) [25,26]. In the context of CNNs, the
convolution operation involves sliding a small filter over the input data, often an image
or a feature map. The filter is a small matrix of numbers that “slides” across the input
data. At each position, element-wise multiplication is performed between the filter and the
overlapping portion of the input data. The results of these multiplications are then summed
to produce a single value in the output, which forms a new grid called a feature map.

In addition to CNNs, Transformers, or self-attention mechanisms, have recently gained
attention as potential feature extractors for computer vision [27]. Similar to self-attention in
natural language processing [28], the input images are first embedded into sequences, and
the sequences are then fed into Transformers. With input sequences, they are multiplied by
three weight matrices—query (Q), key (K), and value (V)—to generate query (q), key (k),
and value (v) vectors for each sequence. The attentions or dependencies between sequences
are computed based on these vectors.

Some popular CNN-based object detection algorithms are R-CNN [29], Faster R-CNN [30],
the YOLO family [31], and SSD [32]. The Transformer-based algorithms introduced
in [33,34] are also well known in this field. Beyond detecting objects, identifying the



Mach. Learn. Knowl. Extr. 2024, 6 753

precise location of objects within an image is very important, especially for tasks such as
brain tumor segmentation [35]. Therefore, semantic segmentation has been proposed for
classifying each pixel in an image into a specific class or category [36].

The semantic segmentation algorithm assigns a label to each individual pixel, es-
sentially segmenting the image into regions of different classes. This task is crucial for
providing detailed and meaningful insights into visual information in an image. Popular
CNN-based segmentation algorithms are Fully Convolutional Networks (FCNs), Unet,
Mask RCNN, and the DeepLab family [36–39], while SegFormer, Oneformer, and Segment
Anything are recent seminal Transformer-based segmentation algorithms [40–42].

The application of deep learning in agriculture has emerged as an alternative to
traditional methods, leading to substantial enhancements in precision agriculture. However,
it remains relatively unexplored in the study of providing precise soil sampling maps,
despite its importance. More critically, missing sampling locations in a wide field results in
poor soil-health assessment and treatments. Hence, the primary objective of this study is
to develop an optimized semantic segmentation model to produce accurate soil sampling
maps. In this context, semantic segmentation means the classification of every pixel into
either white pixels for selected soil sampling sites or black pixels for the background, as
illustrated in Figure 1.

Figure 1. A set of input and ground-truth images used for training and testing, corresponding to the
characteristics and soil sampling locations in a field.

1.3. Contributions

This study underscores the critical need for innovative approaches in soil sampling
mapping, particularly given the challenges encountered with existing models when applied
to our dataset. Initial experimentation in our earlier work [14] with the Unet model
revealed its inadequacy in effectively capturing the intricate features present in soil imagery
data. Furthermore, while DeepLabv3 and FCN are established segmentation models, their
performance on the soil dataset for soil sampling site selection fell short of expectations, as
shown in Section 5.

Novelty: Recognizing the limitations of these conventional approaches, we have
devised a novel strategy centered on building a dual deep learning architecture composed
of a refiner and a selector. The refiner is designed to extract finer features from the input
soil data. The selector analyzes the refined features to select the optimal locations for soil



Mach. Learn. Knowl. Extr. 2024, 6 754

sampling matching the ground truth. The fusion of these dual components is enabled
by a set of delicately designed bridge layers. The resultant segmentation models, our
proposed models, UDL and UFN, exhibit remarkable improvements in accuracy and
precision compared to state-of-the-art models.

The key scientific contributions of our work include the following:

• We develop a dual deep learning architecture capable of analyzing unbalanced soil
mapping data and achieving better performance compared to existing methods.

• The models excel in handling multi-spectral images and generating highly efficient
soil sampling maps.

• Our new soil sampling tools outperform existing methods.
• This work lays the foundation for integrating traditional and modern soil sampling

methods.

The rest of this paper is organized as follows. Section 2 describes the dataset and data
pre-processing. Section 3 elaborates on the methodologies of deep learning algorithms
underlying the soil sampling tool. In addition, the algorithmic operation of the models is
depicted, including the process of acquiring landscape attributes (aspect, flow accumulation,
slope, yield, and Normalized Difference Vegetation Index), extracting patterns from these
attributes, and generating optimal soil sampling locations. The model training and the
metrics for evaluating the performance of the models are explained in Section 4. Section 5
discusses the results and compares the performance of the models. Finally, Section 6
provides some concluding remarks about this work.

2. Data Processing
2.1. Data Acquisition

The soil sampling dataset was gathered in Aurora and Davison counties, South Dakota,
USA. In this work, the soil sampling dataset, named the 20s-Soil dataset, was collected
on twenty homogeneous fields for training and testing our deep learning models. These
fields were carefully selected to ensure homogeneity, with the same crop cultivated across
all areas. The Digital Elevation Model (DEM) of each field was recorded from the LiDAR
(Light Detection and Ranging) data, with each field ranging from 150 to 200 hectares and a
spatial resolution of 10 m.

The 20s-Soil is a challenging dataset, where the input is a stack of multi-spectral
images, and the ground truth is a highly unbalanced binary image. The ratio of black
pixels (background) to white pixels (soil sampling sites) in the ground truth image is
approximately 146:1. Specifically, an input is a set of five images, each representing a
different attribute: aspect, flow accumulation, slope, yield, and Normalized Difference
Vegetation Index (NDVI). Slope, aspect, and flow accumulation data were obtained from
the DEMs using ArcMap (Esri®, ArcGIS, ArcMap 10.8). Additionally, NDVI values for
each field were acquired through Sentinel 2A imagery downloaded from the Copernicus
Open Hub, with a resolution of 10 m [43]. Furthermore, yield data were obtained through
Field View Plus (Climate® Corporation, San Francisco, CA, USA). From this dataset, we
conducted a multi-year yield average analysis using the SMS Ag software (https://www.
agleader.com/farm-management/sms-software/ Ag Leader®, SMS Advanced). The yield
data from 2018 to 2021, obtained from corn fields, were imported into the software. The
software then provided the average yield for those years. The impact of terrain attributes
such as slope and aspect, as well as hydrological attributes like flow accumulation, is
considered a key factor for soil sampling practices. Typically, slope refers to the steepness
or gradient of the terrain at a particular location. It is typically calculated by determining
the rate of change in elevation over a given distance. Aspect describes the direction that a
slope faces. Flow accumulation represents the accumulated flow of water at each cell in the
DEM. It is used to identify drainage patterns and estimate the amount of water that will
flow through a specific location [44].

In addition, the data layers cover 20 fields ranging from 150 to 200 hectares, resulting in
an average size of 800 pixels by 1100 pixels. Figure 1 shows a set of input and ground-truth

https://www.agleader.com/farm-management/sms-software/
https://www.agleader.com/farm-management/sms-software/


Mach. Learn. Knowl. Extr. 2024, 6 755

images, corresponding to the characteristics and soil sampling locations in a field. This
paper focuses on developing a deep learning model capable of refining landscape data and
extracting the optimal locations for soil sampling in a given field. In the context of our
study, refinement encompasses identifying patterns in data, extracting important features,
and improving data interpretability. The model is capable of processing a stack of five
images (aspect, flow accumulation, slope, yield, and NDVI). It then learns by adjusting
its internal parameters during the training process with ground-truth data to extract soil
sampling locations (white pixels), as illustrated in Figure 1.

2.2. Data Augmentation

In order to make the data uniform and increase the number of samples for training
and testing, we applied augmentation techniques. Initially, square images were cropped
from the center of the input image, each with varying sizes. Subsequently, the cropped
images were resized to dimensions of 572 × 572. Lastly, random rotations were applied
to the resized images to generate additional data. It is important to note that when ap-
plying augmentation techniques to a set of input attributes, including aspect, slope, flow
accumulation, yield, and NVDI, we stacked all attributes on top of each other. This means
that during data augmentation, all input attributes within a set were rotated in the same
manner and direction. We selected these augmentation methods due to their simplicity and
computational efficiency.

The total dataset was subdivided into three sets: a training set comprising 2720 sam-
ples, a validation set with 340 samples, and a testing set consisting of 340 samples. Figure 2
illustrates the final augmented data of an image after random rotations.

Figure 2. Applying the random rotation technique on the resized images.

3. Methodology
3.1. Refiner: Extracting Fine Features by Leveraging an Encoder–Decoder Architecture

The refiner takes in a set of input images, including the aspect, flow accumulation,
slope, yield, and NVDI attributes from a field. Each image represents a landscape attribute,
as mentioned in Section 2.1. In particular, we designed the refiner based on an encoder–
decoder architecture, inspired by Unet [37], to extract patterns from these inputs, producing
feature maps as bridge layers B. Sequentially, these bridge layers B are fed into the
selector’s backbone.



Mach. Learn. Knowl. Extr. 2024, 6 756

3.1.1. Encoder

The encoder consists of four building blocks, each composed of a basic block followed
by a max-pooling function, as illustrated in Figure 3. The encoder allows the model
to effectively reduce the input image’s dimensions and increase the number of feature
maps. This structure enables the model to capture and retain hierarchical features at
different scales.

Figure 3. Using an encoder–decoder model to extract the bridge layer from input images.

A single basic block includes two convolutional neural networks (CNNs) γ [25], fol-
lowed by a batch normalization function β [45] and a rectified linear unit (ReLU) activation
function σ [46]. The structure of the basic block can be written as:

F̂i = σ
(

β
(

γ(Cin ,Ch)
(Fi−1)

))
,

Fi = σ
(

β
(

γ(Ch ,Co)(F̂i)
))

, ∀i ≥ 1,
(1)

where F̂i and Fi are the intermediate and final features of every basic block, respectively.
Cin, Ch, and Co are the input, hidden, and output layers, respectively. After passing
through the basic block, the resolution of the input image decreases while the number of
features increases.

In particular, the output dimensions (H, W, C) of an input dataset, corresponding
to the height, width, and number of channels (features), respectively, are computed after
passing through a convolution, as follows:

Hout =
(H − K + 2P)

S
+ 1, and

Wout =
(W − K + 2P)

S
+ 1,

(2)



Mach. Learn. Knowl. Extr. 2024, 6 757

where K, S, and P are the kernel, stride, and padding sizes, respectively. In all basic blocks,
the values of K, S, and P are 3, 1, and 1, respectively, so the output dimensions of the
convolution are the same as the inputs.

The output features are then passed through a max-pooling function with K = 2 and
S = 2, expressed as

Fi = MaxPooling(Fi), (3)

thereby reducing the feature dimensions. Typically, the max-pooling function takes the
maximum value of the given matrix (2 × 2), which reduces the dimensions two times. In
addition, the numbers of output features after passing through four encoder blocks are 32,
64, 128, and 256, respectively.

3.1.2. Decoder

Unlike the encoder, the decoder consists of four building blocks, each of which com-
prises a basic block preceded by a deconvolution neural network (DCNN). The DCNN first
upscales the input features and then concatenates them with the corresponding features
from the encoder using skip connections. Typically, these skip connections allow informa-
tion from the encoder to skip the subsequent operations and directly reach the decoder. The
output dimensions of the input features after passing through the DCNN are calculated as:

Hout = (H − 1)S− 2P + K, and

Wout = (W − 1)S− 2P + K,
(4)

where K, S, and P denote the kernel, stride, and padding sizes, respectively, similar to
the CNN.

Sequentially, the concatenated features are fed into the basic block, extracting recovered
features. This process is repeated for every decoder block. In the decoder, all DCNNs are
designed to have K, S, and P are 2, 2, and 0, respectively, so the output dimensions are
upscaled two times compared to the inputs. In addition, the numbers of output features
are 256, 128, 64, and 32, respectively.

At the end of the decoder, we apply another convolution, with K = 1 and S = 1, to
obtain the bridge layers B. These layers serve as inputs for the DeepLabv3 and FCN models.
In addition, the resolutions of the bridge layers (H ×W) are the same as the input images,
and the number of bridge layers is 64.

3.2. Selector

The selector comprises a backbone and an output head. Fine features are first extracted
by the refiner network, as described in the last section. The selector then establishes further
relationships between features using a residual neural network backbone, grounded in the
ResNet structure [47]. After that, it fuses the processed features and generates a prediction
map. The rest of this section discusses the operation of these networks.

3.2.1. Selector Backbone

Figure 4 shows the architecture of the selector backbone constructed with atrous
convolution neural networks (ACNNs), where R represents the number of backbone blocks.
There are five main blocks in the network, including the pre-processing block and Blocks
1–4. These blocks serve as extractors, further extracting features from the bridge layers
hierarchically. After passing through these blocks, the dimensions of the bridge layers
decrease while the number of features increases.

In the pre-processing block, the bridge layers B are processed using a CNN γ, with
K = 7, S = 2, and P = 2. This CNN is followed by a BatchNorm function β [45] and a ReLU
activation function σ [46]. The BatchNorm function normalizes the input of each layer by
subtracting the mean and dividing by the standard deviation of the mini-batch of data.
This centers the data around zero and scales them to have unit variance, ensuring that



Mach. Learn. Knowl. Extr. 2024, 6 758

the activations in a neural network layer have a consistent and stable distribution during
training. The pre-processing block is formulated as:

Fp = σ
(

β
(

γ(Cin ,Co)(B)
))

. (5)

Again, Fp represents the output features of the step, and Cin and Co represent the number
of input and output layers of this block, respectively. Sequentially, these features are passed
into a max-pooling function with K = 2 and S = 2. As a result, the input’s dimension is
reduced by a factor of 4× 4 through a sequence of CNN and max-pooling operations
following the pre-processing block, resulting in a size of 128× 128× 64.

Figure 4. The selector structure and the output dimensions of each block. Blocks 1 to 4 consist of a
number (R) of ResNet blocks. In this context, when r = 1, it represents the outputs from the standard
CNNs, whereas r > 1 indicates the outputs from the ACNNs.

Blocks 1–4 consist of a number of ResNet blocks, whose architecture is shown in
Figure 5. A single ResNet block consists of three CNN layers, where the first two layers are
followed by a BatchNorm function and the third layer is followed by a BatchNorm function
and a ReLU activation function. At the end of the third layer, the features are added to
the input features to create the output layers. This connection is a simple element-wise
addition, which allows the network to learn residual features instead of direct features.
Therefore, these connections help the network avoid vanishing gradients during training.

In addition to the ResNet block, ACNNs are applied in Blocks 3 and 4 with an atrous
rate r of 2 and 4, respectively, as shown in Figure 4. The ACNNs involve introducing gaps
or “holes” in the traditional CNNs, thereby resulting in a larger receptive field without
increasing the number of parameters, as visualized in Figure 6. The atrous rate r represents
the empty spaces between the elements, and we can adjust this rate to capture different
scale context information.



Mach. Learn. Knowl. Extr. 2024, 6 759

Figure 5. The structure of a ResNet block.

Figure 6. (a) Construction of an atrous CNN, where r is the atrous or dilation rate. (b) Atrous CNN
operation in the network with r = 2, and kernel size k = 3.

In this work, we employed ResNet50 and ResNet101 in the backbone to extract features.
The difference between these neural networks is the number of ResNet blocks (R). For
ResNet50, the number of ResNet blocks R in Blocks 1, 2, 3, and 4 is 3, 4, 6, and 3, respectively.
For ResNet101, these numbers are 3, 4, 23, and 3, respectively. Given the bridge layers,
B, the output dimensions of the features after passing through the ResNet blocks are
(128× 128× 64), (128× 128× 64), (64× 64× 512), (64× 64× 1024), and (64× 64× 2048),
respectively.

3.2.2. Fuser

The resulting features of the backbone are fed into the fuser, a series of CNNs, where
the features are further processed and fused to create the final prediction map. The output
features from the network are processed by an atrous spatial pyramid pooling (ASPP)
and a global average pooling (GAP) module operating in parallel, as shown in Figure 7.
The idea behind the ASPP is to apply multiple convolutional filters with different atrous
rates to the same input feature, which enables the model to capture information at varying
spatial resolutions. The ASPP consists of a 1× 1 convolution (K = 1) and three 3× 3 (K = 3)



Mach. Learn. Knowl. Extr. 2024, 6 760

convolutions with atrous rates of r = 12, 24, and 36. Following these convolutions are a
BatchNorm function β and a ReLU activation function σ, formulated as

Fi = σ
(

β
(

γ(Cin ,Co)(Fbb)
))

, ∀i, (6)

where Fbb represents the output features of the backbone and Fi is the output of the ith
atrous spatial pyramid pooling module.

Figure 7. The selector’s pipeline: The process of extracting features from bridge layers to produce the
soil sampling prediction map.

Beyond ASPP, GAP is applied on top of the same output features from the backbone.
Unlike max-pooling, GAP computes the average value of each channel across the entire
spatial extent of the input feature map. It is used as a method to reduce the spatial
dimensions of feature maps while retaining important information about the presence of
different features in the image. In addition, the GAP module is followed by a BatchNorm
function β and a ReLU activation function σ, described similarly to the ASPP module in
Equation (6).

The output features (Fi) from the ASPP and GAP modules are concatenated and then
fused together using another 1× 1 convolution. As a result, the output dimensions after
fusing are 64× 64× 256, and this step is formulated as

F = γ(Cin ,Ch)
(Concat(Fi)), 1 ≤ i ≤ 5. (7)

To obtain the prediction map, these fused features F are processed by a 3× 3 convolu-
tion followed by a BatchNorm function β and a ReLU activation function σ before passing
into a 1× 1 convolution. This process is described as

F = σ
(

β
(

γ(Ch ,Cout)(F)
))

,

M = γ(Cout ,1)(F),
(8)

where M is the prediction mask with dimensions of (64× 64× 1). Finally, the prediction
mask is upscaled to match the input image using the linear interpolation function. This vari-
ant of the deep learning architecture is referred to as UDL, whose procedure is summarized
in Algorithm 1. The next section describes the second variant.



Mach. Learn. Knowl. Extr. 2024, 6 761

Algorithm 1 Pseudo-code explaining UDL’s algorithm

1: Input: Input images
2: for Every set of input images (H, W, C) do
3: Encoders = [], Decoder = []
4: for i = 1, 2, . . . , 4 do
5: Fi ← Extracting features for basic block ith in the encoder following Equation (1)
6: Fi ← Applying max-pooling function to Fi following Equation (3)
7: Appending Fi into Encoders
8: end for
9: Fi+1 ← Extracting features in the bottleneck block following Equation (1)

10: for i = 1, 2, . . . , 4 do
11: F5−i ← Upsampling features from the previous block and then concatenating

with their corresponding features in the encoder (Encoders5−i)
12: F5−i ← Extracting features for the 5− ith decoder block using Equation (1)
13: end for
14: Fbridge ← Extracting bridge layers
15: FRes ← Extracting features from Fbridge
16: Fi ← Applying ASPP and GAP parallelly on FRes to obtain image-level features

following Equation (6)
17: F ← Concatenating the image-level features and then fusing by 1× 1 convolution

following Equation (7)
18: M← Applying 3× 3 and 1× 1 convolutions on the fused features sequentially to

obtain the final prediction following Equation (8)
19: M← Upscaling the prediction
20: end for

3.2.3. Output Head

In addition to the UDL framework discussed above, we have also developed another
variant of the deep learning architecture with an output head, called UFN. Both UDL and
UFN share the same refiner and backbone; the difference is the output head. Specifically,
the architecture of UFN is shown in Figure 8, while that of UDL is depicted in Figure 7.

Figure 8. UFN architecture.

In the UFN model, the output from the backbone is fed into the FCN head to produce
predictions. First, the features are processed using a 3× 3 convolution γ, followed by a
BatchNorm function β and a ReLU activation function σ. Then, another 1× 1 convolution
is applied on top of the processed features to create a prediction map, as described in
Equation (8).

To match the input dimension, the prediction map is upscaled using the linear interpo-
lation function. Specifically, the original dimensions of the bridge layers B (512× 512× 64)
become 64× 64× 2048 after passing through the backbone. Then, the FCN head adopts
these features and extracts a prediction known as a binary image (64× 64× 1). As a result,
this prediction is upscaled to 512× 512× 1 to match the input dimensions. The process is
described in detail by the pseudo-code in Algorithm 2.



Mach. Learn. Knowl. Extr. 2024, 6 762

Algorithm 2 Pseudo-code explaining the soil sampling tool with the UFN model

1: Input: Input images
2: for Every set of input images (H, W, C) do
3: Encoders = [], Decoder = []
4: for i = 1, 2, . . . , 4 do
5: Fi ← Extracting features for the ith basic block in the encoder following

Equation (1)
6: Fi ← Applying the max-pooling function to Fi following Equation (3)
7: Appending Fi into Encoders
8: end for
9: Fi+1 ← Extracting features in the bottleneck block following Equation (1)

10: for i = 1, 2, . . . , 4 do
11: F5−i ← Upsampling features from the previous block and then concatenating

with their corresponding features in the encoder (Encoders5−i)
12: F5−i ← Extracting features for the 5− ith decoder block using Equation (1)
13: end for
14: Fbridge ← Extracting bridge layers
15: FRes ← Extracting features from Fbridge
16: M← Applying 3× 3 and 1× 1 convolutions on the fused features sequentially to

obtain the final prediction following Equation (8)
17: M← Upscaling the prediction
18: end for

4. Experiment and Evaluations
4.1. Model Training

The innovative dual deep learning architectures, UDL described in Section 3.2.2
and UFN described in Section 3.2.3, were implemented using the PyTorch framework
and Torchvision library. To train our model, we utilized a high-performance computing
facility named AI.Panther, equipped with A100 SXM4 GPUs, hosted at the Florida Institute
of Technology.

As mentioned in Section 3, the final predictions are binary images. Therefore, we used
the binary cross-entropy (BCE) loss as an objective function during the training process.
The BCE loss measures the difference between the predicted probabilities and the true
labels of every pixel in the ground truth. For a pair consisting of a prediction M and a
ground truth Y, the average loss is defined as follows:

Loss(θ) = − 1
Q

Q

∑
q=1

[
Yq log

(
Mq(θ)

)
+ (1−Yq) log

(
1−Mq(θ)

)]
, (9)

where Q is the number of pixels in the prediction or ground truth, q is the index of the
pixel, and θ represents the parameters in our deep learning models, iteratively adjusted to
minimize the loss.

Throughout the training process, the stochastic gradient descent (SGD) algorithm
was used to find the optimal values for the model’s parameters θ that minimized the loss
between the prediction and ground truth. The gradients indicated the direction in which
the parameters should be updated to reduce the loss. During this step, SGD is updated
with a learning rate of r = 0.001, a hyperparameter used to control the step size for the
parameter update. In addition, we used weight decay regularization of λ = 0.0001 in
combination with a momentum of µ = 0.9 to prevent overfitting. The training procedure
involved feeding data into models for multiple epochs, where one epoch was completed
when the entire dataset was passed into the model. To optimize the training process with
respect to available computational resources, we divided the total training dataset N into



Mach. Learn. Knowl. Extr. 2024, 6 763

multiple batches, A = 8, for an epoch. Therefore, the model needed to iterate I times to
complete an epoch, with the number of iterations calculated as

I =
N
A

, (10)

4.2. Evaluation Metrics

The performance of the proposed combined models was assessed using standard
metrics for binary segmentation, including the mean Intersection over Union (mIoU)
and mean Dice Coefficient (mDC). Before we computed these metrics, we applied the
thresholding technique to the final prediction with a threshold value of 190. In doing so, all
pixel values less than 190 were converted to 0 (black), and the others were converted to
1 (white). To facilitate the metric calculation, we provide the following definitions:

• True positive (TP) is the total number of white pixels that the model correctly predicted
compared to the white pixels on the ground truth.

• True negative (TN) is the total number of black pixels that the model correctly predicted
compared to the black pixels on the ground truth.

• False positive (FP) is the total number of white pixels that the model predicted to
overlap with the black pixels on the ground truth.

• False negative (FN) is the total number of black pixels that the model predicted to
overlap with the white pixels in the ground truth.

The mIoU, the mean overlap of the predictions and ground truths over the total N
images, is computed as follows:

mIoU =
1
N

N

∑
e=1

TPe

TPe + FPe + FNe
. (11)

The mDC , the mean similarity between the predictions generated by the model and the
ground truths, is defined as follows:

mDC =
1
N

N

∑
i=1

2TPi
2TPi + FPi + FNi

. (12)

5. Results and Discussion

In this section, we report the efficacy of our proposed dual deep learning models by
comparing their performance with state-of-the-art segmentation models. In addition, we
tested the performance of our models with different numbers of layers in the backbone,
i.e., UDL50 for UDL with 50 backbone layers and UDL101 for UDL with 101 backbone
layers. Similarly, UFN50 and UFN101 stand for UFN with 50 and 101 backbone layers,
respectively. These models were trained and compared with their counterparts, as well as
several existing state-of-the-art methods.

5.1. Soil Sampling Tool Based on UDL

The training process of the UDL model is shown in Figure 9. All the models converged
after 100 epochs, with the models with a 101-layer backbone showing lower losses compared
to those with a 50-layer backbone. Moreover, on the validation set, after 1000 epochs, UDL50
and UDL101 achieved loss values of 0.011 and 0.007, respectively, whereas DeepLabv3-
Res50 and DeepLabv3-Res101, two state-of-the-art models, recorded loss values of 0.012
and 0.009, respectively. Our dual deep learning models exhibited lower loss values on the
validation dataset compared to the SOTA models, with the UDL101 model exhibiting the
lowest training loss.



Mach. Learn. Knowl. Extr. 2024, 6 764

Figure 9. The training and evaluation losses of the UDL and DeepLabv3 models during the train-
ing process.

To gain more a comprehensive insight into the models, all models were saved at
every 10 epochs during the training. These saved weights were loaded and implemented
on the training, validation, and test datasets to compare the performance of the models.
We used the metrics mentioned in Section 4.2 (mIoU and mDC) to evaluate the models’
performance. If the metric measurements on both the validation and testing sets declined
over time, it indicated that the model was potentially overtrained. Furthermore, if the
models’ performance metrics consistently improved with an increasing number of epochs,
the training could be extended for more epochs.

On the test set, the highest mDC values for the DeepLabv3-Res50, DeepLabv3-Res101,
UDL50, and UDL101 models were 56.28%, 63.75%, 66.82%, and 73.74%, respectively,
whereas the mIoU values were 41.44%, 49.24%, 51.96%, and 60.68%, respectively. Thus,
we chose the best models to make predictions on the test dataset, as shown in Figure 10.
It is evident from the figure that the UDL model exhibited higher accuracy in predicting
both the foreground and background compared to the other models. Additionally, the
performance metrics of the top-performing models were computed, as shown in Table 1.

Table 1. Quantitative comparison of UDL and DeepLabv3 using the evaluation metrics.

Methodology
mIoU mDC

Validation Test Validation Test

DeepLabv3-Res50 39.67 41.44 55.04 56.28
UDL50 53.57 51.96 68.15 66.82

DeepLabv3-Res101 47.80 49.24 62.81 63.75
UDL101 59.85 60.82 73.30 73.74



Mach. Learn. Knowl. Extr. 2024, 6 765

Figure 10. Comparison of qualitative results between UDL and DeepLabv3. The predicted soil
sampling maps on different fields (a,b) with respect to the best weights of different models. The
square boxes highlight the differences between the predictions of the models.

5.2. Soil Sampling Tool Based on UFN

For the proposed UFN models, we conducted training and compared their perfor-
mance with that of their counterparts. The training and validation losses during the
training of the two models are shown in Figure 11. All models converged after around
100 epochs, and again, the evaluation losses of our models, UFNs, were lower than
those of their counterparts. Specifically, after 1000 epochs of training, the loss values
for UFN50 and UFN101 were 0.011 and 0.008, respectively, whereas the loss values for
FCN-Res50 and FCN-Res101 were 0.013 and 0.012, respectively.

Figure 11. Losses for the UFN models during the training process.



Mach. Learn. Knowl. Extr. 2024, 6 766

For the UFN and FCN models, we also trained the models up to 1000 epochs and
saved the weights of the models every ten epochs. The saved models were used to perform
predictions on the test dataset, and their performance was compared. The prediction maps
for soil sampling are depicted in Figure 12, and a detailed summary of their performance
metrics can be found in Table 2.

Intuitively, the predictions from the combined models were more accurate compared
to the predictions from their original counterparts. If we take a look at the size and shape
of the predictions, it is evident that the UFN101 model produced soil sampling maps that
closely resembled the ground truths. The square boxes in Figure 12 highlight the differences
between the predictions generated by these models.

Figure 12. Comparison of qualitative results between UFN and FCN. In the subfigures, black
represents the background, and white dots indicate soil sampling locations. Square boxes highlight
differences between the models’ predictions.

In terms of quantitative comparison, the highest mDC values for the FCN-Res50,
FCN-Res101, UFN50, and UFN101 models on the test dataset were 65.97%, 58.88%, 68.62%,
and 69.12%, respectively, whereas the mIoU values were 52.34%, 44.32%, 55.42%, and
55.45%, respectively. It is evident from the results that our innovative UFN models consis-
tently outperformed the state-of-the-art FCN models. Notably, UFN101 exhibited the best
performance among all models on the test dataset.

Table 2. Quantitative comparison of UFN and FCN using the evaluation metrics. In the table, Val.
stands for the validation dataset .

Methodology
mIoU mDC

Val. Test Val. Test

FCN-Res50 50.50 52.34 64.89 65.97
UFN50 55.41 55.42 69.32 68.62

FCN-Res101 43.55 44.32 58.52 58.88
UFN101 54.61 55.45 68.70 69.12

5.3. Comparison of Soil Sampling Tools

In this section, we compare the performance of our proposed models with the latest
machine learning-based soil sampling tool [14]. The quantitative comparison is shown in
Table 3. It is evident that the UDL101 not only outperformed the established model but
also exhibited superior capabilities compared to the Transformer-based model from our
previous investigation. This observation leads us to conclude that our proposed model
demonstrates substantial promise for soil sampling segmentation.



Mach. Learn. Knowl. Extr. 2024, 6 767

Table 3. Quantitative comparison of soil sampling tools using the evaluation metrics. In the table,
Val. stands for the validation dataset .

Methodology
mIoU mDC

Val. Test Val. Test

UFN101 54.61 55.45 68.70 69.12

Existing method [14] 57.12 57.35 70.43 71.47

UDL101 59.85 60.82 73.30 73.74

6. Conclusions

In this paper, we proposed refiner–selector models as the backbones of soil sampling
tools capable of generating sampling locations. The prediction tool in this work can handle
a challenging dataset, where the input consists of a stack of multi-spectral images, and the
output is a highly unbalanced binary image. Here, each input image represents a landscape
attribute, and the output image is an optimal soil sampling map.

Additionally, the UDL and UFN models were proposed for soil sampling map pre-
diction. These models consist of a refiner network and an output head. The refiner is
designed to produce bridge layers, which are then fed into Resnet and the output head.
For consistency, we used ResNet50 and ResNet101 as the backbones of the UDL and
UFN models.

For experimental validation, we trained the UDL and UFN models and then compared
them with their counterparts. The experimental results indicate that the proposed models
outperformed the established segmentation models on the soil sampling dataset (Soil-20s).
In addition, the performance of the UDL models was better than that of the UFN models,
and the combined models with the ResNet101 backbone produced better results. During
the experiments, the best model was UDL101, which achieved an mIoU of 60.82% and an
mDC of 73.74% on the test dataset. The values of these metrics for the DeepLabv3-Res101
and FCN-Res101 models were 49.24% and 63.75%, and 44.32% and 58.88%, respectively.

The results of this study demonstrate that using fine feature maps is better for handling
challenging soil datasets compared to raw input images. In the soil sampling dataset, the
accuracy of the soil sampling tool increased by 6.1% and 3.18% in terms of the mIoU and
mDC metrics, respectively, when using UDL101. This tool enables technicians and farmers
to select samples more accurately, thus furthering our comprehension of soil health.

With improvements to the new soil sampling framework, the next step of this research
is to develop an efficient automatic tool or mobile app that can help farmers and producers
in implementing the tool on their farms. Building a larger dataset that can be used glob-
ally will also be considered in our future research. We plan to explore the integration of
time-series satellite imagery from diverse sources, such as EnMAP, Sentinel-1, Sentinel-2,
LandSat, and MODIS, to capture temporal variations in vegetation indices and soil proper-
ties over multiple seasons. Additionally, we will investigate advanced data augmentation
techniques beyond traditional techniques, including the use of generative models such as
GANs and diffusion models. The feasibility of integrating soil analysis data into our study
will also be explored through further collaboration with soil scientists and agronomists.

Author Contributions: T.-H.P.: Conceptualization, investigation, methodology, formal analysis,
validation, visualization, writing—original draft. K.-D.N.: Conceptualization, methodology, formal
analysis, writing—review and editing, funding acquisition. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by grants #2021-67022-38910 and #2022-67021-38911 from the
USDA National Institute of Food and Agriculture. APC was funded by these grants and the Open
Access Subvention Fund from Evans Library at Florida Institute of Technology.



Mach. Learn. Knowl. Extr. 2024, 6 768

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rowell, D.L. Soil Science: Methods & Applications; Routledge: Oxfordshire, UK, 2014.
2. Brus, D.; Kempen, B.; Heuvelink, G. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 2011, 62, 394–407. [CrossRef]
3. Dane, J.H.; Topp, C.G. Methods of Soil Analysis, Part 4: Physical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 20.
4. Hengl, T.; Leenaars, J.G.; Shepherd, K.D.; Walsh, M.G.; Heuvelink, G.B.; Mamo, T.; Tilahun, H.; Berkhout, E.; Cooper, M.; Fegraus,

E.; et al. Soil nutrient maps of Sub-Saharan Africa: Assessment of soil nutrient content at 250 m spatial resolution using machine
learning. Nutr. Cycl. Agroecosyst. 2017, 109, 77–102. [CrossRef]

5. Poggio, L.; De Sousa, L.M.; Batjes, N.H.; Heuvelink, G.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil
information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [CrossRef]

6. Hengl, T.; Miller, M.A.; Križan, J.; Shepherd, K.D.; Sila, A.; Kilibarda, M.; Antonijević, O.; Glušica, L.; Dobermann, A.; Haefele,
S.M.; et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning.
Sci. Rep. 2021, 11, 6130. [CrossRef]

7. John, K.; Abraham Isong, I.; Michael Kebonye, N.; Okon Ayito, E.; Chapman Agyeman, P.; Marcus Afu, S. Using machine learning
algorithms to estimate soil organic carbon variability with environmental variables and soil nutrient indicators in an alluvial soil.
Land 2020, 9, 487. [CrossRef]

8. Hassani, A.; Azapagic, A.; Shokri, N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc. Natl.
Acad. Sci. USA 2020, 117, 33017–33027. [CrossRef]

9. Batjes, N.H.; Ribeiro, E.; Van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS
snapshot 2019). Earth Syst. Sci. Data 2020, 12, 299–320. [CrossRef]

10. Folorunso, O.; Ojo, O.; Busari, M.; Adebayo, M.; Joshua, A.; Folorunso, D.; Ugwunna, C.O.; Olabanjo, O.; Olabanjo, O. Exploring
machine learning models for soil nutrient properties prediction: A systematic review. Big Data Cogn. Comput. 2023, 7, 113.
[CrossRef]

11. Pham, V.; Weindorf, D.C.; Dang, T. Soil profile analysis using interactive visualizations, machine learning, and deep learning.
Comput. Electron. Agric. 2021, 191, 106539. [CrossRef]

12. Pyo, J.; Hong, S.M.; Kwon, Y.S.; Kim, M.S.; Cho, K.H. Estimation of heavy metals using deep neural network with visible and
infrared spectroscopy of soil. Sci. Total Environ. 2020, 741, 140162. [CrossRef]

13. Jia, X.; O’Connor, D.; Shi, Z.; Hou, D. VIRS based detection in combination with machine learning for mapping soil pollution.
Environ. Pollut. 2021, 268, 115845. [CrossRef]

14. Pham, T.H.; Acharya, P.; Bachina, S.; Osterloh, K.; Nguyen, K.D. Deep-learning framework for optimal selection of soil sampling
sites. Comput. Electron. Agric. 2024, 217, 108650. [CrossRef]

15. Ozbayoglu, A.M.; Gudelek, M.U.; Sezer, O.B. Deep learning for financial applications: A survey. Appl. Soft Comput. 2020,
93, 106384. [CrossRef]

16. Pham, T.H.; Li, X.; Nguyen, K.D. SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical Image Segmentation.
arXiv 2023, arXiv:2310.09998.

17. Bhardwaj, P.; Gupta, P.; Panwar, H.; Siddiqui, M.K.; Morales-Menendez, R.; Bhaik, A. Application of deep learning on student
engagement in e-learning environments. Comput. Electr. Eng. 2021, 93, 107277. [CrossRef]

18. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief review. Comput.
Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]

19. Hassaballah, M.; Awad, A.I. Deep Learning in Computer Vision: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2020.
20. Jia, W.; Tian, Y.; Luo, R.; Zhang, Z.; Lian, J.; Zheng, Y. Detection and segmentation of overlapped fruits based on optimized mask

R-CNN application in apple harvesting robot. Comput. Electron. Agric. 2020, 172, 105380. [CrossRef]
21. Kuznetsova, A.; Maleva, T.; Soloviev, V. Using YOLOv3 algorithm with pre-and post-processing for apple detection in fruit-

harvesting robot. Agronomy 2020, 10, 1016. [CrossRef]
22. Acharya, P.; Burgers, T.; Nguyen, K.D. Ai-enabled droplet detection and tracking for agricultural spraying systems. Comput.

Electron. Agric. 2022, 202, 107325. [CrossRef]
23. Acharya, P.; Burgers, T.; Nguyen, K.D. A deep-learning framework for spray pattern segmentation and estimation in agricultural

spraying systems. Sci. Rep. 2023, 13, 7545.
24. Pham, T.H.; Nguyen, K.D. Enhanced Droplet Analysis Using Generative Adversarial Networks. arXiv 2024, arXiv:2402.15909.
25. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Netw. 1995,

3361, 1995.
26. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
27. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16×16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

http://doi.org/10.1111/j.1365-2389.2011.01364.x
http://dx.doi.org/10.1007/s10705-017-9870-x
http://dx.doi.org/10.5194/soil-7-217-2021
http://dx.doi.org/10.1038/s41598-021-85639-y
http://dx.doi.org/10.3390/land9120487
http://dx.doi.org/10.1073/pnas.2013771117
http://dx.doi.org/10.5194/essd-12-299-2020
http://dx.doi.org/10.3390/bdcc7020113
http://dx.doi.org/10.1016/j.compag.2021.106539
http://dx.doi.org/10.1016/j.scitotenv.2020.140162
http://dx.doi.org/10.1016/j.envpol.2020.115845
http://dx.doi.org/10.1016/j.compag.2024.108650
http://dx.doi.org/10.1016/j.asoc.2020.106384
http://dx.doi.org/10.1016/j.compeleceng.2021.107277
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1016/j.compag.2020.105380
http://dx.doi.org/10.3390/agronomy10071016
http://dx.doi.org/10.1016/j.compag.2022.107325
http://dx.doi.org/10.1109/5.726791


Mach. Learn. Knowl. Extr. 2024, 6 769

28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30.

29. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

30. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28. [CrossRef] [PubMed]

31. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

32. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I 14; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37.

33. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229.

34. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable detr: Deformable transformers for end-to-end object detection. arXiv
2020, arXiv:2010.04159.

35. Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.M.; Larochelle, H. Brain tumor
segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31. [CrossRef] [PubMed]

36. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

37. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

38. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

39. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017,
arXiv:1706.05587.

40. Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and efficient design for semantic segmentation
with transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090.

41. Jain, J.; Li, J.; Chiu, M.T.; Hassani, A.; Orlov, N.; Shi, H. Oneformer: One transformer to rule universal image segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023;
pp. 2989–2998.

42. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment
anything. arXiv 2023, arXiv:2304.02643.

43. ESA. Copernicus Sentinel Data. 2023. Available online: https://search.asf.alaska.edu/#/ (accessed on 1 April 2023).
44. Martz, L.W.; Garbrecht, J. Automated extraction of drainage network and watershed data from digital elevation models 1. Jawra

J. Am. Water Resour. Assoc. 1993, 29, 901–908. [CrossRef]
45. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Pmlr, Lille, France, 7–9 July 2015; pp. 448–456.
46. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International

Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.
47. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1016/j.media.2016.05.004
http://www.ncbi.nlm.nih.gov/pubmed/27310171
https://search.asf.alaska.edu/#/
http://dx.doi.org/10.1111/j.1752-1688.1993.tb03250.x

	Introduction
	Background and Motivation
	Literature Review of Methodologies
	Contributions

	Data Processing
	Data Acquisition
	Data Augmentation

	Methodology
	Refiner: Extracting Fine Features by Leveraging an Encoder–Decoder Architecture
	Encoder
	Decoder

	Selector
	Selector Backbone
	Fuser
	Output Head


	Experiment and Evaluations
	Model Training
	Evaluation Metrics

	Results and Discussion
	Soil Sampling Tool Based on UDL
	Soil Sampling Tool Based on UFN
	Comparison of Soil Sampling Tools

	Conclusions
	References

