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Abstract: Evolutionary algorithms exhibit flexibility and global search advantages in multi-UAV path
planning, effectively addressing complex constraints. However, when there are numerous obstacles
in the environment, especially narrow passageways, the algorithm often struggles to quickly find
a viable path. Additionally, collaborative constraints among multiple UAVs complicate the search
space, making algorithm convergence challenging. To address these issues, we propose a novel
hybrid particle swarm optimization algorithm called PPSwarm. This approach initially employs
the RRT* algorithm to generate an initial path, rapidly identifying a feasible solution in complex
environments. Subsequently, we adopt a priority planning method to assign priorities to UAVs,
simplifying collaboration among them. Furthermore, by introducing a path randomization strategy,
we enhance the diversity of the particle swarm, thereby avoiding local optimum solutions. The
experimental results show that, in comparison to algorithms such as DE, PSO, ABC, GWO, and SPSO,
the PPSwarm algorithm demonstrates significant advantages in terms of path quality, convergence
speed, and runtime when addressing path planning issues for 40 UAVs across four different scenarios.
In larger-scale experiments involving 500 UAVs, the proposed algorithm also exhibits excellent
processing capability and scalability.

Keywords: unmanned aerial vehicle (UAV); path planning; particle swarm optimization; prioritized
planning methods; RRT*

1. Introduction

With the continuous advancement of intelligent technology, unmanned aerial vehi-
cle (UAV) technology has become one of the hotspots of technological innovation today.
Especially in scenarios that require the collaborative work of numerous UAVs, ensuring
their efficient and safe completion of tasks is particularly crucial. Path planning is a key
technology in the application of UAV swarms. It involves the coordination and cooperation
of multi-UAVs during task execution, directly affecting the efficiency of task completion
and the safety of the UAVs. An excellent path planning scheme needs to comprehensively
consider various factors such as collisions between UAVs, environmental factors, and mis-
sion requirements, to ensure that UAVs can complete tasks with minimal time and space
consumption while guaranteeing their own safety.

After years of development, significant progress has been made in multi-UAV path
planning algorithms. Existing path planning algorithms are mainly divided into two
categories: traditional algorithms and heuristic algorithms. Excellent traditional algo-
rithms include the A* algorithm [1,2], the Rapidly-exploring Random Tree (RRT) algo-
rithm [3,4], artificial potential field [5], etc. As the complexity of problems increases,
traditional methods often cannot solve NP problems such as 3D path planning, so heuristic
algorithms have gradually become the mainstream approach for solving such problems.
Heuristic algorithms mainly include Differential Evolution (DE) [6,7], Ant Colony Opti-
mization (ACO) [8,9], Particle Swarm Optimization (PSO) [10–12], the Genetic Algorithm
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(GA) [13,14], the Artificial Bee Colony (ABC) algorithm [15], the Firefly Algorithm (FA) [16],
the Teaching–Learning-Based Optimization (TLBO) algorithm [17], and other heuristic
algorithms that are currently widely used in multi-UAV path planning. Based on differ-
ent principles and strategies, these algorithms can find effective flight paths in complex
environments.

Evolutionary algorithms exhibit strong flexibility and adaptability in dealing with
multi-UAV path planning problems. They can easily handle various complex constraints
(such as threat zones, flight altitude restrictions, turning requirements, etc.) and opti-
mization objectives (such as flight time, safety, energy consumption, etc.). Hui et al. [18]
proposed an asynchronous Ant Colony Optimization algorithm that solves the problem of
detecting large and complex buildings through an asynchronous forward strategy. Nafis
Ahmed [19] derived distributed full-coverage optimal path planning using the PSO algo-
rithm, while Wang et al. [20] designed a method based on the Lévy flight search strategy
and the improved velocity-dependent Bat algorithm. These methods demonstrate the
effectiveness of swarm intelligence in solving complex path planning problems. Using
evolutionary algorithms alone has issues such as slow convergence speed and parameter
sensitivity, leading to the emergence of various hybrid algorithms. For example, the combi-
nation of evolutionary algorithms and reinforcement learning, such as the multi-strategy
Cuckoo Search algorithm based on reinforcement learning proposed by Yu et al. [21], im-
proves the convergence speed of optimization methods. Additionally, Mickey et al. [22]
used Genetic Algorithm optimization methods to find the RA-MCPP path planning that
maximizes PoC, while Chen et al. [23] calculated the quasi-optimal trajectory of a rotorcraft
using an improved Wolf Pack Search algorithm. To improve the overall performance of the
algorithm, researchers have also proposed hybrid algorithms and hierarchical strategies.
For instance, Qu et al. [24] combined the Simplified Grey Wolf Optimizer (SGWO) and
the Modified Symbiotic Organisms Search (MSOS) to propose a new hybrid algorithm,
HSGWO-MSOS, aimed at solving complex domain problems. Yang et al. [25] proposed a
Hierarchical Recursive Multi-Agent Genetic Algorithm (HR-MAGA) to achieve real-time
path planning.

Among these algorithms, swarm intelligence algorithms such as Particle Swarm Op-
timization (PSO) have shown particularly impressive performance in multi-UAV path
planning. Known for its simplicity and efficiency, the PSO algorithm has achieved re-
markable results. In recent years, many researchers have attempted to leverage the PSO
algorithm to tackle path planning problems. Phung et al. [26] proposed an enhanced
Discrete Particle Swarm Optimization (DPSO) algorithm for solving the Traveling Sales-
man Problem (TSP). A distributed PSO-based exploration algorithm to aid in disaster
scenarios was introduced by [27]. Xiande et al. [28] presented a method that utilizes the
Rauch–Tung–Striebel (RTS) smoothing algorithm to optimize the parameters affecting the
performance of the PSO algorithm, aiming to reduce efficiency losses and the occurrence of
suboptimal solutions when using PSO for path planning. Das et al. [29] suggested a hybrid
approach combining Improved Particle Swarm Optimization (IPSO) with the Improved
Gravitational Search Algorithm (IGSA) to determine optimal trajectories for multi-robot
paths in cluttered environments. P.K. Das et al. [30] proposed a method that combines Im-
proved Particle Swarm Optimization (IPSO) with a Differential Perturbation Velocity (DV)
algorithm to determine optimal trajectories for multi-robot paths in cluttered environments.
This approach adjusts the robots’ velocities by incorporating differential evolution (DE)
vector differential operators inherited from IPSO. Yu et al. [31] introduced a new hybrid
Particle Swarm Optimization (PSO) algorithm called SDPSO, which avoids local optima
by incorporating a simulated annealing algorithm. Ji et al. [32] proposed a novel Dual Dy-
namic Biogeography-Based Learning Particle Swarm Optimization (DDBLPSO) algorithm
to optimize convergence efficiency. He et al. [33] adopted a Timestamp Segmentation (TSS)
model to simplify the handling of UAV coordination costs. They then combined Improved
Particle Swarm Optimization (IPSO) with Modified Symbiotic Organisms Search (MSOS)
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to propose a new hybrid algorithm called HIPSOMSOS. Therefore, this article chooses to
use a PSO hybrid algorithm for multi-UAV path planning.

However, using the PSO method for multi-UAV path planning still faces the following
challenges: (1) When there are a large number of obstacles in the environment, especially in
narrow passages, it is difficult for evolutionary algorithms to find feasible solutions. (2) It
is challenging to handle the collaborative constraints of multi-UAVs. Due to the numerous
collision avoidance constraints that need to be satisfied among the paths of multi-UAVs,
it is difficult for the particles to update their paths towards the current optimal direction,
which leads to difficulties in convergence during the optimization process. (3) It is hard to
ensure the diversity of the particle swarm, which leads to the problem of converging too
quickly and falling into a local optimal solution.

To address the first challenge, we use the RRT* algorithm to generate initial paths.
The RRT* algorithm possesses the advantages of asymptotic optimality and rapid solution
finding in solving path planning problems. As the number of sampling points increases,
it gradually discovers paths closer to the optimal one, showcasing good adaptability and
flexibility. To solve the second challenge, we utilize a problem decoupling approach to
convert multi-UAV path planning into single-UAV path planning, thereby diminishing
problem complexity. Specifically, we adopt the Prioritized Planning (PP) method [34],
assigning a priority to each agent and planning in descending order of priority. Each agent
must avert collisions with higher-priority agents and obstacles. This method effectively
resolves collisions among multi-UAVs, diminishes computational costs by reducing the
number of evaluations, and consequently lowers the computational complexity of the
algorithm. To tackle the third challenge, we introduce random path generation into the
initial paths and integrate path randomization during subsequent iterations to augment
particle diversity.

By combining the advantages of the Priority Planning method and the RRT* algorithm,
this paper proposes a novel hybrid Particle Swarm Optimization (PSO) algorithm named
PPSwarm to address the multi-UAV path planning problem. Additionally, to enhance
the flexibility of the algorithm and reduce the difficulty of problem-solving, a two-level
path planning strategy consisting of a high-level and a low-level strategy is introduced.
At the high level, the Rapidly-exploring Random Tree (RRT*) and the Priority Planning
(PP) algorithms are utilized to initialize the flight paths of UAVs and assign priorities to the
UAVs. At the low level, high-priority individual UAVs employ the PSO algorithm for path
planning, while the initial particle swarm selectively inherits the results of the RRT* initial-
ization. In the proposed algorithm, we fully integrate the local optimization capabilities of
the PSO algorithm with the global search capabilities of the RRT* algorithm, improving the
efficiency of finding feasible solutions. Moreover, the Priority Planning algorithm is used
to assign priorities to the UAVs, resolving potential collisions between them. Experimental
results in four scenarios with 40 UAVs demonstrate that the proposed PPSwarm algorithm
exhibits better performance in terms of path quality and convergence speed. Furthermore,
experimental outcomes on a problem instance with 500 UAVs demonstrate the algorithm’s
ability to solve large-scale problems.

The remainder of this paper is organized as follows: Section 2 designs the cost function
for the multi-UAV path planning problem. Section 3 explains the basic principles of the
PSO, RRT*, and priority planning algorithms. Section 4 details the proposed PPSwarm
algorithm. Section 5 presents the comparative experiments with the algorithms, as well
as the analysis of algorithmic schemes and parameters. Finally, Sections 6 and 7 are the
discussion and conclusions, respectively.

2. Problem Description

In this paper, our core objective is to determine a set of optimal or sub-optimal flight
paths from the starting point to the destination while ensuring safety requirements. These
paths are designed for multiple UAVs. Safety refers to the ability of UAVs to successfully
avoid obstacles in complex environments and prevent collisions among themselves.
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Let the flight environment be denoted by E and the number of UAVs be denoted by M,
with each UAV traveling at a speed vuav. We define the set of all UAV tasks as T. For each
UAV m ∈ {1, . . . , M}, its specific task Tm includes the starting point xs

m and the destination
point xg

m. Assuming that the path from the starting point to the destination point consists
of Nw waypoints, the path of UAV m is denoted by:

Pm = {Pm
1 , Pm

2 , . . . , Pm
Nw
}, (1)

where Pm
i represents the i-th waypoint of the m-th UAV, with the definitions Pm

1 = xs
m and

Pm
Nw

= xg
m.

Our core objective is to determine a set of paths P = {P1, P2, . . . , PM} such that the
total cost of the paths in the set is minimized. It is important to note that we also penalize
various constraints in the form of costs; when a constraint is not satisfied, we penalize it
with a cost of infinity.

2.1. Path Cost

We divide the flight path of the UAV into multiple nodes and sum the lengths of the
flight path by calculating the distances between the nodes. The formula for calculating the
path cost of the UAV is as follows:

Fm
1 =

n−1

∑
i=1
||
−−−−→
Pm

i Pm
i+1|| (2)

||
−−−−→
Pm

i Pm
i+1|| =

√
(xm

i+1 − xm
i )

2 + (ym
i+1 − ym

i )
2 + (zm

i+1 − zm
i )

2, (3)

where
−−−−→
Pm

i Pm
i+1represents the vectors between two nodes, (xm

k+1, ym
k+1, zm

k+1) denotes the
coordinates of the m-th UAV node, and n is the number of nodes in the path.

2.2. Threat Cost

During flight, a UAV must account for the hazards presented by obstacles to ensure
flight safety. In the analysis of flight constraints, obstacles are commonly modeled as
cylinders, and the hazard risk escalates with decreasing distance to the cylinder’s center.
The threat cost for a UAV can be calculated using the following formula:

Fm
2 =

Nw−1

∑
i=1

J

∑
j=1

Trj(
−−−−→
Pm

i Pm
i+1), (4)

where Trj represents the threat cost of the j-th obstacle to the path segment
−−−−→
Pm

i Pm
i+1. The cal-

culation method is based on the relative distance dj between the UAV and the obstacle
as follows:

Trj(
−−−−→
Pm

i Pm
i+1) =


0 if dj > S1 + Rj

(S1 + Rj)− dj if Rj < dj ≤ S1 + Rj

∞ if dj ≤ Rj,

(5)

where S1 denotes the safety distance (the collision avoidance zone for the UAV), Rj is the
cylindrical radius of the j-th obstacle, and J represents the total number of obstacles.
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2.3. Altitude Constraint Cost

The altitude of a UAV during flight is typically bounded by a lower and upper limit.
The formula for calculating the altitude cost is as follows:

Fm
3 =

n

∑
i=1

Hm
i (6)

Hm
i =

{
|hi − hmax+hmin

2 |, if hmin ≤ hi ≤ hmax

∞, otherwise,
(7)

where Hirepresents the height constraint cost, hi is the altitude at node i of the path, and
hmax and hmin are the maximum and minimum altitude constraints, respectively.

2.4. Path Smoothing and Turn Cost

To calculate the trajectory smoothing cost for a UAV, we need to determine the turning
angles. The formula for the turning angles is as follows:

ϕm
ij = arctan

(
||
−−−−→
Pm

i Pm
i+1 ×

−−−−−→
Pm

i+1Pm
i+2||

|
−−−−→
Pm

i Pm
i+1 ·
−−−−−→
Pm

i+1Pm
i+2|

)
. (8)

The formula for the climb angle of the UAV is:

φm
ij = arctan

(
zi+1 − zi

||
−−−−→
Pm

i Pm
i+1||

)
. (9)

Finally, the formula for the smoothing cost is:

Fm
4 = a1

n−2

∑
j=1

ϕm
ij + a2

n−1

∑
j=1
|φm

ij − φm
i,j−1|, (10)

where a1 and a2 are penalty coefficients for the turning angle and climb angle, respectively.

2.5. Collision Constraint Cost between UAVs

Let d(m1, m2) represent the distance between UAVs m1 and m2, and let S2 denote the
safe distance between UAVs. Then, the collision constraint is as follows:

F5 =
M

∑
m1=1

Fm1
5 (11)

Fm1
5 =

{
0, if dmin(m1, m2) > S2, ∀m2 ∈ {1, . . . , M}
∞, otherwise.

(12)

2.6. Total Cost

Converting the cost constraints of UAVs into a cost function allows us to quantify the
quality of their paths based on the value of this function. The cost function is as follows:

F =
5

∑
c=1

bcFc, (13)

where bc represents the weight coefficient of the cost for the c-th constraint, and F denotes
the total path cost for multi-UAVs.
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3. Preliminary Knowledge of the PPSwarm Algorithm

A heuristic Prioritized Planning method, based on the PPSwarm algorithm, employs
RRT* to generate the initial population of the Particle Swarm Optimization (PSO) algorithm,
thereby enhancing the search efficiency of finding feasible solutions. This method leverages
the Prioritized Planning algorithm to assign priorities to individual UAVs based on the
mission context and environmental factors. The PSO algorithm is utilized to complete the
path planning for individual UAVs with specified priorities. At the same time, low-priority
UAVs are programmed to avoid collisions with high-priority UAVs, effectively solving
potential collision issues among UAVs.

3.1. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization (PSO) algorithm is an intelligent optimization tech-
nique that simulates the behavior of a natural biological swarm, representing an efficient
search strategy. In PSO, each “particle” signifies a potential solution in the search space, up-
dating its velocity and position based on the historical best positions of both the individual
and the swarm. Specifically, every particle keeps track of its own historical best position
(individual optimal solution, denoted as pbest) and the historical best position of the entire
swarm (global optimal solution, denoted as gbest). The velocity and position updates of
the particles are based on these two optimal solutions, ensuring that the search process
moves in a better direction. The updated formulas are as follows:

vk+1
i = wvk

i + c1r1(pbestk
i − xk

i ) + c2r2(gbestk − xk
i )

xk+1
i = xk

i + vk+1
i ,

(14)

where xi ∈ [xmin, xmax] and vi ∈ [vmin, vmax] represent the position and velocity of the i-th
particle, respectively. The parameters c1 and c2 are acceleration coefficients, which influence
the degree to which individual and social experiences affect the movement of particles.
The variables r1 and r2 are uniformly distributed random numbers in the range of [0, 1].
The parameter w is the inertia weight, which is used to balance the local and global search
capabilities of the particles. The variable pbestk

i denotes the individual optimal position
of the i-th particle at iteration k, while gbestk represents the global optimal position of the
entire particle swarm at iteration k.

3.2. Rapidly-Exploring Random Tree Star (RRT*)

The Rapidly-exploring Random Tree (RRT) algorithm achieves fast exploration of
non-convex high-dimensional spaces by randomly constructing a space-filling tree. This
algorithm demonstrates its efficient search capability in complex spaces, as shown in
Algorithm 1. After initializing the start and goal points, the algorithm begins by randomly
selecting a sample point Vrandom from the given set E. Next, the algorithm searches within
the constructed tree for the node closest to Vrandom, referred to as Vnearest. The algorithm
then proceeds in the direction from Vrandom to Vnearest by a predefined step size, yielding a
new node Vnew. After generating Vnew, the algorithm performs a collision check to ensure
that the new node is not located within an obstacle area. If the collision check is passed,
Vnearest is set as the parent node of Vnew.

Subsequently, the algorithm rediscovers all nodes that could potentially be the parent
of Vnew within the range centered at Vrandom, with the predefined step size δrrt as the radius.
If a node exists that is a better parent than the current one, meaning that the path to this
node is shorter than the path to the current parent node, then the parent of Vnew will
be changed.

Then, RRT* undergoes a process called rewiring. During this process, the algorithm
checks all nodes within the radius range. If an indirect path through Vnew is shorter than
the path to the current parent node, then the parent of that node is set to Vnew.
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Algorithm 1 RRT* for Single UAV m

Input: Environment E, Task Tm with start Ts
m and goal Tg

m
Output: Path Pm

1: tree← {Ts
m}; P← ∅

2: for i← 1 to Iterations do
3: xrandom ← Randsample(E)
4: xnearest ← Nearest(tree, xrandom, E)
5: xnew ← Steer(xnearest, xrandom, stepsize)
6: if IsCollisionFree(xnearest, xnew, E) then
7: xnear ← Near(tree, xnew, E)
8: xmin ← ChooseParent(xnear, xnearest, xnew)
9: tree← InsertNodeAndRewire(tree, xmin, xnew, xnear)

10: if InGoalRegion(xnew, Tg
m) then

11: Pm ← ExtractPathToGoal(tree, Tg
m)

12: break ▷ Success
13: end if
14: end if
15: end for

3.3. Prioritized Planning (PP) Method

The Prioritized Planning (PP) method performs path planning according to the priority
among UAVs. When generating the UAV paths, the paths of higher priority are set as
obstacles to avoid collisions among UAVs.

The framework of the classical PP is shown in Algorithm 2. UAVs are assigned different
priorities, and path planning is conducted in descending order of priority, starting with
the UAV with the highest priority. When planning the task Tm for the m-th UAV, the path
Pm is calculated using the function SingleUAVPlan(E, P, Tm). This function involves not
only avoiding threats in the environment E but also the consideration of potential collisions
with the preceding m−1 UAVs that have higher priority.

Algorithm 2 Classical Prioritized Planning Method

Input: Environment E, Task T with M UAVs
Output: Solution P

1: P← ∅
2: for m← 1 to M do
3: Pm ← SingleUAVPlan(E, P, Tm)
4: if Pm = ∅ then
5: return
6: end if
7: P← P ∪ Pm
8: end for

4. Proposed Method
4.1. Algorithm Framework

Aiming at the complexity of the multi-UAV path problem, the PPSwarm algorithm
employs a two-level path planning strategy to effectively decouple the problem and reduce
its difficulty. The overall structure of this strategy consists of two main parts: high-level
strategy and low-level strategy. The main process is illustrated in Figure 1.

4.1.1. High-Level Strategy

The high-level strategy first initializes UAV paths using the RRT* algorithm, providing
an initial reference for subsequent planning. Then, priority assignment is performed, and a
restart strategy is introduced to adapt to complex environments and avoid local optima.
After each path planning iteration, priorities are reassigned, and planning is repeated to
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find a better solution. The UAV with the highest priority enters the low level for more
precise path planning.

Algorithm 3 describes the steps of the high-level strategy in detail. Firstly, the RRT*
algorithm is used to initialize a path for each UAV (lines 3–5). Next, priorities are assigned
based on path cost, with higher costs receiving higher priorities (line 6). In subsequent
iterations, priorities are randomly assigned to increase search diversity (line 16). Dur-
ing each restart, the obstacle list is cleared (line 9), and then paths are optimized using
PSO according to priority, with the obstacle list updated to avoid conflicts (lines 11–14).
The restart strategy randomly reassigns priorities and repeats path planning until the preset
number of restarts is reached (lines 8–17). Finally, the algorithm outputs a path planning
solution that can adapt to the complex environment optimization and ensure the efficient
and safe operation of the UAV.

Restart：Shuffle priority and replan.

Multi-UAVs Environment

Destination 

allocation for UAVs

Target assignment1

Population initialization 

based on RRT*
2Priority assignment 3

Plan each UAV 

according to the order 

of priority.

Update the obstacle 

list

High-level

Low-level

Multi-UAVs

Distance, time and other 

factors

Priority

 

4
Path Planning: Using 

PSO Algorithm

5 6
Collision Detection: Check for    

collisions with higher-priority UAVs

7

TTask: 

Figure 1. PPSwarm algorithm flow.

Algorithm 3 High-Level Search

Input: Number of UAVs M, number of restarts Nrestart, environment E, task T, dynamic
obstacle list obst

Output: Solution P
1: for m← 1 to M do
2: Pm ← RRT∗(E, Tm) ▷ Algorithm 1
3: end for
4: Priority← SortbyCost(P)
5: for irestart ← 1 to Nrestart do
6: obst← ∅
7: for index ← 1 to M do
8: m← Priority[index]
9: Pm ← PSO(Pm, Tm, E, obst) ▷ Algorithm 4

10: D ← DiscretizePath(Pm, vuav) ▷ Algorithm 5
11: obst← obst ∪ D
12: end for
13: Shuffle Priority
14: end for
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4.1.2. Low-Level Strategy

At the low level, a series of operations are performed during each iteration cycle,
including path planning, collision detection, and updating the obstacle list. Path planning
is achieved by inheriting the paths initialized by the RRT* algorithm and the previous
generation of “restart” particle swarms, and then optimizing them using the PSO algorithm.
The proposed method effectively integrates the advantages of both the RRT* and PSO algo-
rithms. It leverages the excellent global search capability of the RRT* algorithm to identify
potential locations of the overall optimal solution, while leveraging the powerful local
optimization capabilities of the PSO algorithm to fine-tune the solutions. This fusion results
in efficient and high-quality path planning solutions. During the path planning process,
the low level performs collision detection against the global obstacle list to ensure that the
generated paths are safe and reliable. Once the path planning is complete, the optimized
path is updated in the global obstacle list. This allows for the efficient utilization of this
information in subsequent planning processes, thereby improving the efficiency of both
path planning and collision detection.

4.1.3. Encoding Selection

The choice of encoding is crucial for evolutionary algorithms. In the PSO algorithm,
the encoding of particles is represented by multiple points on a path. In existing evo-
lutionary algorithms, these path points can usually be represented as three-dimensional
coordinates in Cartesian coordinates [10], polar coordinates [35], and SpherePSO [36]. These
codes can better improve the convergence speed of PSO. In this article, we used RRT* to
find the initial path and then randomized it. Using Cartesian coordinates to represent path
points enables better randomization operations. Therefore, we chose Cartesian coordinates.

4.2. Single-UAV Path Planning Based on Particle Swarm Optimization

In our approach, Particle Swarm Optimization (PSO) is used to solve the path for a
single UAV, where each particle represents a potential solution for the UAV. To fully utilize
the results obtained from the RRT* algorithm and before the restart, we have decided to
implement a strategy to accelerate the convergence speed of the particles.

4.2.1. Population Initialization Based on RRT*

When considering the initialization of UAV paths, the RRT* algorithm is capable of
generating preliminary flight paths for individual UAVs. This algorithm explores and
finds a feasible path by constructing a tree structure that starts from the starting point and
gradually expands toward the target area. RRT* not only focuses on the rapid generation
of paths but also optimizes the quality of the paths by rewiring existing path segments to
ensure that the generated paths are relatively optimal.

Using the RRT* algorithm for UAV path initialization can provide a preliminary
and effective path reference for subsequent priority allocation. Furthermore, assigning the
initialized path obtained from the RRT* algorithm to the particle swarm for subsequent path
planning leverages the advantages of RRT* in path exploration. This approach enhances
the search efficiency and quality of the PSO algorithm while reducing the risk of getting
trapped in local optima. This method exhibits significant flexibility and applicability when
dealing with complex environments and multiple constraints.

For UAV m, after obtaining a feasible solution Pm using the RRT* algorithm, we assign
this path to the first particle, and the other particles are randomized around this path.
Specifically, the initialization formula for the particle swarm is as follows:

xi =

{
Pm, if i = 1

(1− α) ∗ Pm + α ∗ randpath(Tm), if i > 1
. (15)

Figure 2 provides an illustration of the population initialization based on RRT*. In the
image, the blue represents the search tree randomly generated by RRT*, the thick red line
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indicates the obtained shortest path, and the thin red lines are the initial population paths
sampled randomly around the shortest path 100 times.

4.2.2. Diversification of the Population after Restart

To better adapt to complex environments and avoid UAV paths falling into local op-
tima, we employ a restart strategy (Algorithm 3) in UAV priority assignment, with different
priorities assigned in each restart. After each restart iteration, to fully utilize the results of
the previous solution, we retain the states of some particles from the previous iteration to
facilitate rapid convergence. On the other hand, to maintain particle diversity, the algorithm
also introduces some random particles on this basis. These random particles can increase
the exploration space and help the algorithm escape from local optimal solutions. We
use a parameter ρ to control the proportion of random paths in the population, which is
formalized as follows:

xi =

{
randpath(Tm), if i ≤ ρ · Npop
xi

last, if i > ρ · Npop
, (16)

where randpath represents a random path, xi denotes the initialization path of particle i
after a restart, and xlast

i refers to the flight path of particle i before the restart.

Figure 2. Schematic diagram of population initialization based on RRT*.

4.2.3. PSO Pseudocode

Algorithm 4 describes in detail the process of particle swarm optimization for UAV
m in a dynamic environment. The algorithm first initializes the position and velocity
of each particle based on previous solutions and task requirements. It then calculates
the fitness of each position, considering both environmental conditions and the presence
of dynamic obstacles. Through a series of iterations, the optimal positions (personal
best and global best) are continuously updated. The state of each particle (position and
velocity) is updated based on environmental interactions, and fitness evaluation guides the
optimization process. Finally, the algorithm selects the global best position as the solution
path for the UAV, effectively adapting to the dynamic conditions in the environment
and ensuring optimized task execution under changing conditions. This PSO variant is
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specifically designed to handle dynamic obstacles and adjust agent paths accordingly to
achieve optimal task execution.

Algorithm 4 PSO for UAV m

Input: Iterations Niter, environment E, dynamic obstacle list obst, last solution Pm, task Tm,
restart count irestart

Output: Solution Pm

1: Initialize the position of each particle i based on Pm and Tm:

x0
i ←

{
Using Equation (15), if irestart = 1
Using Equation (16), otherwise

2: Initialize the velocity v0
i for each particle i

3: Compute fitness F(x0
i ) for each particle i considering E and obst

4: Set initial personal best pbesti ← x0
i for each particle i

5: gbest← arg minx0
i

F(x0
i )

6: for k = 1 to Niter do
7: for each particle i do
8: (xk

i , vk
i )← UpdateState(xk−1

i , vk−1
i , E) ▷ Equation (14)

9: Evaluate fitness F(xk
i ) considering E and obst

10: if F(xk
i ) < F(pbesti) then

11: pbesti ← xk
i

12: if F(xk
i ) < F(gbest) then

13: gbest← xk
i

14: end if
15: end if
16: end for
17: end for
18: Pm ← gbest ▷ Assign global best to the current path
19: return Pm

4.3. Lookup-Based Fast Collision Detection

When performing path planning in the Particle Swarm Optimization algorithm, if a
path planned by a particle collides with a UAV of higher priority, we will adopt a specific
penalty mechanism. Specifically, once such a collision is detected, we set the fitness value
of that particle to infinity. By assigning an extremely high fitness value, we can ensure
that the particle is eliminated in the next iteration, thereby preventing its path from being
selected as the flight path for the UAV. Collision detection calculations between UAVs can
be a time-consuming process. To address this issue, we use a lookup list to record the paths
of UAVs with priority, thereby accelerating the processing of collision detection.

Dynamic Obstacle List and Path Discretization

Before conducting collision detection, we introduce a dynamic obstacle list (Algorithm 3),
which is sorted by priority and stores the timeline of each UAV’s optimal path. Specifically,
when we need to determine whether a particle’s path collides with other UAVs, we compare
the particle’s path schedule with the dynamic obstacle list. To facilitate this comparison,
we discretize the paths at uniform time intervals, enabling efficient collision detection
through table lookup in subsequent steps. During the PSO iteration process, we compare
each discretized path point of the particle with the paths in the dynamic obstacle list.
If the distance between two path points is less than the preset safe distance, we consider it
a collision.

Algorithm 5 provides a method for path discretization. It accepts a path Pm and the
UAV’s flight speed vuav as inputs and outputs a discretized path D. The algorithm iterates
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through each pair of adjacent points on the path, calculates the distance between them,
and determines the number of intermediate points to be inserted based on the UAV’s speed.
It then uses linear interpolation to compute the positions of these intermediate points and
ultimately adds them to the discretized path D.

Algorithm 5 Discretize Path

Input: Path Pm = {Pm
1 , . . . , Pm

Nw
}, Speed vuav

Output: Discretized path D
1: Initialize: D ← ∅, i← 1
2: while i < Nw do
3: d← ||Pm

i+1 − Pm
i || ▷ Distance between points

4: n← ⌈d/vuav⌉ ▷ Number of steps
5: for j← 1 to n do
6: t← j/n ▷ Interpolation factor
7: Pinterp ← (1− t)Pm

i + tPm
i+1 ▷ Interpolate

8: D ← D ∪ {Pinterp} ▷ Add to discretized path
9: end for

10: i← i + 1
11: end while
12: return D

4.4. Path Smoothing Based on Dubins

As the flight paths generated by the algorithm may not meet the actual flight require-
ments of multi-UAVs, this paper adopts Dubins curves for smoothing processing to obtain
the actual flight paths. Dubins curves were proposed by Dubins in 1957 [37], proving the
existence of the shortest path within the set of these curves.

Dubins curves satisfy kinematic constraints through combinations of arcs with maxi-
mum curvature (C) and straight line segments (S) [38]. Under the maximum curvature
constraint, the shortest feasible path between two directed points in a plane is either a CSC
path or a CCC path, or a subset of them. Here, C represents a circular arc segment, and L
represents a straight line segment tangent to C. We only consider the CSC-type path as
shown in Figure 3. The entire Dubins set comprises six types of paths, namely LRL, LSR,
LSL, RLR, RSL, and RSR. Here, S represents an arc path segment in the counterclockwise
direction, while R denotes an arc path segment in the clockwise direction. During trajectory
following, it is essential to avoid paths with high curvature to prevent excessive lateral
deviations while following the path. Therefore, when calculating the path, it is only nec-
essary to solve for the four types of curves—LSL, LSR, RSL, and RSR—and then select
the path that satisfies the constraints as the optimal solution, where r∂ is defined as the
turning radius.

Figure 3. Dubins path of the CSC type.

After Dubins smoothing, the resulting path meets the performance constraints of the
UAV and can be used for UAV flight.

5. Experiment

This section introduces the experimental results of the PPSwarm algorithm. Firstly,
the relevant content of the experimental setup is introduced. Then, a comparative exper-
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iment of existing algorithms is conducted to evaluate the quality and scalability of the
proposed algorithm. Finally, the priority allocation scheme and algorithm parameters in
the algorithm are analyzed, and a visual display of the algorithm is presented.

5.1. Experiment Setup

Based on the above algorithm design, simulation experiments are carried out on Lenovo
laptop with Intel 2.5 GHz processor and 8 GB of RAM, implemented in the MATLAB R2019a
environment. The experiments utilized a map of dimensions 1045 m × 875 m × 200 m,
and the experimental scenarios were generated based on a three-dimensional terrain
model derived from a digital elevation model (DEM). DEM uses a finite set of ground
elevation data to digitally simulate terrain. To facilitate the establishment of the model,
obstacles are considered as cylindrical bodies with their center at Ck and radius Rk. It is
also assumed that the position information of the obstacles is known when setting up the
scenario. When the center coordinates, radius, and height of the obstacles are known, they
can be represented on the generated 3D map. A total of four scenarios were set up for this
experiment, as shown in Figure 4. The speed of the UAV, vuav, is set at 20 m/s. The turning
radius of Dubins is 20 m. The safe distance S1 between the UAV and the threat edge is 15 m.
The safe distance S2 between UAVs is 10 m.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4. Top view in four scenarios.

In the absence of a specific designation, the parameters related to the algorithms in
this paper are as shown in Table 1. Among these, the settings for the maximum number of
iterations Niter, number of restarts Nrestart, population size Npop, and the random ratio of the
population ρ are determined based on the experimental analysis in Section 5.3.3. To balance
the computational time of the algorithm and the quality of the solution, the number of
restarts Nrestart is set to 5. Other parameters are set according to reference [36].
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Table 1. PPSwarm algorithm parameters.

Parameter Setting

Maximum number of iterations Niter = 20
Number of restarts Nrestart = 5
Population size Npop = 300
Random ratio of the population ρ = 20%
Cognitive scaling parameter c1 = 1.5
Social scaling parameter c2 = 1.5
Inertia weight w = 1

5.2. Comparative Experiment with Existing Algorithms
5.2.1. Runtime and Quality

The comparative experiment of the algorithm pits it against five other algorithms:
PSO [10–12], DE [6,7], ABC [15], GWO [39], and SPSO [36], across four scenarios. All five
comparison algorithms adopt the LH allocation scheme of prioritized planning to address
UAV collision issues. To better test the performance of the algorithms, the number of UAVs
was increased to 40, and each algorithm was run 20 times. The relevant parameters of other
algorithms are set according to the above references, as shown in Table 2.

Table 2. Comparison algorithm parameter settings.

Algorithm Parameters

DE Niter = 100, Npop = 300, F = 0.8, CR = 0.9, re f resh = 10
PSO Niter = 100, Npop = 300, w = 0.8, c1 = 1.45, c2 = 1.5
ABC Niter = 100, Npop = 300, FoodNumber = 150
GWO Niter = 100, Npop = 300
SPSO Niter = 100, Npop = 300, w = 1, η1 = 1.5, η2 = 1.5

Figure 5 shows the convergence curve of PPSwarm and the comparison algorithms
when the restart strategy is not adopted. It can be observed that, without employing the
restart strategy, the proposed algorithm outperforms the other five algorithms in terms
of convergence accuracy across all four scenarios. In Figure 5a, the PPSwarm algorithm
exhibits the phenomenon of converging too quickly when the restart strategy is not used.
Figure 6 presents the box plots of the best cost for 20 independent iterations of the six
algorithms, with the statistical results shown in Table 3. Compared with Figures 5a and 6a,
the best value of PPSwarm becomes smaller after adopting the restart strategy, indicating
that this strategy makes the algorithm jump out of the local optimal and solves the local
optimal caused by converging too fast. From the figures, it is apparent that, in large-scale
multi-UAV and complex environments, the SPSO, PSO, and GWO algorithms are prone
to falling into local optima due to premature convergence. Although the DE algorithm
has a strong global search capability, the setting of its parameters significantly impacts its
performance, resulting in a lower convergence accuracy compared to PPSwarm. The ABC
algorithm is overly dependent on the initial solution, leading to slow convergence. The PSO
and SPSO algorithms exhibit the poorest convergence accuracy compared to other algo-
rithms. Among the six algorithms, the PPSwarm algorithm outperforms the others in terms
of optimal value, minimum standard deviation, and average value, as well as runtime.
The lower standard deviation confirms the stability of the PPSwarm algorithm, while the
reduced runtime and lower path cost demonstrate its efficiency.

The results demonstrate that the proposed algorithm is able to meet the requirements
of the path planning cost function, quickly generating a reasonable flight route while
satisfying the obstacle avoidance prerequisites. The algorithm surpasses other algorithms
in terms of convergence speed, convergence accuracy, and running time. It is evident that
this algorithm outperforms the other five algorithms.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 5. The convergence curves of the six algorithms.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 6. Box plots of the six algorithms after 20 iterations.
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Table 3. Comparative results of the six algorithms in terms of cost and runtime. The best results
achieved among all algorithms are shown in bold.

Scenario PSO DE ABC GWO SPSO PPSwarm

Scenario 1

Best Cost 195,927 332,830 251,589 254,721 258,545 159,023
Worst Cost 488,132 458,830 506,118 288,642 274,688 164,938
Mean Cost 275,781 373,006 311,405 270,288 264,363 161,649

Std Cost 889,871 35,699 58,226 9868 3212 1681

Runtime (s) 337.6 330.3 261.8 325.6 1405.4 149.9

Scenario 2

Best Cost 229,738 176,380 181,202 200,904 220,546 147,572
Worst Cost 295,353 194,223 408,479 306,069 2,361,814 159,212
Mean Cost 272,361 182,666 228,962 212,742 229,682 153,744

Std Cost 16,250 4576 67,392 22,216 5329 3171

Runtime (s) 348.2 412.4 280.8 325.6 2425.2 111.7

Scenario 3

Best Cost 189,039 192,234 204,343 203,650 229,676 152,923
Worst Cost 409,891 211,615 220,851 230,760 246,710 168,341
Mean Cost 244,827 200,284 211,773 215,424 229,676 157,357

Std Cost 59,342 5104 3719 7815 235,959 4023

Runtime (s) 208.5 327.7 218.4 385.9 1811.6 111.8

Scenario 4

Best Cost 206,189 185,995 209,277 185,229 229,093 160,720
Worst Cost 314,960 209,045 222,588 209,501 236,863 171,798
Mean Cost 228,587 195,390 214,462 200,212 232,768 165,053

Std Cost 34,610 5742 3392 6577 1736 3123

Runtime (s) 217.5 194.9 238.7 189.7 1875.4 110.5

5.2.2. Scalability

Scalability analysis is performed for Scenario 1. When the number of unmanned aerial
vehicles (UAVs) reaches 100, other comparative algorithms are no longer able to obtain
UAV flight paths that satisfy the constraints. To test the performance of the proposed
algorithm, we compared the cases with Nrestart = 1 and Nrestart = 5. The comparison
results are shown in Figure 7a, where the fitness value of Nrestart = 5 is significantly lower
than that of Nrestart = 1. The fitness values of both exhibit approximately a linear increase,
and the gap between the fitness values becomes larger as the number of UAVs increases.
Figure 7b represents the runtime of the algorithm. The experimental results indicate that
the algorithm not only meets the flight requirements of a large number of UAVs but also
demonstrates excellent scalability. The results of the scalability analysis are shown in
Table 4.

(a) Fitness of Nstart = 1 and Nstart = 5 (b) Runtimes of Nstart = 1 and Nstart = 5

Figure 7. Scalability analysis.
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Table 4. Results of scalability analysis.

Nstart

Number 40 100 200 300 400 500

Nstart = 1
Best Cost 189,604 727,884 1,341,113 2,069,532 2,807,932 3,715,660

Time (s) 81.2 419.6 1468.6 2458.2 3981.7 5847.5

Nstart = 5
Best Cost 161,649 597,725 1,228,034 1,840,845 2,479,620 3,275,223

Time (s) 149.9 778.3 3070.4 5744.7 13,898.4 21,636

5.3. Algorithm Analysis
5.3.1. Analysis of Priority Allocation Schemes

To verify that the allocation scheme of the Priority Planning method can effectively
adapt to large-scale complex terrain and obstacle environments, we conducted an analysis
of the priority allocation scheme. We analyzed the allocation schemes of three baseline PP
algorithms with 40 UAVs in four different scenarios: (1) LH (Longer Heuristic): This is a
heuristic algorithm that assigns higher priority to agents with longer distances between
their start and target positions on the graph. The intuition behind this algorithm is that
agents with longer distances have a greater need for prioritized planning to ensure they
reach their targets efficiently (van den Berg and Overmars 2005 [40]); (2) SH (Shorter
Heuristic): This is another heuristic algorithm that gives higher priority to agents with
shorter distances between their start and target positions. The rationale for this approach is
that agents with shorter distances may require less time and fewer resources to complete
their tasks, making them more suitable for prioritization (Ma et al., 2019 [41]); (3) RND
(Random Heuristic): This heuristic algorithm randomly generates the overall priority
ranking. It does not consider any specific criteria or heuristics but rather assigns priorities
randomly. This serves as a baseline for comparing the performance of the other two
heuristic algorithms (Bennewitz, Burgard, and Thrun 2002 [42]).

The experimental data for four scenarios are shown in Table 5. In terms of algorithm
cost, the LH outperforms the other two allocation schemes, generating flight paths with
lower costs. Regarding time consumption, LH is generally superior to the other two
allocation methods and demonstrates better stability in terms of time compared to SH and
RND. The RND allocation scheme exhibits the worst stability. In summary, using the LH
allocation scheme for Prioritized Planning methods results in better and faster flight paths.

Table 5. Comparison of results from different priority allocation schemes. The best results achieved
among all algorithms are shown in bold.

Scenario Num
Cost (×104) Average Time (s)

LH SH RND LH SH RND

Scenario 1
10 41.97 46.01 43.60 7.171 6.806 6.888
20 88.01 87.64 88.80 17.90 19.31 17.79
30 1.286 1.291 1.305 34.20 44.33 45.79
40 7.556 8.317 7.565 45.82 44.33 45.79

Scenario 2
10 42.15 42.81 45.87 11.72 18.25 17.70
20 85.33 85.98 87.91 20.26 44.72 47.76
30 1.285 1.295 1.295 36.17 35.53 35.23
40 1.969 3.023 3.005 56.45 61.59 56.70

Scenario 3
10 48.15 48.43 47.21 7.099 7.221 7.168
20 89.88 90.70 91.73 18.96 23.90 19.92
30 1.380 1.412 1.364 38.60 41.80 34.74
40 2.919 3.022 3.654 56.21 57.93 66.96

Scenario 4
10 45.37 46.01 45.47 6.992 7.452 7.858
20 87.25 87.31 87.89 21.93 20.31 27.40
30 1.374 1.394 1.377 70.19 68.232 79.83
40 3.421 4.133 3.669 135.8 141.5 75.20
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5.3.2. Low-Level Evolutionary Algorithm Analysis

Low-level updates to UAV paths utilize an evolutionary algorithm based on the stan-
dard PSO. On the foundation of the aforementioned algorithm, comparative experiments
are conducted using PSO variants (CLPSO [43], SPSO [36], and ExPSO [44]) to explore the
impact of these variants on the algorithm’s performance. Ten UAVs are used in Scenario
1, with each experiment repeated 20 times to obtain an average value. The algorithm
parameters for the PSO variants are set according to the parameters referenced in the
aforementioned literature.

As shown in Figure 8, based on the PPSwarm algorithm, the use of a variant of the
PSO algorithm in the low-level evolutionary algorithm has minimal impact on the results
of the algorithm. Therefore, this paper adopts the standard PSO algorithm.

Figure 8. Evolutionary algorithm comparison.

5.3.3. Parameter Analysis

To ensure optimal algorithm performance through the coordination of various pa-
rameters, an analysis of the relevant parameters is conducted. In this section, the focus
is on performing parameter analysis on the iteration count (Niter), the number of restarts
(Nrestart), the size of the particle swarm (Npop), and the number of random populations (ρ).
Each set of experiments is conducted 20 times in Scenario 1, and the results are averaged.

When the random population ρ is set to 0, the iteration behavior for populations with
Npop = 100 and Npop = 300 is illustrated in Figure 9. It is evident that, once the number
of iterations Niter in the PSO algorithm exceeds 40, the algorithm tends to converge too
quickly, which can result in the population becoming stuck in local optima. The iterations
appear to fully converge around Nrestart = 10. However, particles with Niter values between
20 and 40 possess the ability to break free from local optima. Upon comparison of the
two images, populations Npop = 300 with Niter = 20 and Npop = 300 with Niter = 60 exhibit
superior fitness values. Notably, Niter = 20 demonstrates enhanced exploratory ability,
which allows for a more effective escape from local optima.
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(a) Npop = 100 (b) Npop = 300

Figure 9. Niter parameter analysis.

To determine the optimal value of the random population size ρ for maximizing the
algorithm’s performance, experimental analyses were conducted on populations with dif-
ferent configurations: Npop = 100, Nrestart = 30, Niter = 20 and Npop = 300, Nrestart = 30,
with Niter values of 20, 40, and 60, respectively. As shown in Figure 10, comparing
subfigures (a) and (b), as ρ increases, a population size of 300 achieves a path with a lower
fitness value compared to a population size of 100, indicating better performance for
Npop = 300. When comparing subfigures (b–d) collectively, it is evident that a ρ between
20% and 40% exhibits superior performance. This range allows for better evasion of local
optima and results in the lowest fitness value for the flight path. Therefore, the introduction
of ρ increases particle diversity, enabling particles to overcome local optima.

(a) Npop = 100, Niter = 20 (b) Npop = 300, Niter = 20

(c) Npop = 300, Niter = 40 (d) Npop = 300, Niter = 60

Figure 10. Parameter analysis for ρ.

From the aforementioned figures, it can be observed that almost all iterations converge
within Nrestart = 25. Based on this, we can deduce the optimal parameter settings as
follows: Npop = 300, ρ ranging between 20% and 40%, Niter values between 20 and 40,
and Nrestart = 25, where the Nrestart parameter can be changed according to the situation.
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5.3.4. Visual Display of Planned Paths

This article sets up six obstacles and selects 10 UAVs to plan the optimal path from the
starting point to the destination. The relevant parameters of the algorithm used in this article are
listed in Table 3. The path planning results of the proposed algorithm are shown in Figure 11,
and Figure 12 presents the flight trajectories of the UAVs from different three-dimensional
views. It can be seen that the planned trajectories of the 10 UAVs can meet the height and
angle constraints while efficiently completing the flight mission under the collision constraints
between obstacles and UAVs. In summary, this algorithm satisfies all the constraints required
for all UAVs to complete their missions safely, quickly, and collision-free, making it able to
perform flight path planning in complex environments with a large number of UAVs.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 11. Flight path planned by the proposed algorithm. The solid line represents the theoretical
path, and the dashed line represents the Dubins smoothed path.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 12. Ten UAVs’ 3D view.
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6. Discussion

This study delves into the optimization of particle swarm algorithms and provides
innovative ideas for further enhancing their performance. However, the methods proposed
thus far primarily focus on scenarios involving cylindrical obstacles and fixed formation
flights, which present certain limitations in practical applications. To more closely align
with real-world demands, future work needs to be deepened and expanded in multiple
directions. One direction that warrants immediate consideration is the collision issue
with obstacles of different shapes. In the real world, obstacles often take many forms
and may vary depending on the environment, time, or other factors. However, using
only cylindrical obstacles does not facilitate the representation of real-world phenomena
by swarm agents. Specifically, research in [45] indicates that using simple non-concave
obstacles leads to poor results during swarm performance validation, and references [46,47]
emphasize the importance of complex environments in UAV swarm testing. Another
direction worthy of in-depth exploration is the performance of UAVs in dynamic mission
scenarios. As mission requirements continuously evolve, UAV formations may need to
adjust flexibly to accommodate new task demands. This necessitates an in-depth study of
dynamic UAV formation control technologies, enabling UAVs to quickly and accurately
adjust their formation and flight strategies based on mission needs. Through research in
this area, we can significantly enhance the adaptability and operational capability of UAV
formations in complex and variable environments.

In summary, while this study has achieved certain results in the optimization of
particle swarm algorithms, further in-depth research is still needed in areas such as obstacle
shape and adaptation to dynamic mission scenarios to realize the broader application and
higher efficiency of UAV technology. In addition, for complex environments, the number of
obstacles is also a potential research direction in the same field. These research directions
will help promote technological advancements in the field of unmanned aerial vehicles,
laying a solid foundation for future practical applications.

7. Conclusions

This paper proposes a heuristic algorithm based on PPSwarm to address the collabo-
rative path planning problem for multiple unmanned aerial vehicles (UAVs) in complex
three-dimensional environments. In the proposed algorithm, a reasonable multi-objective
optimization cost function is designed, considering the performance of the UAVs and the
constraints of the flight environment. Secondly, to decouple the multi-UAV path plan-
ning problem and reduce the difficulty of solving it, a two-level path planning strategy
consisting of a high-level and a low-level planning strategy is proposed to hierarchically
implement the PPSwarm algorithm. Specifically, by combining the exploration advantages
of RRT*, the high-level planning strategy adopts the RRT* algorithm for path initialization.
Meanwhile, a priority planning algorithm is utilized in this strategy to assign priorities
to the UAVs, and the optimal UAV path obtained is incorporated into the cost function
as an obstacle, which can significantly save search space and enhance path safety. In the
low-level planning strategy, the Particle Swarm Optimization (PSO) algorithm is employed
for path planning of UAVs with higher priorities. Subsequently, Dubins curves are used for
smoothing the paths, enabling the UAVs to meet actual flight requirements. In the proposed
algorithm, to fully leverage the results obtained from the RRT* algorithm and iterations
and to accelerate convergence, several strategies are introduced, including a restart strategy,
population initialization, and population diversification. Additionally, a time-discretized
global obstacle list is introduced to consider collisions between UAVs. Finally, experimental
results demonstrate that the PPSwarm algorithm can effectively satisfy collision constraints
among multiple UAVs and successfully plan safe and efficient UAV flight paths, especially
in large-scale and complex environments. Comparative experiments indicate that the
PPSwarm algorithm outperforms five other algorithms in terms of convergence accuracy
and stability, exhibiting higher optimization capabilities. In larger-scale experiments in-
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volving 500 UAVs, the proposed algorithm also showcases excellent processing power
and scalability.
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