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Abstract: Millimeter wave (mmWave) unmanned aerial vehicle (UAV)-aided networks have enor-
mous application potential due to their large bandwidth and ultra-high speed, being regarded as
an effective technology for improving the reliability of military and civilian fields. However, due to
their complex electromagnetic spectrum environment and the sensitivity of mmWaves to blocking
effects, its performance analysis faces certain difficulties. This article investigates the coverage and
network capacity of mmWave UAV-aided networks under significant blocking effects and complex
electromagnetic environments; for this purpose, we equipped each UAV with mmWave antennas
featuring adjustable beamwidth and direction. A Matérn hard-core point process (MHCPP) with
repulsion constraints was also employed to reflect the minimum distance constraints to isolate the
mutual interference between UAVs. Then, using a stochastic geometric analysis, we derived the
coverage and capacity characteristics and further obtained a closed-form expression for the network
coverage probability. Finally, the simulation results showed that the network throughput could reach
86% when the density of UAVs was half of that of ground base stations (GBSs) in the city center,
validating the efficiency and accuracy of our theoretical derivations.

Keywords: unmanned aerial vehicle (UAV)-aided network; stochastic geometry; Matérn hard-core
point process (MHCPP); millimeter wave (mmWave) antenna

1. Introduction

Unmanned Aerial Vehicles (UAVs), due to their rapid on-demand deployment capa-
bility and controllable maneuverability, play a crucial role in special applications such as
military operations or disaster relief [1]. By utilizing UAVs as aerial base stations (ABSs)
or relay nodes, UAV-aided networks can reduce the challenges of high flexibility, mobil-
ity, and stability in wireless communication in combination with ground base stations
(GBSs), overcoming the signal coverage issues of traditional terrestrial networks [2]. Ad-
ditionally, UAV-aided networks offer larger coverage areas and higher opportunities for
line-of-sight (LOS) links [3], which are considered to have tremendous application potential
in improving communication quality in both military and civilian domains [4].

Millimeter wave (mmWave) communications, with their advantages of wide band-
width, high data rates, low latency, and small antenna size, provide promising solutions
for supporting 5G and beyond 5G (B5G) wireless communications in dynamic conditions,
especially in disaster relief and military operations [5]. At present, mmWave commu-
nications have been widely used at fixed base stations (BSs), but the high path loss of
wireless channels poses severe challenges in providing reliable mmWave connections for
highly dynamic scenarios [6]. In order to ensure the quality of service (QoS), it is crucial
to establish a suitable antenna model to ensure the performance of mmWave UAV-aided
networks [7]. Moreover, due to the high-frequency characteristics of mmWave antennas,
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signals are more susceptible to obstructions and attenuation. Therefore, focusing on the
performance of mmWave antennas in UAV-aided networks is helpful for better expanding
the potential applications of mmWave in mobile wireless networks [8].

Stochastic geometry has been considered as a necessary theoretical tool for modeling
and analyzing wireless networks due to the metrics for wireless network performances
primarily depending on the spatial distribution of network nodes and wireless channel
performance [9]. Appropriate modeling of UAV deployment locations can improve net-
work data transmission rates, reduce latency, and expand network coverage [10,11]. Most
existing literature studies rely on Poisson point processes (PPPs) or binomial point pro-
cesses (BPPs) to capture and characterize network topologies, assuming UAVs are spatially
independent points with no locational relationship to each other. However, in mmWave
wireless networks, to avoid interference between mobile base stations and reduce signal
fading, UAVs typically need to maintain a certain safety distance [12]. The Matérn hard-core
point process (MHCPP) applies a protective ball b(x, δ) around each UAV x in the network,
where no other UAV is allowed to be within the ball with radius δ. It represents the min-
imum safe distance between UAVs and also reduces mutual interference between them,
and it is considered to be the most suitable model for representing the minimum distance
constraints between UAVs [13]. However, the tractable probability generating functionals
(PGFLs) and closed-form distance distributions of such repulsive point processes remain
an open problem.

For the analysis and modeling of UAV-aided network performance optimization in
fading channels, most studies use the distance between nodes as the key indicator [14].
However, for actual mmWave wireless networks, due to the diversity of channel fading
and sensitivity to blockage effects, various signal attenuations, including free-space path
loss, multipath fading, shadow effects, and weather conditions, significantly affect the
received signal power at GUs. This significantly impacts network performance and channel
selection in UAV-aided networks [15]. Therefore, professional analysis of UAV-aided
network performance under the mmWave condition, especially in networks with both
air-to-ground (A2G) and ground-to-ground (G2G) channels, are particularly important.
We have analyzed the performance of directional antenna UAV-aided networks in our
preliminary work [16] but overlooked the characteristic of high path loss in mmWave
communications. On this basis, this article improves the channel selection strategy for
calculating network coverage and capacity and further conducts a more accurate and
comprehensive performance analysis of it.

1.1. Related Works

In mobile networks, appropriate directional antennas can reduce interference and
enhance network performance. In addition, through mmWave antenna configuration and
beamforming technology, the impact of the Doppler frequency shift on achieving optimal
network capacity can be suppressed to a certain extent [17]. The conical directional antenna
model mentioned in [18] features a fixed vertical beam direction by receiving and trans-
mitting signals in specific directions, which mitigates interference from other directions to
a certain extent. The multiple-input multiple-output (MIMO) antenna presented in [19]
effectively increases the system’s channel capacity and communication reliability by utiliz-
ing multiple transmitting and receiving antennas; however, it does not take into account
the scale of antennas and transmission delays. MmWave antennas are characterized by
high rates and low latencies; with the development of 5G and B5G technologies, mmWaves
have been widely applied for their high speeds and large bandwidth. In [20], UAVs were
deployed at the edge of cells to assist with mmWave downlink transmissions, considering
the interference between ground base stations (GBSs) and ABSs, but the UAV base stations
were modeled with a PPP distribution without considering minimum distance constraints
between them. In [21], cellular mmWave MIMO uplink communications are considered
to serve multiple UAVs under the coverage of GBSs, achieving optimized mmWave beam
alignment, but this study did not consider scenarios involving GUs. The antenna model
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in [22] can adjust the beam direction and width according to communication needs and
environmental conditions with the aim of reducing system complexity and computational
load and adapting to the needs of mmWave UAV-aided networks, but there is still limited
research on its application in highly mobile UAV-aided networks.

Stochastic geometry has been regarded as a necessary theoretical tool for the modeling,
analysis, characterization, and design of wireless networks for decades [23]. Due to the
relative ease of dealing with PPP or BPP distributions, most literature studies are based on
the assumption that all BSs follow these two types of distributions [22,24]. With a PPP-based
random distribution model, [25] describes the randomness of UAV node layouts in wireless
communication networks but did not consider the limitations on the number of UAVs in
the community. Authors in [26] modeled A2G cellular networks as an overlay of PPP and
BPP, considering the limitations on the number of ABSs, but not the minimum distance and
interference between ABSs. The β-GPP distribution in [27] controls the density and spatial
distribution of UAVs by adjusting the parameter β to meet different needs and application
scenarios. However, the author only considered pure UAV networks without considering
the collaborative communication with GBSs. The literature study [13], which modeled
UAVs based on the MHCPP distribution and analyzed network performance in optimizing
coverage probability and energy consumption, did not consider the impact of UAV antenna
configurations on network performance. Therefore, exploring network performance when
UAVs follow an MHCPP distribution presents a question worth intensive research.

Coverage probability and network capacity are key metrics for assessing UAV net-
work performance, and they are typically analyzed based on the distance between nodes.
Specifically, in rural areas, the scarcity of high-rise buildings results in relatively lower
path loss, with signals usually propagating in line-of-sight (LOS) [28]. Conversely, in
dense urban areas, the presence of high-rise buildings can lead to a higher probability of
non-line-of-sight (NLOS) links, where signals will experience greater path loss. Therefore,
users should choose the BS that can provide the best communication performance, not just
the closest one [29]. In [2], to enhance network coverage in A2G networks, ABSs are added
at cell edges to assist GBSs. Ref. [30] assesses the average achievable data rate (AADR) in
UAV communications under a 3D channel model, and a closed form expression for the
tight lower bound of AADR was derived. However, for mmWave networks, due to the high
sensitivity of mmWave networks to obstacles and shadowing effects, as well as significant
path losses, the signal strength received by GBSs and ABSs in UAV-aided networks have sig-
nificant differences in various scenarios [31]. Considering only the distance factor may not
accurately describe the coverage performance of mmWave UAV-aided network networks.

A comparison between our study and the existing surveys on UAV networks analyzed
using stochastic geometry methods in recent years is presented in Table 1. Taking into
account factors such as antenna models, node distribution models, small-scale fading mod-
els, performance indicators, and whether power correlation probabilities are considered,
it is not difficult to see that most of the literature studies using Nakagami-m fading do
not use the MHCPP distribution model [20,23,26–28]; literature studies using the MHCPP
node distribution model do not consider the use of mmWave antennas [13,32–34] and
often use Rayleigh fading to characterize small-scale fading. In the analysis of network
capacity, the changes in the three indicators achievable throughput (ATH), average spectral
efficiency (ASE), and average ergodic rate (AER) are not comprehensively considered, and
the received power at GU’s location is usually not taken into account [13,20,23,26,27,32–34].
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Table 1. Comparison of existing surveys.

Reference Year Node Distribution Small-Scale
Fading Model Antenna Model

Power-Based
Association
Probability

Performance Metrics

[26] 2018 HPPP Nakagami-m - - CP/ASE
[32] 2019 MHCPP Rayleigh - - CP/Energy efficiency
[33] 2020 MHCPP Rayleigh - - CP/ATH/Energy efficiency
[28] 2021 PPP Nakagami-m - √ CP/Association probability
[13] 2022 MHCPP Nakagami-m - - CP/Average rate

[20] 2022 Poisson hole process Nakagami-m mmWave antenna - CP/ Distance-based associ-
ation probability

[34] 2022 MHCPP Rayleigh - - CP/Average rate
[23] 2023 HPPP Nakagami-m Conical antenna - CP/Handover probability
[27] 2023 β-GPP - Conical antenna - CP/Ergodic capacity

Our Paper 2024 MHCPP Nakagami-m mmWave antenna √ CP/ATH/ASE/AER

1.2. Contributions

In this paper, the performance trade-offs related to the configuration of mmWave
antenna, UAV deployment, network coverage probability, and capacity are studied. In
order to simulate the real mmWave UAV-aided network, the coverage probability and
capacity of mmWave UAV-aided network under significant blocking effects and complex
electromagnetic environments are considered. Balancing both relevance and practicality, we
equip each UAV with mmWave antenna featuring adjustable beamwidth and direction, and
an MHCPP model with repulsion constraints is employed to isolate the mutual interference.
By using stochastic geometric analysis, we derive the coverage and capacity characteristics
and further obtain a closed-form expression for the network coverage probability. The
main contributions of our work can be summarized as follows:

• This paper focuses on a promising networking paradigm where mmWave commu-
nications are utilized in mobile UAV-aided environments. To attempt to model the
UAV-aided network via repulsive point process, UAVs are randomly deployed at a
fixed altitude and modeled as MHCPP type-II to assist GBS. To approximately derive
the coverage probability and network capacity expressions in mmWave UAV-aided
networks, stochastic geometry is used for examination as an efficient method. Exten-
sive numerical results are provided to validate the developed framework and how
network parameter settings affect these performance metrics.

• A more realistic angle-dependent mmWave antenna array is considered to model the
3D antenna beamforming gain in mmWave links between BSs and GUs, which meets
the actual dense or sparse GU distribution requirements. The experiments show that
by dynamically adjusting the antenna direction factor ω, the coverage probability
and capacity of the mmWave network can be significantly expanded. In addition, the
Nakagami-m model is used to characterize the small-scale fading; by flexibly adjusting
parameter m, the influence of obstacles such as urban buildings and natural terrain
are more accurately simulated.

• According to the obstruction effect of mmWave, an innovative method is provided
to measure the coverage probability of the mmWave mobile network. Specifically,
the coverage probability is fully considering the weighted sum of both the distance
between BS–GU under three channel conditions and the associative probability based
on received power at the typical GU, which makes the trade-off of mmWave network
performance more reasonable and accurate.

The rest of this article is organized as follows. Section 2 describes the system model.
Section 3 provides the coverage probability and network capacity of mmWave UAV-aided
network and derives an approximate expression for the coverage probability. Some numer-
ical results are discussed in Section 4. Finally, Section 5 summarizes this article and looks
forward to the application of the results.
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2. System Model

As shown in Figure 1, we consider a mmWave UAV-aided network consisting of
GBSs and rotary-wing UAVs as ABSs, GUs randomly distributed on the ground, and
provided data services through LOS or NLOS channels by GBS or ABS. It is assumed
that the UAVs hover at the same altitude with transmit power PU

t . Due to the minimum
distance constraint between UAVs, The locations of ABSs are modeled as an MHCPP
Φm with density λu, as such, all ABSs have a guaranteed minimum distance δ between
each other. The distribution of GUs and GBSs follow PPP Φp with density λp, and the
UAVs are equipped with mmWave directional atennas to enhance the efficiency of network
communication and isolate interference.

Figure 1. System model of the mmWave UAV-aided network.

For the downlink of the G2G channel between GBS and GU, a standard large-scale
path loss function ζg(r) = T−1r−β is used, where T and β represent the additional path loss
and path loss exponent for the G2G channel and r is the propagation distance.

Considering the characteristics of the A2G channel, we adopt a LOS/NLOS probability-
based path loss model for UAV networks [35]:

ξµ(r) = ηµr−αµ/2 = ηµ

(
d2 + h2

)−αµ/2
(1)

where d is the horizontal distance between a typical GU and the target UAV, h represents
the UAV altitude, and ηµ and αµ (µ ∈ {L, N}) represent the additional path loss and path
loss exponent for the LOS and NLOS channels, respectively. The probability that an A2G
channel maintains LOS or NLOS connections is given by AL(r) = 1/

(
1 + ae−

180
π bθ+ab

)
and AN(r) = 1 − AL(r) [36], where a and b are the environment-related parameters and
θ = arctan(h/d) is the elevation angle in degrees. For the proposed network, we can easily
derive that the typical GU is located in the LOS region with a probability εL = πR2

Lλu, and
in the NLOS region with a probability εN = 1 − εL. To avoid strong LOS signal interference
between neighboring UAVs, we set the guaranteed minimum distance δ ≥ 2RL; we further
have εN = ε

(1)
N + ε

(2)
N , where ε

(1)
N = λu

(
πδ2/4 − πR2

L
)

and ε
(2)
N = εN − ε

(1)
N .

In reality, the antennas of GBS usually tilt downwards to cover more GUs. Therefore,
this paper uses multiple sector antennas to optimize the radiation range of GBS and
assume that the antenna radiation direction of GBS is vertically oriented and horizontally
omnidirectional.

To enhance network coverage performance and mitigate mutual interference, each
UAV is equipped with a variable beamwidth conical antenna model to boost signal strength
in specific directions. According to [22], the gain of a mmWave antenna array can be
expressed as

Gu(φ) = Do(ω) cos(φ) (2)
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where Do(ω) represents the maximum directivity of the UAV antenna array, ω is the
directivity parameter of the antenna array, cos(φ) represents the radiation efficiency of the
antenna array, and φ ∈ [0, π/2] is the incident angle shown in Figure 1. The array gain
GDA(φ) depends on the directivity parameter ω and radiation angle, and it is symmetric
along the vertical direction. The maximum directivity of the UAV antenna array Do(ω) is

Do(ω) =
4π

ΩA(ω)
(3)

where the beam solid angle of the antenna array ΩA(ω) is determined as

ΩA(ω) =
∫ 2π

0

∫ π

0
Uω(ρ) sin(ρ)dρdτ

=
∫ 2π

0

∫ π
2

0

cos(ρ)
ω

sin(ρ)dρdτ

=
π

2ω

(4)

where Uω(ρ) = cos(ρ)/ω represents the normalized radiation intensity of the antenna
array at ABS. Therefore, we can observe that a larger ω leads to a higher directivity of the
antenna array, corresponding to a smaller half-power beamwidth. Consequently, it allows
for the focusing of the radiated power within a smaller area. For the sake of simplicity, here
we have ignored the influence of the effect on the antenna pattern and radio propagation
caused by the airframe of the UAV [37].

Both the A2G and G2G channels are described by the Nakagami-m fading model to
account for small-scale fading effects. Nakagami-m fading covers a wide range of fading
scenarios in realistic wireless applications via parameter m, which includes the Rayleigh
fading (m = 1) as a special case. Thus, the channel gain Gc is a gamma random variable
with a distribution of

fG(g) =
gmϑ−1mmϑ

ϑ

Γ(mϑ)
exp(−gmϑ) (5)

where mϑ, ϑ ∈ {L, N, G} represents the Nakagami-m fading parameter for the LOS A2G,
NLOS A2G, and G2G channels, respectively. Therefore, the received power of a typical GU
from the corresponding GBS and UAV can be expressed as

PG
r = GcPG

t ζg(r) (6)

Pµ
r = GcPµ

t ξµ(r)Do(ω) cos(φ) (7)

where µ ∈ {L, N} represents the LOS or NLOS channel, r is the propagation distance
between the UE and the server device, and Pµ

t (µ ∈ {L, N}) and PG
t are the transmitting

power for UAV and GBS, respectively.
Most research studies model the UAV positions as PPPs due to the ease of handling.

In this paper, we model the UAVs as ABSs according to MHCPP distribution, which is
denoted by Φm with density λu. For the PPP case, regarding a parent PPP Φp, λp is the
density, so the probability that R > r simply equals the null probability of a PPP can be
given by

FG(r) = 1 − exp
{
−λpπr2

}
(8)

Accordingly, the probability density function (PDF) can be obtained as

fG(r) =
dFG(r)

dr
= 2πλgr exp

{
−λpπr2

}
(9)
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where the MHCPP type-II can be obtained by assigning a random mark uniformly dis-
tributed in [0, 1] to each parent of Φp [34]. Accordingly, the density of the UAV distributed
of MHCPP can be derived as

λu =
1 − exp

(
−λpπδ2)

πδ2 (10)

where δ is a guaranteed minimum distance between ABSs, that is, the hard-core parameter
in the MHCPP distribution.

However, for networks modeled using MHCPP, there is currently no known closed-
form expression for the PDF of the nearest distance r between two nodes [38]. Due to
the repulsion properties within MHCPP points, the calculation of interference is also very
cumbersome. A simple approximate expression has been derived in [33]. Specifically, the
distribution of MHCPP is approximated by the interference-to-signal ratio (ISR) distribution
of PPP using the gain-based method based on ISR, given by

Gm =
MISRp

MISRm
(11)

where MISR ≜ E(ISR) = E(1/SIR) represents the interference-to-signal ratio and Gm
represents the MISR gain when nodes are distributed by MHCPP.

Due to the ABSs being deployed according to MHCPP, if the distance between the
typical GU and the server BS is r, there is no interfering BS that is closer to the typical
GU [39]. The PDF of r is the underlying spatial distribution of the empty space in MHCPP.
Using Campbell’s theorem, the PDF and cumulative distribution function (CDF) under an
approximate distance-based MHCPP model can be approximated as [40]

fM(r) =


fM1 (r) = 2πλmr, 0 ≤ r ≤ δ/2

fM2 (r) = 2πλmr
(

2r
δ

)β−2
×

exp
{

2πλmδ2

β(4−πλmδ2)

(
1 −

(
2r
δ

)β
)}

, r > δ/2

(12)

FM(r) =


FM1 (r) = πλmr2, 0 ≤ r ≤ δ/2

FM2 = 1 −
(

4−πλmδ2

4

)
×

exp
{

2πλmδ2

β(4−πλmδ2)

[
1 −

(
2r
δ

)β
]}

, r > δ/2

(13)

where r is the distance between the typical GU and the server BS, λm represents the density
of UAVs based on MHCPP, and β is a positive real parameter.

Interference Characteristics

For the cumulative interference, in this paper, we modeled them by the distance be-
tween two nodes. In other words, for a typical GUi, the interference of it can be represented
as [41]:

Ii
µ = ∑

i∈Φ\{o}
Pµ

t Gcξµ

(
DBS−GU

)
(14)

Ii
G = ∑

i∈Φ\{o}
PG

t Gcζµ

(
DBS−GU

)
(15)

where µ ∈ {L, N} represents the LOS and NLOS propagation through UAV, respectively.
Φ ⊂ R denotes the set of all transmitting nodes; o represents the typical GU; PL

t , PN
t , and

PG
t are the transmitting powers of UAV or GBS; and ξµ(r), ζµ(r) represent the path loss

function, assumed to depend only on the distance DBS_GU from BS to typical GU. As UAV
systems are usually interference-limited, we ignore the Gaussian noise.
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3. Performance Analysis

In order to investigate the performance of mmWave UAV-aided networks, the coverage
probability is obtained by using the Laplace transform of the interference, and the network
achievable throughput and average ergodic rate are further derived in this section. Due
to the characteristics such as the obstruction effect of mmWave, the path loss calculation
methods are not the same in the three channel models, namely the G2G channel, A2G
LOS channel, and A2G NLOS channel. Therefore, network performance under the above
three channel conditions are comprehensively considered and carry out the weighted
average so as to deduce the performance evaluation results of mmWave UAV-aided network
more accurately.

3.1. Coverage Probability

The coverage probability is calculated based on the distance between the ABS or GBS
and the typical GU and the weighted sum of the association probability based on the
received power of the GU under three channel conditions to comprehensively measure
the total network coverage probability. Through this approach, the coverage probability
Pcov is defined as the probability that a specific GU can achieve an SIR threshold Θ. In
other words, the coverage probability of the network is the complementary cumulative
distribution function (CCDF) of SIR. Considering the interference-limited network scenario,
the CCDF of SIR is a crucial factor in analyzing network performance. Because the model
in this paper represents a typical interference-limited network, we neglect the Gaussian
noise. Therefore, the total coverage probability Pcov can be expressed as P[SIR > Θ].

• The SIR when a typical GU is associated with a UAV can be represented as:

SIRi
µ =

Gc Do(ω) cos(φ)Pµ
t ξµ(r)

Ii
L + Ii

N + Ii
G

(16)

where µ ∈ {L, N} represents the LOS and NLOS channel, respectively, ξµ(r) represents
the distance-dependent path loss under different channel conditions, Do(ω) cos(φ)
represents the directional antenna gain, and Ig, Iu,L and Iu,N represent the interference
from the GBS, LOS UAV, and NLOS UAV, respectively.

• The SIR when the typical GU is associated with a GBS can be represented as:

SIRi
G =

Gc Gg PG
t ζg(r)

Ii
L + Ii

N + Ii
G

(17)

where PG
t is the transmit power of the GBS, Gc represents the Rayleigh fading of

the G2G channel, and Gg is the antenna gain of the main lobe of GBS. We present
Ii

L + Ii
N + Ii

G of Ir for the total interference of our network in the following paper briefly.

Considering the properties of MHCPP, and to avoid strong LOS signal interference
between neighboring UAVs, we set the minimum distance between ABSs as δ ≥ 2RL, so
RL = h

tan θ represents the LOS coverage radius of each UAV on the ground.
Due to the sensitivity of mmWave networks to obstacles, when a typical GU selects

the server BS, it is essential to consider not only the signal coverage range but also the size
of received power at the typical GU after channel attenuation. Therefore, the coverage
probability of a mmWave UAV-aided network can be represented as the weighted sum
of the coverage probability under three channel conditions, taking into account both the
signal coverage range and the typical GU’s received power, expressed as

Pcov = ∑Pσ · Gσ, σ ∈ {A, G} (18)

where Pσ, σ ∈ {A, G} are the distance-based coverage probabilities and Gσ, σ ∈ {A, G} are
the power-based association probabilities on the condition that the serving node is ABS
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or GBS. The derivation process of their specific expression are provided in the following
two sections.

3.1.1. Distance-Based Coverage Probability

In the A2G channel, the distribution for UAVs as ABSs in a mmWave UAV-aided
network satisfies the MHCPP distribution. So, the system average coverage probability for
the A2G channel from the nearest UAV to LOS and NLOS channel can be expressed as

PA = εLPL
A + ε

(1)
N P(N1)

A + ε
(2)
N P(N2)

A (19)

where PL
A and PN

A (PN
A ∈ {PN1

A ,PN2
A }) represent the coverage probabilities for the typical

GU located in the LOS and NLOS regions expressed in (20), (22), and (23).
When r ≤ rL, the A2G channel corresponds to the LOS network, and the coverage

probability can be derived as

PL
A =

∫ rL

0
P[SIRL > Θ | r] fM1 (r)dr

=
∫ rL

0
P[SIRL > Θ | r] fM1 (r)dr

(a)
=
∫ rL

0

[
exp

(
− ΘrαL/2

PL
t ηLGu(φ)Do(ω) cos(φ)

Ir

)]
fM1 (r)dr

(b)
=
∫ rL

0

(
LIL (z1 | r)LIN (z1 | r)LIG (z1 | r)

)
fM1 (r)dr

(20)

where z1 = ΘrαL/2/PL
t ηLDo(ω) cos(φ); (a) follows the fact that Gi ∼ exp(1); and (b) fol-

lows the independence of interference from GBS, LOS UAV, and NLOS UAV. The ex-
pressions of the Laplace transform LIL(z1 | r), LIN (z1 | r) and LIG (z1 | r) are given
in Equation (21) at the top of the next page, and the proof of them is in Appendix A
Equation (A1).

When rL ≤ r ≤ δ/2, the A2G channel depends on the NLOS channel, so we can
further obtain

LIL(z | r) = exp

−2πλu

∫ ∞

r
tGL

(√
t2 − h2

)
·

1 −
(

1 +
zPL

t D0(ω)hωη−1
L

mLtβL+ω

)−mL
dt


LIN (z | r) = exp

−2πλu

∫ ∞

r
tGN

(√
t2 − h2

)
·

1 −
(

1 +
zPN

t D0(ω)hωη−1
N

mNtβN+ω

)−mN
dt


LIG (z | r) = exp

(
−2πλm

∫ ∞

∆rg_rL

zPG
t GgT−1t−β

1 + zPG
t GgT−1t−β

tdt

)
(21)

P(N1)
A =

∫ δ
2

rL

P[SIRN1 > Θ | r] fM1 (r)dr

=
∫ δ

2

rL

(
LIL (z2 | r)LIN (z2 | r)LIG (z2 | r)

)
fM1 (r)dr

(22)

where z2 = ΘrαN /2/PN
t ηN Do(ω) cos(φ).

In the case of r > δ/2, the A2G channel also depends on the NLOS channel, but the
coverage region becomes irregular and is hard to be analyzed via conventional methods. In
turn, we try to employ the method developed in [32] to solve the problem. We use the PDF
of distance r derived from PPP model fG(r) to approximately calculate the second integral
of Equation (19). Then, we have
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P(N2)
A =

∫ ∞

δ
2

P[SIRN2 > Θ | r] fM2(r)dr

(a)
≈
∫ ∞

δ
2

Pr> δ
2

[
SIRN2 > Θ∗ | r

]
fM2(r)dr

(b)
≈
∫ ∞

δ
2

[
Pr> δ

2

(
GcGu(φ)PN

t ξN(r)
σIr

> Θ∗
)]

fM2(r)dr

=
∫ ∞

δ
2

[
exp

(
− σΘ∗rαN /2

PN
t ηLDo(ω) cos(φ)

Ir

)]
fM2(r)dr

=
∫ ∞

δ
2

(
LIL(z3 | r)LIN (z3 | r)LIG (z3 | r)

)
fM2(r)dr

(23)

where z3 = σΘ∗rαN /2/Pu
t ηN Do(ω) cos(φ), Ir = IL + IN + IG represents the total network

interference. Step (a) uses the substitution Equation (11) in Θ∗ = MISRm = Θ/Gm. Recent
studies have shown that the network coverage probability based on non-PPP models can
be approximately obtained by adjusting the SIR threshold of the corresponding networks
via PPP models with the same density according to ASAPP [42]. Such a method is called
ASAPPP, and the adjustment factor is named as the MSIR gain. So, we use this method
to offset the SIR threshold. In step (b), we set σ = 1dB according to the fact that the excess
interference for the network modeled by MHCPP type-II compared with that by PPP never
exceeds 1 dB [43].

Therefore, the probability of coverage through the LOS UAV can be further ex-
pressed as

PL
A = εL

∫ rL

0
Pr≤RL [SIRL > Θ] fM1(r)dr (24)

The probability of coverage through the NLOS UAV can be further expressed as

PN
A = ε

(1)
N

∫ δ
2

rL

PrL<r≤ δ
2

[
SIRN1 > Θ

]
fM1(r)dr + ε

(2)
N

∫ ∞
δ
2
Pr> δ

2

[
SIRN2 > Θ

]
fM2(r)dr∫ ∞

δ
2

fM2(r)dr
(25)

We use fM2(r), the PDF of distance r derived from the PPP model, to approximately
calculate the second integral of Equation (25). Thus, we further utilize

∫ ∞
δ
2

fM2(r)dr to
adjust the deviation brought by fM2(r).

In the G2G channel, the coverage probability of a typical GU associated with GBS
under the distribution of PPP can be expressed as

PG =
∫ ∞

0
P
(

Gc >
ΘTrβ

PG
t Gm

Ir

)
· fG(r)dr

(a)
=
∫ ∞

0
EIr

[
exp

(
− ΘTrβ

PG
t Gm

Ir

)]
· fG(r)dr

=
∫ ∞

0
EIr

[
exp

(
− ΘTrβ

PG
t Gm

(IL + IN + IG)

]
· fG(r)dr

(b)
=
∫ ∞

0

(
LIL(z | r)LIN (z | r)LIG (z | r)

)
· fG(r)dr

(26)

where z = ΘTrβ/PG
t Gm, PG

t represents the transmitting power of GBS, T−1r−β represents
the path loss function of the G2G channel, and fG(r) is the PDF of distance between the GU
and the server BS that is based on the property of PPP. (a) follows the fact that Gc ∼ exp(1),
and (b) follows the independence of interference from GBS, LOS UAV, and NLOS UAV.
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3.1.2. Power-Based Association Probability

Based on the receiving power of the GU, the probability of the typical GU being
connected to the NLOS UAV can be expressed as

GN =P(EN
r > EL

r ; EN
r > EG

r )

(a)
=P(EN

r > EL
r )× P(EN

r > EG
r )

=P

(
PN

t Do(ω) cos(φ)

ηNrαN
N

>
PL

t Do(ω) cos(φ)

ηLrαL
L

)
· P

(
PN

t Do(ω) cos(φ)

ηNrαN
N

>
PG

t

Trβ
G

)
(b)
=P(rL > r

βN+m
β+m

N (
ηN
ηL

)
1

βL+m ) · P(rg > r
αN+m

β

N (
PG

t ηN

PN
t Do(ω)hmT

)
1
β )

(c)
=
∫ ∞

h
(1 − FM1(∆rL− rN ) fM2(r)dr ·

∫ ∞

h
(1 − FG(∆rG− rN ) fM2(r)dr

(27)

where PN
t , PL

t , PG
t represent the received power from three channels, which are NLOS A2G,

LOS A2G, and G2G; rN , rL, rG are the distance between the server BS and the GU under
three channel conditions, respectively. (a) reflects the independent distribution of two point
processes, and (b) is according to the fact that the channel gain is Gu(φ) = Do(ω) cos(φ)
when the incidence angle is φ and the antenna directional factor is ω. (c) is based on the
definition of CDF and the average value on rN .

For simplicity, ∆rL− rN

(
∆rG− rN

)
are used to represent the distance between the GU to

the nearest LOS UAV (or GBS) except the server BS, while the distance between GU and its
NLOS server BS is r (as expressed in the matrix on the top of the next page). Similarly, it
can be concluded that the power-based probabilities for LOS UAV and GBS can be given by

GL =
∫ ∞

h

(
1 − FM2

(
∆rN−rL

))
fM1(r)dr ·

∫ ∞

h

(
1 − FG

(
∆rL−rN

))
fM1(r)dr (28)

GG =
∫ ∞

0

(
1 − FM1

(
∆rL−rG

))
fG(r)dr ·

∫ ∞

h

(
1 − FM2

(
∆rN−rG

))
fG(r)dr (29) ∆rN− rN ∆rN− rL ∆rN−rG

∆rL− rN ∆rL− rL ∆rL− rG

∆rG− rN ∆rG− rL ∆rG− rG

 =



r r
αL+ω
αN+ω

(
ηL
ηN

) 1
αN+ω

r
β

αN+ω

(
PG

t Do(ω)hω T
PN

t ηN

) 1
αN+ω

r
αN+ω
αL+ω

(
ηN
ηL

) 1
αL+ω

r r
β

αL+ω

(
PG

t Do(ω)hω T

PL
t ηL

) 1
αL+ω

r
αN+m

β

(
PG

t ηN
PN

t Do(ω)hmT

) 1
β

r
αL+m

β

(
PG

t ηL
PL

t Do(ω)hmT

) 1
β

r


(30)

To this extent, the total coverage probability of the system can be easily calculated
following Equation (18).

3.2. Network Capacity
3.2.1. Achievable Throughput (ATH)

Considering an adaptive modulation and coding scheme, the network achievable
throughput is the network channel capacity representing the highest bit rate that the typical
GU could obtain, which can be derived from Shannon’s formula as

R ≜ E[log2(1 + SIR)] (bps/Hz) (31)
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where the channel capacity R quantifies performance based on average throughput, while
the coverage probability focuses on outcomes such as GU connection failures and other
impacts related to service quality and link reliability. Therefore, R and Pcov are comple-
mentary perspectives for evaluating the link quality between the server BS and the typical
GU in the UAV-aided network.

3.2.2. Average Ergodic Rate (AER)

Under the condition that the typical GU is associated with the server BS, the system
AER can be expressed as [44]

Rδ = Er
[
ESIRδ

[log2(1 + SIRδ)]
]
(bps/Hz) (32)

where δ ∈ {L, N, G}, r is the typical link between the GU and its server BS and E[·] is the
average value of the received SIR distribution and the link length distribution. Thus, the
specific expression of AER can be calculated.

Lemma 1. The AER of a typical GU associated with the server GBS from the G2G channel is

RG =
∫ ∞

rG

∫ ∞

0

mg−1

∑
q=0

(−t)q

q!
dq

dzq
[
LIG (z1 | r) ·LIL(z1 | r)

]
z1=

ΘmL
Trβ PG

t

fG(r)dudr (33)

The AER of a typical GU associated with the server ABS from the A2G channel is given by

RA = ∑Rµ · Gµ, µ ∈ {L, N} (34)

where Gµ (µ ∈ {L, N}) represents the association probability in the LOS and NLOS UAV channel
based on the received power in Equations (27) and (28), respectively. RL, RN are derived as

RL =
∫ ∞

rL

∫ ∞

0

mL−1

∑
q=0

(−t)q

q!
dq

dzq
2

[
LIG (z2 | r) ·LIL(z2 | r)

]
z2=

ηΘmL

r−
βL
2 PL

t

fM1(r)dudr (35)

RN =
∫ ∞

rN

∫ ∞

0

mN−1

∑
q=0

(−t)q

q!
dq

dzq
3

[
LIG (z3 | r) ·LIN (z3 | r)

]
z3=

ηΘmN

r−
βN
2 PN

t

fM1(r)dudr (36)

the Laplace transform LIL(z | r),LIN (z | r) and LIG (z | r) are given by Equation (21); fM(r)
(M ∈ {M1, M2}) are given by Equation (12).

Proof. Firstly, we consider the case where the typical mobile user is associated with the
LOS UAV, and the AER can be derived as

RL =
∫ ∞

rL

ESIRL [log2(1 + SIRL)] fM1 (r)dr (37)

where fM1(r) is given in Equation (12). Because E[X] =
∫ ∞

0 P[X > x]dx for X > 0, we
further have
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EL[log2(1 + SIRL)]

=
∫ ∞

0
P[SIRL > Θ]du

(a)
=
∫ ∞

0
EΦm ,Φp

[
Gi >

mLΘ rαL
s

PL
t

(IL + IN)

]
du

=
∫ ∞

0
EΦm ,Φp

[
exp(IL + IN) ·

mL−1

∑
l=0

(
mLΘrαL

s

PU
t

)q
(IL + IN)

q

q!

]
du

=
∫ ∞

0

mL−1

∑
q=0

(−t)q

q!
dq

dzq
2

[
LIG (z2 | r) ·LIL(z2 | r)

]
z2=

ηΘmL

r−
αL
2 PA

t

fM1(r)du

(38)

where the Laplace transforms are given by Equation (21) and du is the integral calculus
of SIR. Furthermore, we can derive the AER, which are represented as RN ,RL, and RG,
given by Equations (33), (35), and (36), respectively.

Using the expressions of AER derived from the above three channels, we define
Rergo = RN +RL +RG as the total AER of the typical GU, in which RN +RL represents
the AER of the A2G channel and RG of the G2G channel, respectively.

3.2.3. Average Spectral Efficiency (ASE)

Average spectral efficiency (ASE) refers to the average amount of data or information
that the system can transmit under a given spectrum resource. A higher average spectral
efficiency means that the system can use the limited spectrum resources more effectively
and achieve a higher data transmission rate. The key to calculating ASE is to calculate RL,
RN , and RG to represent the AER. Let us denote λm and λg as the density of ABS and GBS;
then, we can calculate the ASE using the following equation

Aµ ≜ λm(RN +RL) + λpRG(bps/Hz/km2) (39)

where RL, RN , and RG correspond to the AER of a typical GU associated with the server
LOS UAV, NLOS UAV, or GBS.

Through analyzing the ASE, we aim to quantify the impact of adding ABSs to a
mmWave network and investigate how the overall spectrum efficiency is affected when
network resources are shared between ground and aerial BSs.

4. Simulation and Analysis

In this section, the numerical results along with Monte Carlo simulations are per-
formed to verify the correctness of the theoretical analysis. We set the parameters of UAVs
similar to [11,23], and the detailed parameter settings are in Table 2.

Table 2. Simulation parameters.

Parameter Description Value

Pµ
t ,PG

t Transmission power of BSs (23, 40) dBm

h Flight altitude of ABSs (30, 40, 50, 100) m

λp,λm Density of BSs (20, 200)/km2

m,mµ Paramenters of Nakagami-m fading model (1, 1.5)

αL,αN ,β Path loss exponent (2.5, 3.5, 2.5)

ηL,ηN ,T Additional path loss (1, 10, 1) dB

a,b Environmental-related parameters (10.12, 0.16)
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4.1. Coverage Probability

Figure 2 takes the impact of UAV density and antenna direction factor ω into consider-
ation. Obviously, the network coverage probability is relatively highest in urban areas, and
with the increase in ω, the trend of network changes in the city center scenario becomes
more apparent; the experiments show that the simulation results when λu = 40 are basically
consistent with the trend of change at λu = 20. This is because city centers always have
many high-rise buildings, making the difference between the maximum and minimum
coverage probability reach 116%. It can also be noticed that, in rural areas, with the higher
altitude of UAVs promoting higher LOS communication links, a larger ω means a larger
coverage probability, which can increase by almost 46%.
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Coverage Probability in Different Scenarios

116%gain

46%gain

Figure 2. Relationship between coverage probability and ω under different scenarios. The environ-
ment parameters (a, b) are set to be (5.3, 0.45), (10.12, 0.16), and (23.2, 0.07) for the rural area, urban
area, and city center, respectively.

As shown in Figure 3, the coverage probability will reach its peak as ABS altitude h
increases and then begin to decrease. This is because the probability of the A2G link main-
taining the LOS connection increases, and an increase in distance will increase path loss and
reduce signal power. Compared with traditional PPP distribution networks, the MHCPP
distribution and mmWave antennas significantly isolate interference by maintaining the
minimum safe distance δ and selecting the appropriate ω, resulting in a maximum increase
of 28% in network coverage probability. In addition, the optimal beamwidth of mmWave
antennas decrease with the increase in ABS density. In sparse network scenarios, a larger
antenna directional factor ω should be given priority consideration. There are different
optimal ABS altitudes under different ABS densities. In future research, we will focus on
solving the optimization problem of network performance under constraints such as the
beamwidth, altitude, and density of ABSs.

Figure 4 shows the joint impact of UAV altitude h and density λu on the coverage
probability of mmWave UAV-aided networks. It is not difficult to see that the coverage
probability of the typical GU first increases until reaching the upper limit of about 89% and
then decreases to about 37%. Considering limited frequency resources or the complexity
and cost of antenna design, when using the same frequency and antenna configuration
at BSs, due to the obstacle effect of mmWave communications, it will lead to higher UAV
density and greater co-frequency interference. At this time, the decrease in UAV density
can reduce co-frequency interference to some extent, indicating that we can further study
how to balance the distance and quantity between ABS and GBS and optimize algorithms
to achieve optimal network performance.
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Figure 3. Relationship between coverage probabilities and UAV altitude under different UAV density
λu while d = 50 m.

Figure 4. Coverage probabilities of the typical GU as a joint function of density and altitude, with
ω = 5 and d = 60 m.

4.2. Network Capacity

Figure 5a shows the average data rate for UAV users and GBS users in UAV-aided
network, as well as the AER in the single-layer GBS network. It can be observed that the
deployment of UAVs introduces cross-layer interference and degrades the performance
of GBS users. Increasing the altitude of UAVs can mitigate interference and increase
connectivity, thereby improving AER of UAVs by 47% when ω = 3. Simulation results are
consistent with theoretical results, represented by circular lines in the same figure.

(a) (b)

Figure 5. The variation of system AER and ASE with the UAV beamwidth and deployment height.
(a) AER of GUs served from ABSs and GBSs. (b) System ASE of UAV-aided network .
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Figure 5b illustrates the relationship between the system ASE and UAV density. It
is evident that deploying UAVs to assist GBS can effectively enhance the overall ASE of
the system. However, when the UAV density becomes too high, the interference also
increases. At this point, the negative impact of inter-cell interference outweighs the benefits
of dense deployment, resulting in a decline in system ASE by 27% when ω = 6. Based on
these results, the UAV altitude and beamwidth in a UAV-aided network can be established
as an optimization problem: the goal is to maintain a certain AER for GBS users while
adjusting the UAV beamwidth and deployment height to achieve the optimal configuration
of UAV parameters. This approach maximizes AER while ensuring a balanced overall
system performance.

Figure 6 illustrates the impact of BS densities on network achievable throughput at
different UAV altitudes. Due to the large number of high-rise buildings in city centers,
the corresponding obstruction effect is significant and the coverage of GBS signals is
significantly limited. When the density of UAVs is half of that of GBSs, the network
achievable throughput increases to 86%. The building density in urban areas is relatively
low compared with urban centers, and the impact of UAVs on throughput is not significant,
indicating that the deployment of GBS basically meets the communication needs of ordinary
urban areas. These results are consistent with the findings reported in [11]. In rural
areas, where GBS density is low, the deployment of UAVs can be an effective means of
improving network capacity. Overall, the dense distribution of UAVs can provide better
network coverage and capacity support for densely populated urban areas and sparsely
populated rural areas, while the deployment of GBSs plays a greater role in urban areas.
In addition, due to the game between the interference isolation and expanding coverage
of mmWave antennas, there is an optimal flight altitude of UAVs that maximizes the
network performance.
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Figure 6. Network capacity of the typical GU at different UAV altitudes.

4.3. Overall Performance

Figure 7 demonstrates that appropriately selecting the width of the UAV can signifi-
cantly improve network performance. A larger UAV beamwidth reduces the possibility
of having no BS within main lobe, thereby increasing both coverage probability and
throughput. However, increasing the beamwidth also leads to an increase in the number
of interfering BSs, resulting in performance degradation. It is observed that increasing
beamwidth actually decreases the antenna gain and received signal power. A similar
effect occurs on the received interference power from each interfering BS. Because the
impact of desired signal and interference is proportional, the SIR remains approximately
unchanged in interference-limited scenarios. It can be noticed that the optimal beamwidth
for maximizing does not necessarily maximize throughput as throughput is the average
value over the entire SIR distribution while coverage probability only depends on a specific
SIR threshold. Therefore, an optimization design needs to find a compromise between
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these conflicting objectives and establish a trade-off between throughput and coverage. The
results highlight the importance of selecting an appropriate beamwidth for UAV antennas
to achieve optimal network performance.
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Figure 7. The relationship between network coverage probability, achievable throughput, and antenna
directional factor ω under different UAV altitudes.

5. Conclusions

In this article, by considering the repulsive relationship between UAVs, we optimized
the deployment of ABSs based on MHCPP distribution and further reduced mutual in-
terference between BSs using a mmWave antenna model with variable beam width and
direction and analyzed the coverage probability and network capacity of a mmWave UAV-
aided network. In addition, we proposed a method for selecting server BSs in UAV-aided
networks based on distance and received power and provided an approximate expression
for calculating network coverage probability. Numerical analysis and simulation results
indicated that with the enhancement of antenna directionality, the coverage probability
in rural areas could increase by 46%. In the city center, when the density of UAVs was
half of the density of GBSs, the network throughput could reach 86%. The theoretical
results are consistent with the simulation results. Future work will focus on optimizing the
performance of mmWave UAV-aided networks.
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Abbreviations
The following abbreviations are used in this manuscript:

BS Base station
GU Ground user
UAVs Unmanned aerial vehicles
mmWave Millimeter wave
MHCPP Matérn hard-core point process
IoT Internet of Things
PPP Poisson point process
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GPP Binomial point processes
β-GPP β-Ginibre point process
LOS Line-of-sight
NLOS Non-line-of-sight
GBSs Ground base stations
ABSs Air base stations
SBS Serve base station
SIR Signal-to-interference ratio
MISR Mean of interference-to-signal ratio
CCDF Complementary cumulative distribution function

Appendix A. Proof of Laplace Transform of IL, IN , IG

In the A2G channel, the Laplace transform of the interference from UAVs in the NLOS
channels is derived as

LIN (z | r) = E

exp

−z ∑
j∈
{

rj>∆rN− rx

}
GjPN

t Do(ω)
(

h
r

)ω

ηNrαN
j



= E

 ∏
j∈
{

rj>∆rN− rx

}EGj

exp

−
zGjPN

t Do(ω)hω

ηNrαN+ω
j




(a)
= E

 ∏
j∈
{

rj>∆rN− rx

}
1 +

zPN
t Do(ω)hω

ηNrαN+ω
j mN

−mN


(b)
= exp

(
−2πλu

∫ ∞

∆rN− rx

tGN

(√
t2 − h2

)
·
(

1 −
(

1 +
zPN

t Do(ω)hω

ηNtαN+ωmN

)−mN
)

dt

)

(A1)

where (a) is derived from the moment-generating function (MGF) of the gamma random
variable Gi. (b) is generated from the probability generating function (PGFL) E[∏x∈Ψ f (x)] =
exp

(
−λ
∫

R2(1 − f (x))dx
)

of PPP. Next, we use the same mathematical derivation method
and then conclude that the Laplace transform of the interference from LOS UAVs LIL(z | r)
and GBSs LIG (z | r) are

LIL(z | r) = exp
(
−2πλu

∫ ∞

r
tGL

(√
t2 − h2

)
·1 −

(
1 +

zPL
t Do(ω)hωη−1

L t−(βL+ω)

mL

)−mL
dt

 (A2)

LIG (z | r) = exp

(
−2πλm

∫ ∞

∆rG− rL

zPG
t GgT−1t−β

1 + zPG
t GgT−1t−β

tdt

)
(A3)
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