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Abstract: This study provides an innovative and attractive analytical strategy to examine the nu-
merical solution for the time-fractional Schrödinger equation (SE) in the sense of Caputo fractional
operator. In this research, we present the Elzaki transform residual power series method (ET-RPSM),
which combines the Elzaki transform (ET) with the residual power series method (RPSM). This
strategy has the advantage of requiring only the premise of limiting at zero for determining the
coefficients of the series, and it uses symbolic computation software to perform the least number of
calculations. The results obtained through the considered method are in the form of a series solution
and converge rapidly. These outcomes closely match the precise results and are discussed through
graphical structures to express the physical representation of the considered equation. The results
showed that the suggested strategy is a straightforward, suitable, and practical tool for solving and
comprehending a wide range of nonlinear physical models.

Keywords: Elzaki transform; residual power series scheme; Schrödinger equation; convergence
analysis

1. Introduction

Fractional calculus (FC) is a subdivision of traditional calculus that is related to ordi-
nary differentiation and integration of any order. Therefore, FC concentrates on behaviors
that cannot be represented by classical theory [1,2]. Furthermore, mathematical models
containing a fractional order derivative contribute to an adequate representation of non-
linear structures in numerous fields of engineering and technology [3]. Many significant
developments in the study and application of fractional partial differential equations (PDEs)
have been established in previous decades. These differential equations are more efficiently
used to investigate and explain multiple behaviors in diverse domains, such as mechanical
objects, fluid dynamics, systems theory, condensation flows, thermal transfer, diffusion
unification, processing of images, and the propagation of wave phenomena [4–8]. The main
advantage of FC compared to classical calculus is that we can find the arbitrary derivative
of a function, which is restricted to the integer-order in classical calculus. Using the theory
of FC, one can examine the behavior of a vast variety of physical systems in the real world,
including the solution of problems related to natural phenomena with complex systems.
In recent times, attaining the precise results of nonlinear partial differential problems
in multiple disciplines has become more interesting work for researchers. On the other
hand, fractional differential problems possess the uncertainty property and capture the
non-locality nature of complex systems, so it has started to gain the attention of several
researchers in different fields.

Fractional quantum mechanics is a fascinating field that focuses across the time frac-
tional SE and extends the principles of quantum mechanics to systems exhibiting non-local
or memory-dependent behavior. In several physical structures, memory effects play a
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significant role in influencing their behavior. The time-fractional SE can capture memory-
dependent behavior by including fractional derivatives, which account for system history,
including the study of complex materials, biological systems, and other systems where
memory effects are significant. This framework enables the examination of field theories in
non-local or fractal spacetimes, offering valuable insights into the dynamics of quantum
fields in complex surroundings. The fractional SE involves the time derivative of fractional
order α such that 0 < α < 1, whereas the traditional SE possesses the first-order time deriva-
tive. The scientific theory beyond the mechanism of derived results for time-fractional
SE is noteworthy and remarkable in a wide area of quantum study, mathematics, and
technology domains [9–11]. The most common and generalized form of a one-dimensional
time-fractional SE model is [12]

iDα
τϑ(Υ, ξ) + δϑΥΥ(Υ, ξ) + γ|ϑ(Υ, ξ)|2ϑ(Υ, ξ) + ϕ(Υ)ϑ(Υ, ξ) = 0, Υ ∈ R, ξ ≥ 0, 0 < α ≤ 1, (1)

with initial condition

ϑ(Υ, 0) = ρ(Υ), (2)

in which i2 = −1, Dα
t expresses time-fractional derivative of Caputo order α, whereas

δ, γ ∈ R are known as constants and | . | be modulus. The ϑ(Υ, ξ) is the wave function,
ϕ(Υ) is an analytical function, and ρ(Υ) represents the displacement function.

The time-fractional SE is an important differential problem in fractional quantum
mechanics disciplines. In most of the scenarios, it is challenging to find analytical results
of time-fractional SE, and their outcomes cannot be expressed in closed form, despite that
the solutions to such a problem remain necessary for physical considerations. As a result,
effective and consistent computer stimulation needs to be carried out. Many scientists have
tackled the computational results of this model by utilizing some techniques to handle it in a
more feasible context. Sadighi and Ganji [13] employed the homotopy perturbation scheme
and Adomian decomposition approach to compute the approximate results for traditional
SE. In [14], the authors obtained the results for space–time fractional SE by applying the
strategy of RPSM and provided the series solution close to the exact solution. The authors
in [15] presented an idea based on the Laplace transform method and the homotopy
analysis scheme to derive the analytical results of the Caputo fractional order SE model.
Liaqat and Akgül [16] adopted the natural homotopy perturbation method to demonstrate
the analytical and numerical solutions of SE involving conformable fractional derivatives.
Khan et al. [17] applied the homotopy analysis scheme for the solution of SE and coupled
SE models. Okposo et al. [18] proposed q-homotopy analysis transform strategy to obtain
analytical solutions for a system of nonlinear coupled SE models involving time-fractional
derivative in Caputo sense.

Numerous researchers have offered several powerful computational and analytical
strategies for determining results for fractional-order differential problems, such as: dif-
ferential transform scheme [19], new iterative strategy [20], Trial equation strategy [21],
Adomian decomposition technique [22], generalized Taylor matrix method [23], Hermite
collocation method [24], and many others [25–27]. The power series technique [28] is
a common and straightforward scheme to find computational results for solving linear
differential problems. But in fact, finding a closed-form solution for nonlinear problems is
extremely hard and requires heavy computational work. As a result, the residual power
series approach is introduced to address the difficulty of the power series method. The resid-
ual power series approach has been used to identify computational solutions for various
linear and nonlinear frameworks in a variety of science and technology disciplines [29,30].
Tarig M [31] introduced the Elzaki transform to improve the entire process of handling
ordinary and partial differential problems in the temporal domain. Several scholars showed
that the composition of Elzaki transform with other analytical schemes provides excellent
results for linear and nonlinear fractional problems [32–35].
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In this work, we combine ET and RPSM to develop the idea of ET-RPSM and generate
the approximate results for a one-dimensional time-fractional nonlinear SE model using
the initial conditions. The main purpose of this scheme is to handle the fractional order of a
fractional problem and then obtain the series solution by using the RPSM. The ET is a very
effective and efficient tool to convert the fractional order into Elzaki space. This approach is
independent of various aspects of constraint and theory of assumption in the development
of ET-RPSM. The RPSM has the advantage of collecting the results in an order of series form
that can easily be turned into the exact solution when the limit approaches infinity. This
approach is considered for nonlinear models of fractional problems in the Caputo sense. We
perform the computational work and graphical analysis by introducing the Mathematica
program, although this causes time efficiency to be reduced. The physical behavior of
fractional problems at different fractional orders is shown. This paper is organized in the
following manner: Section 2 presents a brief overview of fractional calculus and the Elzaki
transform. The ET-RPSM algorithm is described in Section 3. We provide three numerical
implementations of the Schrödinger equation in Section 4 to demonstrate the effectiveness
of our methodology. We summarise our results and the corresponding implications in
Section 5.

2. Overview of Fractional Calculus and Elzaki Transform

This section consists of some preliminary concepts of fractional calculus, Elzaki trans-
form, and the residual power series method. These fundamental definitions are helpful for
the development of ET-RPSM.

Definition 1. The fractional integral operator of Riemann–Liouville of order α > 0 is defined as
follows [35]

Jαµ(ξ) =


1

Γ(α)
∫ ξ

0 µ(s)(ξ − s)α−1 ds, α > 0, ξ > 0,

µ(ξ), α = 0.

Definition 2. Let µ(Υ, ξ) be a function, then the fractional derivative in Caputo sense is expressed
as [35]

Dα
ξ µ(Υ, ξ) =


1

Γ(m − α)

∫ ξ
0 (ξ − q)m−α−1 ∂mµ(Υ, q)

∂qm dq, m − 1 < α < m,

∂m
ξ µ(Υ, ξ) =

∂mµ(Υ, ξ)

∂ξm , α = m, m ∈ N.

Definition 3. Let a series such as [36]

∞

∑
m=0

Qm(ξ − ξ0)
mα = Q0 + Q1(ξ − ξ0)

α + Q2(ξ − ξ0)
2α + · · · , α > 0, ξ > ξ0, (3)

is said to be a fractional power series about ξ = ξ0, in which ξ shows variable and Qm are constants
of coefficients in the series solution.

Theorem 1 ([36]). Let Q be a fractional power series at ξ = ξ0 in terms of

Q(ξ) =
∞

∑
m=0

Qm(ξ − ξ0)
mα, (4)

with 0 < m − 1 < α ≤ m, Υ ∈ I, ξ0 ≤ ξ < ξ0 + R. If Dmα
ξ µ(Υ, ξ) are continuous on

I × (ξ0, ξ0 +R), m = 0, 1, 2, · · · , then parameters of Qm(Υ) are given as
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Qm(Υ) =
Dmα

ξ µ(Υ, ξ0)

Γ(mα + 1)
, m = 0, 1, 2, · · · , (5)

where Dmα
ξ = Dα

ξ .Dα
ξ . · · · Dα

ξ (m − times).

Proof. Let µ(Υ, ξ) be a function of two variables, Υ and ξ, that represents a multiple
fractional power series of Equation (3). Now, if we consider ξ = ξ0 in Equation (4), only
the first term will left, whereas all other terms can be neglected, and thus we can obtain

Q0(Υ) = µ(Υ, ξ0). (6)

Using an operator of Dα
ξ once in Equation (4), the following expansion takes place:

Dα
ξ µ(Υ, ξ) = Γ(α + 1)Q1(Υ) +

Γ(2α + 1)
Γ(α + 1)

Q2(Υ)(ξ − ξ0)
α +

Γ(3α + 1)
Γ(2α + 1)

Q3(Υ)(ξ − ξ0)
2α + . . . , (7)

On substituting ξ = ξ0 to Equation (7), we determine the value of Q1(Υ) as

Q1(Υ) =
Dα

ξ µ(Υ, ξ0)

Γ(α + 1)
. (8)

Now, using an operator of Dα
ξ one more time in Equation (7), the following expansion

takes place:

D2α
ξ µ(Υ, ξ) = Q2Γ(2α + 1) + Q3

Γ(3α + 1)
Γ(α + 1)

(ξ − ξ0)
α + Q4

Γ(4α + 1)
Γ(2α + 1)

(ξ − ξ0)
2α + . . . . (9)

On substituting ξ = ξ0 to Equation (9), we determine the value of Q2(Υ) as

Q2(Υ) =
D2α

ξ0
µ(Υ, ξ0)

Γ(2α + 1)
. (10)

On continuing this process of using an operator of Dα
ξ m-times and then substituting ξ = ξ0,

we can easily observe the sequence of Qm(Υ) as follows

Qm(Υ) =
Dmα

ξ0
µ(Υ, ξ0)

Γ(mα + 1)
, (11)

which shows similar results for Equation (9). Hence, the theorem is proved.

Remark 1. Note that, by utilizing the series of ℑm(Υ) of Equation (11) into Equation (4), we can
achieve the multiple fractional power series of µ(Υ, ξ) at ξ = ξ0 as

µ(Υ, ξ) =
∞

∑
n=0

Dmα
ξ µ(Υ, ξ0)

Γ(mα + 1)
(ξ − ξ0)

mα, n − 1 < α ≤ n and ξ0 ≤ ξ < ξ0 + R. (12)

This is the generalized Taylor’s series algorithm. Moreover, when α = 1,

µ(Υ, ξ) =
∞

∑
n=0

∂mµ(Υ, ξ0)

∂ξm
(ξ − ξ0)

m

m!
, ξ0 ≤ ξ < ξ0 + R, (13)

which shows the classical Taylor’s series formula. Hence, a new generalization is derived
using Equation (12) which helps to obtain the results in the form series for the time-fractional
SE model.
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Definition 4. The Elzaki transform is defined as an exponential-order function, and we examine
functions in the set A described as [37]

A = µ(ξ) : ∃M, k1, k2 > 0, | µ(ξ) |< Me

| ξ |
k j , if ξ ∈ (−1)j × [0, ∞).

The constant M must be a finite number for any function in the set A whereas k1, k2 may be finite
or infinite. Moreover, The Elzaki transform in the form of an integral equation is defined as

E[µ(ξ)] = R(θ) = θ
∫ ∞

0
µ(ξ)e

−
ξ

θ dξ, ξ ≥ 0, k1 ≤ θ ≤ k2, (14)

in which θ represents a transform function of ξ and R(θ) shows ET of E[µ(ξ)]. Moreover, the
following properties are helpful for the computations of Elzaki space.

1. E[ξn] = n!θn+2,

2. E[µ′(ξ)] =
R(θ)

θ
− θµ(0),

3. E[µ′′(ξ)] =
R(θ)

θ2 − µ(0)− θµ′(0),

4. E[µn(ξ)] =
R(θ)

θn − ∑n−1
k=0 θ2−n+kµk(0),

5. E[ξα] =
∫ ∞

0 e−θξ ξα dt = θα+1Γ(α + 1), R(α) > 0.

Definition 5. The ET for a fractional order in Caput sense is expressed as

E[Dαµ(ξ)] = θ−αE[µ(ξ)]−
m−1

∑
k=0

θ2−α+kµk(0), m − 1 < α < m. (15)

Theorem 2. If R(θ) is ET of µ(ξ), then Riemann–Liouville derivatives of ET can be considered
as [38]

E[Dαµ(ξ)] = θ−α

[
R(θ)−

m

∑
k=1

{
Dα−kµ(0)

}]
, −1 < m − 1 ≤ α < m.

Proof. The Laplace transformation of the following function can be explained as

µ′(ξ) =
d

dµ
µ(ξ)

L[Dαµ(ξ)] = θαR(θ)−
m−1

∑
k=0

θk
[

Dα−k−1µ(0)
]

= θαR(θ)−
m−1

∑
k=0

θk−1
[

Dα−kµ(0)
]
= θαR(θ)−

m−1

∑
k=0

θk−2
[

Dα−kµ(0)
]

= θαR(θ)−
m−1

∑
k=0

1
θ−k+2

[
Dα−kµ(0)

]
= θαR(θ)−

m−1

∑
k=0

1
θα−k+2−α

[
Dα−kµ(0)

]
= θαR(θ)−

m−1

∑
k=0

θα 1
θα−k+2

[
Dα−kµ(0)

]
L[Dαµ(ξ)] = θα

[
R(θ)−

m−1

∑
k=0

(
1
θ

)α−k+2[
Dα−kµ(0)

]]
.
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Now, we substitute
1
θ

for θ, and the fractional-order ET of µ(ξ) becomes

E[Dαµ(ξ)] = θ−α

[
R(θ)−

m

∑
k=0

(θ)α−k+2
[

Dα−kµ(0)
]]

.

3. Strategy of ET-RPSM

This section explores the concept of ET-RPSM for numerical results of the time frac-
tional SE model. Elzaki transform has the advantage of converting the fractional order to
Elzaki space and thus we can derive an algebraic structure of the proposed model. The
structure of this model is now easy to handle with the help of RPSM and the resulting solu-
tion is obtained in terms of a successive series. We can observe that this continuous series
leads to precise results very rapidly after a minimum number of iterations. To construct
this strategy, we consider ϑ(Υ, ξ) and ρ(Υ) to be the complex functions in terms of real and
imaginary segments such as

ϑ(Υ, ξ) = µ(Υ, ξ) + iω(Υ, ξ),

ρ(Υ) = ℑ(Υ) + i§(Υ),
(16)

here µ(Υ, ξ) and ω(Υ, ξ) are multivariable real-valued analytic functions specified over
Υ ∈ R, ξ ≥ 0, and ℑ(Υ) and §(Υ) are real-valued analytic functions specified on Υ ∈ R.
Using Equation (16), we obtain the system of Equation (1) into the following PDEs system
such as

Dα
ξ µ(Υ, ξ) + δωΥΥ(Υ, ξ) + γ

(
µ2(Υ, ξ) + ω2(Υ, ξ)

)
ω(Υ, ξ) + ϕ(Υ)ω(Υ, ξ) = 0,

Dα
ξ ω(Υ, ξ)− δµΥΥ(Υ, ξ)− γ

(
µ2(Υ, ξ) + ω2(Υ, ξ)

)
µ(Υ, ξ)− ϕ(Υ)µ(Υ, ξ) = 0,

(17)

with the following conditions:

µ(Υ, 0) = ℑ(Υ),
ω(Υ, 0) = §(Υ).

(18)

The solution of system (17) with conditions (18) is the solution of Equation (1) with condi-
tions (2) completely. Therefore, we are required to establish the strategy of ET-RPSM for
the system of (17). This strategy is based on the following steps.
Step 1. We utilize the Elzaki transform to the system of (17) and then transfer it to Elzaki
space with conditions (18), we obtain


Ψ(Υ, θ) = θ2ℑ(Υ)− θαE

[
δωΥΥ(Υ, ξ) + γ

(
µ2(Υ, ξ) + ω2(Υ, ξ)

)
ω(Υ, ξ) + ϕ(Υ)ω(Υ, ξ)

]
,

Φ(Υ, θ) = θ2§(Υ) + θαE
[
δµΥΥ(Υ, ξ)− γ

(
µ2(Υ, ξ) + ω2(Υ, ξ)

)
µ(Υ, ξ)− ϕ(Υ)µ(Υ, ξ)

]
,

(19)

where Ψ(Υ, θ) = E{µ(Υ, ξ)} and Φ(Υ, θ) = E[ω(Υ, ξ)].
Step 2. We consider the solution of Equation (19) for Ψ(Υ, θ) and Φ(Υ, θ) be in the form of
the following expansions

Ψ(Υ, θ) = ∑∞
n=0 ℑn(Υ)θ2+nα, 0 < α ≤ 1, θ > 0,

Φ(Υ, θ) = ∑∞
n=0 §n(Υ)θ2+nα, 0 < α ≤ 1, θ > 0.

(20)
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where the k-th truncated series of the system Equation (20) is given by
Ψk(Υ, θ) = θ2ℑ(Υ) + ∑k

n=1 ℑn(Υ)θ2+nα, 0 < α ≤ 1, θ > 0,

Φk(Υ, θ) = θ2§(Υ) + ∑k
n=1 §n(Υ)θ2+nα, 0 < α ≤ 1, θ > 0.

(21)

Step 3. We construct the residual functions namely, Res1 and Res2 for an algebraic system
of (19) as follows

E Res1(Υ, θ) = Ψ(Υ, θ)− θ2ℑ(Υ) + θαE
[
δωΥΥ(Υ, ξ) + γ

(
µ2(Υ, ξ) + ω2(Υ, ξ)

)
ω(Υ, ξ) + ϕ(Υ)ω(Υ, ξ)

]
,

E Res2(Υ, θ) = Φ(Υ, θ)− θ2§(Υ)− θαE
[
δµΥΥ(Υ, ξ)− γ

(
µ2(Υ, ξ) + ω2(Υ, ξ)

)
µ(Υ, ξ)− ϕ(Υ)µ(Υ, ξ)

]
.

(22)

thus, the k-th truncated series of Equation (22) yields as
E(Res1

k(Υ, θ)) = Ψk(Υ, θ)− θ2ℑ(Υ)− θαE
[
δωkΥΥ(Υ, ξ) + γ

(
µ2

k(Υ, ξ) + ω2
k(Υ, ξ)

)
ωk(Υ, ξ) + ϕ(Υ)ωk(Υ, ξ)

]
,

E(Res2
k(Υ, θ)) = Φk(Υ, θ)− θ2§(Υ) + θαE

[
δµkΥΥ(Υ, ξ)− γ

(
µ2

k(Υ, ξ) + ω2(Υ, ξ)
)
µk(Υ, ξ)− ϕ(Υ)µk(Υ, ξ)

]
.

(23)

The RPSM contains a few important outcomes:

• lim
k→∞

E(Res1
k(Υ, θ)) = E(Res1(Υ, θ)), and lim

k→∞
E(Res2

k(Υ, θ)) = E(Res2(Υ, θ)), θ > δ ≥ 0.

• E(Res1(Υ, θ)) = 0, and E(Res2(Υ, θ)) = 0, for Υ ∈ I, θ > δ ≥ 0.
• lim

θ→∞
θkα+1E(Res1

k(Υ, θ)) = 0, and lim
θ→∞

θkα+1E(Res2
k(Υ, θ)) = 0, for Υ ∈ I, θ > δ ≥ 0,

and k = 1, 2, 3, · · ·
Step 4. Upgrade k-th Elzaki series of Equation (21) into the k-th Elzaki residual function of
Equation (23).
Step 5. The components of ℑk(Υ) and and §k(Υ) are obtained by applying the fact lim

θ→∞
θkα+1

E(Res1
k(Υ, θ)) = 0, and lim

θ→∞
θkα+1E(Res2

k(Υ, θ)) = 0 where k = 1, 2, 3, · · · . The calculated

results of Ψk(Υ, θ) and Φk(Υ, θ) are collected in terms of a series, which can be utilized for
fractional expansion series (21).
Step 6. Using the inverse ET on both sides of Elzaki series, one can obtain the components
Ψk(Υ, θ) and Φk(Υ, θ) for the main Equation (17).

4. Numerical Applications

Here, we provide three numerical applications that demonstrate the effectiveness,
efficiency, and legitimacy of ET-RPSM. The Mathematica software is used to carry out all
symbolic and mathematical computations.

4.1. Problem 1

Consider an example of a one-dimensional linear time-fractional SE model as follows:

iDα
ξ ϑ(Υ, ξ)− ϑΥΥ(Υ, ξ) = 0, Υ ∈ R, ξ ≥ 0, 0 < α ≤ 1, (24)

along the condition

ϑ(Υ, 0) = e3iΥ. (25)

The Equation (24) may turn to an identical structure of fractional problem such as{
Dα

ξ µ(Υ, ξ)− ωΥΥ(Υ, ξ) = 0,
Dα

ξ ω(Υ, ξ) + µΥΥ(Υ, ξ) = 0,
(26)
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with the subsequent conditions

µ(Υ, 0) = cos 3Υ, ω(Υ, 0) = sin 3Υ. (27)

By using ET in Equation (26) and dealing with condition (27), we obtain
Ψ(Υ, θ) = θ2 cos 3Υ + θαΦΥΥ(Υ, θ),

Φ(Υ, θ) = θ2 sin 3Υ − θαΨΥΥ(Υ, θ).
(28)

Let the solution of Equation (26) be in the k−th transform function as
Ψk(Υ, θ) = θ2 cos 3Υ + ∑k

n=1 ℑn(Υ)θ2+nα,

Φk(Υ, θ) = θ2 sin 3Υ + ∑k
n=1 §n(Υ)θ2+nα.

(29)

Furthermore, k-th ET-RPSM of the algebraic Equation (28) is constructed as
E(Res1

k(Υ, θ)) = Ψk(Υ, θ)− θ2 cos 3Υ − θαΦkΥΥ(Υ, θ),

E(Res2
k(Υ, θ)) = Φk(Υ, θ)− θ2 sin 3Υ + θαΨkΥΥ(Υ, θ).

(30)

To find the first unknown parameter in Equation (29), we change the first truncated se-
quence by 

Ψ1(Υ, θ) = θ2 cos 3Υ +ℑ1(Υ)θ2+α,

Φ1(Υ, θ) = θ2 sin 3Υ + §1(Υ)θ2+α.
(31)

We obtain the 1st ET-RPSM using Equation (31) into system (30) for k = 1,
E(Res1

1(Υ, θ)) = ℑ1(Υ)θ2+α − θα
(
− 9θ2 sin 3Υ + §′′1 θ2+α

)
,

E(Res2
1(Υ, θ)) = §1(Υ)θ2+α + θα

(
9θ2 cos 3Υ +ℑ′′

1 θ2+α
)

.

(32)

Employing RPSM facts and taking the limit as θ → ∞ into the system (32), the values of the
following coefficients are obtained as

ℑ1(Υ) = −9 sin 3Υ, §1(Υ) = 9 cos 3Υ. (33)

Similarly, to find the second unknown parameter in Equation (29), we change the second
truncated sequence by

Ψ2(Υ, θ) = θ2 cos 3Υ − 9 sin 3Υ θ2+α +ℑ2θ2+2α,

Φ2(Υ, θ) = θ2 sin 3Υ + 9 cos 3Υ θ2+α + §2θ2+2α.
(34)

We obtain the 2nd ET-RPSM using Equation (34) into system (30) for k = 2,
E(Res1

2(Υ, θ)) = ℑ2(Υ)θ2+2α + 81θ2+2α cos 3Υ − §′′2 θ2+4α
)

,

E(Res2
2(Υ, θ)) = §2(Υ)θ2+2α − 81θ2+2α sin 3Υ +ℑ′′

2 θ2+4α
)

.

(35)
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Employing RPSM facts and taking the limit as θ → ∞ into the system (35), the values of the
following coefficients are obtained as

ℑ2(Υ) = −81 cos 3Υ, §2(Υ) = −81 sin 3Υ. (36)

We can find the values of the following parameters by using the same process for k = 3
and k = 4:

ℑ3(Υ) = 729 sin 3Υ, §3(Υ) = −729 cos 3Υ,

ℑ4(Υ) = 6561 cos 3Υ, §4(Υ) = 6561 sin 3Υ.
(37)

Thus, we can express the fourth approximation of Equation (29) with the help of Equa-
tions (33), (36) and (37) as follows

Ψ4(Υ, θ) = θ2 cos 3Υ − 9 sin 3Υθ2+α − 81 cos 3xs2+2α + 729 sin 3xs2+3α + 6561 cos 3xs2+4α,

Φ4(Υ, θ) = θ2 sin 3Υ + 9 cos 3Υθ2+α − 81 sin 3xs2+2α − 729 cos 3xs2+3α + 6561 sin 3xs2+4α.
(38)

By using inverse ET in Equation (38), we can obtain the 4th approximate ET-RPSM results
of Equation (26) with (27) such as

µ4(Υ, ξ) = cos(3Υ)− 9 sin(3Υ)
Γ(1 + α)

ξα − (9)2 cos(3Υ)
Γ(1 + 2α)

ξ2α +
(9)3 sin(3Υ)

Γ(1 + 3α)
ξ3α +

(9)4 cos(3Υ)
Γ(1 + 4α)

ξ4α,

ω4(Υ, ξ) = sin(3Υ) +
9 cos(3Υ)
Γ(1 + α)

ξα − (9)2 sin(3Υ)
Γ(1 + 2α)

ξ2α − (9)3 cos(3Υ)
Γ(1 + 2α)

ξ3α +
(9)4 sin(3Υ)

Γ(1 + 4α)
ξ4α.

(39)

subsequently, the coefficients of ET-RPSM solutions can be derived by continuing these
iterations. By examining the structure of the parameters, we can express the precise results
for µ(Υ, ξ) and ω(Υ, ξ) as the following series

ϑ(Υ, ξ) = e3iΥχ(ξ). (40)

where

χ(ξ) = 1 + 9i
ξα

Γ(1 + α)
+ (9i)2 ξ2α

Γ(1 + 2α)
+ (9i)3 ξ3α

Γ(1 + 3α)
+ (9i)4 ξ4α

Γ(1 + 4α)
+ · · · .

When α = 1, the system of Equation (24) with (25) express the following result.

ϑ(Υ, ξ) = e3i(Υ+3ξ), (41)

which is compatible with the results produced by the decomposition approach [13], ho-
motopy analysis scheme [39], and the variational scheme [40]. Thus, we can show that
ET-RPSM is a straightforward, basic, and successful approach to fractional problems.

Figure 1a depicts the behavior of the obtained results in 3D plot with fractional order
of α = 0.5 and −2 ≤ Υ ≤ 2, 0 ≤ ξ ≤ 0.5. Figure 1b depicts the behavior of the obtained
results in 3D plot with fractional order of α = 0.8 and 0 ≤ Υ ≤ 5, 0 ≤ ξ ≤ 0.5. Figure 1c
demonstrates the behavior of ET-RPSM results of the time-fractional SE model in 3D plot
with fractional order of α = 1 and 0 ≤ Υ ≤ 0.1, 0 ≤ ξ ≤ 0.1. Figure 1d depicts the behavior
of the exact solution of the time-fractional SE model in 3D plot with 0 ≤ Υ ≤ 0.1, 0 ≤ ξ ≤ 0.1.
It is observed that the derived results for various levels of fractional order confirm the
authenticity, accuracy, and compatibility of our proposed scheme.
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(a) (b)

(c) (d)

Figure 1. Graphical structure of ET-RPSM results for µ(Υ, ξ) and ω(Υ, ξ). (a) ET-RPSM results of
µ(Υ, ξ) and ω(Υ, ξ) at α = 0.5. (b) ET-RPSM results of µ(Υ, ξ) and ω(Υ, ξ) at α = 0.8. (c) ET-RPSM
results of µ(Υ, ξ) and ω(Υ, ξ) at α = 1. (d) The exact results of µ(Υ, ξ) and ω(Υ, ξ) at α = 1.

4.2. Problem 2

Consider an example of a one-dimensional nonlinear time-fractional SE model as fol-
lows:

iDα
ξ ϑ(Υ, ξ) + ϑΥΥ(Υ, ξ) + 2|ϑ(Υ, ξ)|2ϑ(Υ, ξ) = 0, Υ ∈ R, ξ ≥ 0, 0 < α ≤ 1, (42)

along the condition

ϑ(Υ, 0) = eiΥ. (43)

The Equation (42) may turn to an identical structure of fractional problem such as{
Dα

ξ µ(Υ, ξ) + ωΥΥ(Υ, ξ) + 2
(
µ2(Υ, ξ) + ω2(Υ, ξ)

)
ω(Υ, ξ) = 0,

Dα
ξ ω(Υ, ξ)− µΥΥ(Υ, ξ)− 2

(
µ2(Υ, ξ) + ω2(Υ, ξ)

)
µ(Υ, ξ) = 0,

(44)

with the subsequent conditions

µ(Υ, 0) = cos(Υ), ω(Υ, 0) = sin(Υ). (45)

By using ET in Equation (44) and dealing with condition (45), we obtain
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Ψ(Υ, θ) = θ2 cos Υ − θα

{
Φxx(Υ, θ) + 2

(
Ψ2(Υ, θ) + Φ2(Υ, θ)

)
Φ(Υ, θ)

}
,

Φ(Υ, θ) = θ2 sin Υ + θα
{

Ψxx(Υ, θ) + 2
(

Ψ2(Υ, θ) + Φ2(Υ, θ)
)

Ψ(Υ, θ)
}

.

(46)

Let the solution of Equation (44) be in the k−th transform function as
Ψk(Υ, θ) = θ2 cos Υ + ∑k

n=1 ℑn(Υ)θ2+nα,

Φk(Υ, θ) = θ2 sin Υ + ∑k
n=1 §n(Υ)θ2+nα.

(47)

Furthermore, k-th ET-RPSM of the algebraic Equation (46) is constructed as


E(Res1

k(Υ, θ)) = Ψk(Υ, θ)− θ2 cos Υ + θα
{

ΦkΥΥ(Υ, θ) + 2
(

Ψ2
k(Υ, θ) + Φ2

k(Υ, θ)
)

Φk(Υ, θ)
}

,

E(Res2
k(Υ, θ)) = Φ(Υ, θ)− θ2 sin Υ − θα

{
ΨkΥΥ(Υ, θ) + 2

(
Ψ2

k(Υ, θ) + Φ2
k(Υ, θ)

)
Ψk(Υ, θ)

}
.

(48)

We can find the values of the following parameters by using the same process for k = 1, 2, 3, 4
such as

ℑ1(Υ) = − sin Υ, §1(Υ) = cos Υ

ℑ2(Υ) = − cos Υ, §2(Υ) = − sin Υ

ℑ3(Υ) =
(

5 − 2
Γ(1 + 2α)

Γ2(1 + α)

)
sin Υ, §3(Υ) = −

(
5 − 2

Γ(1 + 2α)

Γ(1 + α)2

)
cos Υ

ℑ4(Υ) =
(

5 − 2Γ(1 + 2α)

Γ(1 + α)2 +
4Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)
− 2Γ(1 + 3α)

Γ(1 + α)3

)
cos Υ, §4(Υ) =

(
5 − 2Γ(1 + 2α)

Γ(1 + α)2 +
4Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)
− 2Γ(1 + 3α)

Γ(1 + α)2

)
sin Υ.

(49)

So, the 4th approximate solution of system (47) with the help of system of Equation (49)
can be expressed as

Ψ4(Υ, θ) = θ2 cos Υ − θ2+α sin Υ − θ2+2α cos Υ +

(
5 − 2

Γ(1 + 2α)

Γ2(1 + α)

)
θ2+3α sin Υ

+

(
5 − 2Γ(1 + 2α)

Γ(1 + α)2 +
4Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)
− 2Γ(1 + 3α)

Γ(1 + α)3

)
θ2+4α cos Υ,

Φ4(Υ, θ) = θ2 sin Υ + θ2+α cos Υ − θ2+2α sin Υ −
(

5 − 2
Γ(1 + 2α)

Γ2(1 + α)

)
θ2+3α cos Υ

+

(
5 − 2Γ(1 + 2α)

Γ(1 + α)2 +
4Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)
− 2Γ(1 + 3α)

Γ(1 + α)3

)
θ2+4α sin Υ.

(50)

Applying the inverse Elzaki transform in Equation (50) to obtain the 4th approximate
ET-RPSM solution of system (44) with (45) in the following series forms

µ4(Υ, ξ) = cos Υ − sin Υ
ξα

Γ(1 + α)
− cos Υ

ξ2α

Γ(1 + 2α)
+

(
5 − 2

Γ(1 + 2α)

Γ2(1 + α)

)
sin Υ

ξ3α

Γ(1 + 3α)

+

(
5 − 2Γ(1 + 2α)

Γ(1 + α)2 +
4Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)
− 2Γ(1 + 3α)

Γ(1 + α)3

)
cos Υ

ξ4α

Γ(1 + 4α)
,

ω4(Υ, ξ) = sin Υ + cos Υ
ξα

Γ(1 + α)
− sin Υ

ξ2α

Γ(1 + 2α)
−
(

5 − 2
Γ(1 + 2α)

Γ(1 + α)2

)
cos Υ

ξ3α

Γ(1 + 2α)

+

(
5 − 2Γ(1 + 2α)

Γ(1 + α)2 +
4Γ(1 + 3α)

Γ(1 + α)Γ(1 + 2α)
− 2Γ(1 + 3α)

Γ(1 + α)3

)
sin Υ

ξ4α

Γ(1 + 4α)
,

(51)
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subsequently, the coefficients of ET-RPSM solutions can be derived by continuing these
iterations. By examining the structure of the parameters, we can express the precise results
for µ(Υ, ξ) and ω(Υ, ξ) as the following series.

ϑ(Υ, ξ) = eiΥχ(ξ). (52)

where

χ(ξ) = 1 − 3i
ξα

Γ(1 + α)
+ (3i)2 ξ2α

Γ(1 + 2α)
− i3

(
63 − 18Γ(1 + 2α)

Γ2(1 + α)

) ξ3α

Γ(1 + 3α)
+ · · · .

When α = 1, the system of Equation (42) with (43) express the following result.

ϑ(Υ, ξ) = ei(Υ+ξ), (53)

which is compatible with the results produced by the decomposition approach [13], ho-
motopy analysis scheme [39], and the variational scheme [40]. Thus, we can show that
ET-RPSM is a straightforward, basic, and successful approach to fractional problems.

Figure 2a depicts the behavior of the obtained results in 3D plot with fractional order
of α = 0.5 and 0 ≤ Υ ≤ 1, 0 ≤ ξ ≤ 1. Figure 2b depicts the behavior of the obtained
results in 3D plot with fractional order of α = 0.8 and 0 ≤ Υ ≤ 1, 0 ≤ ξ ≤ 0.5. Figure 2c
demonstrates the behavior of ET-RPSM results of time-fractional SE model in 3D plot with
fractional order of α = 1 and 0 ≤ Υ ≤ 5, 0 ≤ ξ ≤ 1. Figure 2d depicts the behavior of
the exact solution of the time-fractional SE model in 3D plot with 0 ≤ Υ ≤ 5, 0 ≤ ξ ≤ 1.
It is observed that the derived results for various levels of fractional order confirm the
authenticity, accuracy, and compatibility of our proposed scheme.

(a) (b)

(c) (d)

Figure 2. Graphical structure of ET-RPSM results for µ(Υ, ξ) and ω(Υ, ξ). (a) ET-RPSM results of
µ(Υ, ξ) and ω(Υ, ξ) at α = 0.5. (b) ET-RPSM results of µ(Υ, ξ) and ω(Υ, ξ) at α = 0.8. (c) ET-RPSM
results of µ(Υ, ξ) and ω(Υ, ξ) at α = 1. (d) The exact solution of µ(Υ, ξ) and ω(Υ, ξ) at α = 1.
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4.3. Problem 3

Consider another example of a one-dimensional nonlinear time-fractional SE model
as follows:

iDα
ξ ϑ(Υ, ξ) + ϑΥΥ(Υ, ξ) + 2|ϑ(Υ, ξ)|4ϑ(Υ, ξ) = 0, Υ ∈ R, ξ ≥ 0, 0 < α ≤ 1, (54)

along the following initial condition

ϑ(Υ, 0) = (6sech2(4Υ))
1
4 . (55)

The Equation (54) may turn to an identical structure of fractional problem such as{
Dα

ξ µ(Υ, ξ) + ωΥΥ(Υ, ξ) + 2
(
µ4(Υ, ξ) + 2µ2(Υ, ξ)ω2(Υ, ξ) + ω4(Υ, ξ)

)
ω(Υ, ξ) = 0,

Dα
ξ ω(Υ, ξ)− µΥΥ(Υ, ξ)− 2

(
µ4(Υ, ξ) + 2µ2(Υ, ξ)ω2(Υ, ξ) + ω4(Υ, ξ)

)
µ(Υ, ξ) = 0,

(56)

with the subsequent conditions

µ(Υ, 0) =
(

6 sech2(4Υ)
) 1

4 , ω(Υ, 0) = 0. (57)

By using ET in Equation (56) and dealing with condition (57), we obtain


Ψ(Υ, θ) = θ2(6sech2(4Υ))

1
4 − θα

{
Φxx(Υ, θ) + 2

(
Ψ4(Υ, θ) + 2Ψ2(Υ, θ)Φ2(Υ, θ) + Φ4(Υ, θ)

)
Φ(Υ, θ)

}
,

Φ(Υ, θ) = θα
{

Ψxx(Υ, θ) + 2
(

Ψ4(Υ, θ) + 2Ψ2(Υ, θ)Φ2(Υ, θ) + Φ4(Υ, θ)
)

Ψ(Υ, θ)
}

.

(58)

Let the solution of Equation (56) be in the k−th transform function as
Ψk(Υ, θ) = θ2

(
6 sech2(4Υ)

) 1
4
+ ∑k

n=1 ℑn(Υ)θ2+nα,

Φk(Υ, θ) = ∑k
n=1 §n(Υ)θ2+nα.

(59)

Furthermore, k-th ET-RPSM of the algebraic Equation (58) is constructed as


E(Res1

k(Υ, θ)) = Ψk(Υ, θ)− θ2
(

6 sech2(4Υ)
) 1

4
+ θα

{
ΦkΥΥ(Υ, θ) + 2

(
Ψ4

k(Υ, θ) + 2Ψ2
k(Υ, θ)Φ2

k(Υ, θ) + Φ4
k(Υ, θ)

)
Φk(Υ, θ)

}
,

E(Res2
k(Υ, θ)) = Φk(Υ, θ)− θα

{
ΨkΥΥ(Υ, θ) + 2

(
Ψ4

k(Υ, θ) + 2Ψ2
k(Υ, θ)Φ2

k(Υ, θ) + Φ4
k(Υ, θ)

)
Ψk(Υ, θ)

}
.

(60)

We can find the values of the following parameters by using the same process for k = 1, 2, 3, 4
such as

ℑ1(Υ) = 0, §1(Υ) = 4
(

6 sech2(4Υ)
) 1

4 ,

ℑ2(Υ) = −42
(

6 sech2(4Υ)
) 1

4 , §2(Υ) = 0,

ℑ3(Υ) = 0, §3(Υ) = −43
(

6 sech2(4Υ)
) 1

4

((25
2

+
1
2

cosh 8Υ − 6Γ(1 + 2α)

Γ(1 + α)2

)
sech24Υ

)
,

ℑ4(Υ) = 44
(

6 sech2(4Υ)
) 1

4

(
601

2
+ 6

Γ(1 + 3α)

Γ(1 + α)3

(2Γ(1 + α)2

Γ(1 + 2α)
− 1
)

+
1
2

cosh 8Υ − 384sech24Υ +
6Γ(1 + 2α)

Γ(1 + α)2

(
32sech24Υ − 25

))
sech24Υ, §4(Υ) = 0.

(61)
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So, the 4th approximate solution of system (59) with the help of system of Equation (61)
can be expressed as

Ψ4(Υ, θ) = (6sech2(4Υ))
1
4 θ2 + (4i)2

(
6sech2(4Υ)

) 1
4
θ2+2α + 44

(
6 sech2(4Υ)

) 1
4
θ2+4α

(
601
2 + 6 Γ(1+3α)

Γ(1+α)3

(
2Γ(1+α)2

Γ(1+2α)
− 1
)

+ 1
2 cosh 8Υ − 384sech24Υ + 6Γ(1+2α)

Γ(1+α)2

(
32sech24Υ − 25

))
sech24Υ,

Φ4(Υ, θ) = 4
(

6sech2(4Υ)
) 1

4
θ2+α − 43(6sech2(4Υ)

) 1
4 θ2+3α

((
25
2 + 1

2 cosh 8Υ − 6Γ(1+2α)
Γ(1+α)2

)
sech24Υ

)
.

(62)

Applying the inverse Elzaki transform to Equation (62) to obtain the 4th approximate
ET-RPSM solution of system (56) with (57) in the following series forms

µ4(Υ, ξ) = (6sech2(4Υ))
1
4 + (4i)2

(
6sech2(4Υ)

) 1
4 ξ2α

Γ(1 + 2α)
+ 44(6sech2(4Υ)

) 1
4

(
601
2 + 6 Γ(1+3α)

Γ(1+α)3

(
2Γ(1+α)2

Γ(1+2α)
− 1
)

+ 1
2 cosh 8Υ − 384sech24Υ + 6Γ(1+2α)

Γ(1+α)2

(
32sech24Υ − 25

))
sech24Υ

ξ4α

Γ(1 + 4α)
,

ω4(Υ, ξ) = 4
(

6sech2(4Υ)
) 1

4 ξα

Γ(1 + α)
− 43(6sech2(4Υ)

) 1
4

((
25
2 + 1

2 cosh 8Υ − 6Γ(1+2α)
Γ(1+α)2

)
sech24Υ

)
ξ3α

Γ(1 + 3α)
.

(63)

subsequently, the coefficients of ET-RPSM solutions can be derived by continuing these
iterations. By examining the structure of the parameters, we can express the precise results
for µ(Υ, ξ) and ω(Υ, ξ) as the following series

ϑ(Υ, ξ) =
(

6sech2(4Υ)
) 1

4

(
1 + 4i

ξα

Γ(1 + α)
+ (4i)2 ξ2α

Γ(1 + 2α)

+ (4i)3
(25

2
+

1
2

cosh 8Υ − 6Γ(1 + 2α)

Γ(1 + α)2

)
csch24Υ

ξ3α

Γ(1 + 3α)
+ · · ·

)
.

(64)

When α = 1, the system of Equation (54) with (55) express the following result.

ϑ(Υ, ξ) =
(

6sech2(4Υ)
) 1

4 e4iΥ, (65)

which is compatible with the results produced by the decomposition approach [13], ho-
motopy analysis scheme [39], and the variational scheme [40]. Thus, we can show that
ET-RPSM is a straightforward, basic, and successful approach to fractional problems.

Figure 3a depicts the behavior of the obtained results in 3D plot with fractional order
of α = 0.5 and 0 ≤ Υ ≤ 5, 0 ≤ ξ ≤ 1. Figure 3b depicts the behavior of the obtained
results in 3D plot with fractional order of α = 0.8 and 0 ≤ Υ ≤ 2, 0 ≤ ξ ≤ 0.5. Figure 3c
demonstrates the behavior of ET-RPSM results of time- fractional SE model in 3D plot with
fractional order of α = 1 and 0 ≤ Υ ≤ 0.5, 0 ≤ ξ ≤ 0.5. Figure 3d depicts the behavior of
the exact solution of the time-fractional SE model in 3D plot with 0 ≤ Υ ≤ 0.5, 0 ≤ ξ ≤ 0.5.
It is observed that the derived results for various levels of fractional order confirm the
authenticity, accuracy, and compatibility of our proposed scheme.
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(a) (b)

(c) (d)

Figure 3. Graphical structure of ET-RPSM results for µ(Υ, ξ) and ω(Υ, ξ). (a) ET-RPSM results of
µ(Υ, ξ) and ω(Υ, ξ) at α = 0.5. (b) ET-RPSM results of µ(Υ, ξ) and ω(Υ, ξ) at α = 0.8. (c) ET-RPSM
results of µ(Υ, ξ) and ω(Υ, ξ) at α = 1. (d) The exact solution of µ(Υ, ξ) and ω(Υ, ξ) at α = 1.

5. Conclusions

In this research, we have examined the numerical results of the one-dimensional
time-fractional Schrödinger problem. The current approach combines the fractional RPSM
with the Elzaki transform operator. The advantage of using the ET-RPSM is that it produces
a more accurate convergence series and requires an appropriate amount of computing
without dispersion, variation, or any other physical restrictions. We illustrate three numer-
ical applications to ensure that the proposed method is effective and reliable in finding
the numerical results of fractional-ordered models. The efficiency of this strategy was con-
firmed through rigorous analysis and sketches. We discussed the results through numerical
simulation and graphics in various fractional orders. The solutions offered are innovative
and have not been reported in any existing literature. As a result, this method offers po-
tential applications for addressing and resolving various highly nonlinear fractional-order
equations. The resulting solutions might be useful in some real-life scenarios or particular
disciplines, including nonlinear optics and quantum mechanics. This approach might be
considered in future research to find exact and approximate results for systems of nonlinear
fractional issues that arise in a variety of physical and dynamical models.
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