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Keywords: Riemann–Liouville; Caputo; Sturm–Liouville; eigenvalues; fractional; spectral theory;
oscillations; variational

MSC: 34B24; 34L10; 34C10

1. Introduction

Lately, there has been considerable interest in the realm of fractional differential
equations formulated using combinations of left and/or right Riemann and/or Caputo
differential operators. Recent interest in fractional differential equations using combinations
of left and/or right Riemann and/or Caputo operators motivates our exploration. This
paper delves into the fundamental questions concerning the spectral and oscillation theory
for equations of the form:

Dα
b(pDα

a y)(x) + q(x)y(x) = λw(x)y(x), x ∈ [a, b] (1)

subject to the boundary conditions

I1−α
a y(a) = 0, I1−α

a y(b) = 0 (2)

where 0 < α < 1 and p, q, and w are real or complex-valued and continuous (though these
conditions can be substantially relaxed, as elaborated upon below and in, for instance, [1]).
The operator Dα

b represents a right-Caputo differential operator, and Dα
a symbolizes a

left-Riemann–Liouville differential operator (see Section 2). This interest stems from the
prospect that, when these operators are appropriately defined, they could serve as a
comprehensive analogue to the Sturm–Liouville theory. The formulation’s advantage lies
in encompassing the following classical Sturm–Liouville problem upon taking the limit
as α → 1:

−(p(x)y′)′ + q(x)y = λy(x), x ∈ [a, b]

with boundary conditions:
y(a) = 0, y(b) = 0.

The importance of the Sturm–Liouville equation in the preceding display cannot be
underestimated. It appears in the most basic applications of the method for the sepa-
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ration of variables in both the one-dimensional vibrating string and heat equations and
is at the centre of applied mathematics [1]. An attempt to extend the framework of the
Sturm–Liouville equation to derivatives with fractional orders such as Equation (1) has been
considered in various papers by the authors and others. See for example [2–6]. Numerical
techniques for solving fractional equations can be found in the papers [7,8], among others.
The potential applications of the field are widespread and we cite [9–12] as examples.

The existence and uniqueness of solutions to the initial value problems associated with

Dα
b(pDα

a y)(x) + q(x)y(x) = 0, x ∈ [a, b], (3)

has already been considered in [13]. As in the ordinary derivative case, that is, the case
where α = 1, a representation of the solutions to (1) is generally unavailable, except in the
simplest of cases where q(x) = 0, see Corollary 3.

In this paper, by means of a change of variable, we initially transform the prob-
lems (1) and (2) into a modified version of a differential equation with a principal term
structured in the classical form, see (16). Subsequently, we investigate the spectral theory
of this hybrid problem by establishing the orthogonality property of its eigenfunctions,
establishing a major comparison theorem for its solutions, and formulating new integration
by parts formulae for modified fractional integrals and derivatives with interior points in
the limits of the integrals in question. Furthermore, we delve into the variational charac-
terization of the first eigenvalue within this context and show that its first eigenfunction
must be non-zero in the interior. We show that apparently new definitions of fractional
derivatives can lead to results completely analogous to classical Sturm–Liouville theory by
means of simple transformations.

2. Preliminaries

NOTATION:
We use the notation in [13]. Thus, in this paper, the Caputo (resp. the Riemann–

Liouville) derivatives will be denoted by boldface (resp. upper case) letters, while ordinary
derivatives have only superscripts that are an integer. As in [13] we will omit the obvi-
ous ± subscripts in expressions such I1−α

a+ y(x), Dα
b−y(x), and Dα+

b y(x). Hence, they will be
written as I1−α

a y(x), and Dα
b y(x), etc., including expressions involving Caputo derivatives.

The following abbreviations will also be used from time to time: (pDα
a y)(x) for p(x)Dα

a y(x);
Iα
b (qy)(x) for Iα

b (q(x)y(x)). Moreover, the Caputo derivatives will be written with a bold
face D, so that Dα

a , Dα
b will denote left- and right-Caputo derivatives, respectively, while

Dα
a , Dα

b will refer to left- and right-Riemann–Liouville derivatives. As usual, Dn, Dj, etc.,
will be ordinary derivatives, as will expressions with a prime superscript, as usual.

We refer the reader to texts such as [14] for definitions and detailed proofs of the
following propositions from fractional calculus. In the following definitions the subscripts
a, b refer to the left and right endpoints of a given interval [a, b].

Definition 1 ([14], p. 69). The left- and the right-Riemann–Liouville fractional integrals Iα
a and

Iα
b of order α ∈ R+ are defined by

Iα
a f (t) :=

1
Γ(α)

∫ t

a

f (s)
(t − s)1−α

ds, t ∈ (a, b], (4)

and

Iα
b f (t) :=

1
Γ(α)

∫ b

t

f (s)
(s − t)1−α

ds, t ∈ [a, b), (5)

respectively, where Γ(α) is the Gamma function and I0
a ( f ) = f , I−n

a ( f ) = f (n) is the ordinary nth
derivative of f [15].
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Let x ∈ [a, b] where x may be an interior point. We introduce the following definitions
(which include the case where a, b are end points as per the previous definition).

Definition 2. The left- and the right-Riemann–Liouville fractional integrals Iα
x+ and Iα

x− of order
α ∈ R+ are defined by

Iα
x+ f (t) :=

1
Γ(α)

∫ t

x

f (s)
(t − s)1−α

ds, t ∈ (a, b], x ∈ [a, b), (6)

and

Iα
x− f (t) :=

1
Γ(α)

∫ x

t

f (s)
(s − t)1−α

ds, t ∈ [a, b), x ∈ (a, b], (7)

respectively.

Definition 3 ([14], p. 92). The left- and right-Caputo fractional derivatives Dα
a and Dα

b are
defined by

Dα
a f (t) := I1−α

a ◦ D f (t) =
1

Γ(1 − α)

∫ t

a

f ′(s)
(t − s)α

ds, t > a, (8)

and

Dα
b f (t) := −I1−α

b ◦ D f (t) = − 1
Γ(1 − α)

∫ b

t

f ′(s)
(s − t)α

ds, t < b, (9)

where f is assumed to be differentiable and the integrals exist. Additionally, for 0 < x < 1, we
define the new symbols

Dα
x+ f (t) := I1−α

x+ ◦ D f (t) =
1

Γ(1 − α)

∫ t

x

f ′(s)
(t − s)α

ds, t > a, x ∈ [a, b) (10)

and

Dα
x− f (t) := −I1−α

x− ◦ D f (t) =
−1

Γ(1 − α)

∫ x

t

f ′(s)
(s − t)α

ds, t < b, x ∈ (a, b] (11)

Definition 4 ([14], pp. 70–71). The left- and the right-Riemann–Liouville fractional derivatives
Dα

a and Dα
b are defined by

Dα
a f (t) := D ◦ I1−α

a f (t) =
1

Γ(1 − α)

d
dt

∫ t

a

f (s)
(t − s)α

ds, t > a, (12)

and

Dα
b f (t) := −D ◦ I1−α

b f (t) = − 1
Γ(1 − α)

d
dt

∫ b

t

f (s)
(s − t)α

ds, t < b, (13)

where f is assumed to be differentiable and the integrals exist. Additionally, for 0 < x < 1, we
define the new symbols

Dα
x+ f (t) := D ◦ I1−α

x+ f (t) =
1

Γ(1 − α)

d
dt

∫ t

x

f (s)
(t − s)α

ds, t > a, x ∈ [a, b) (14)

and

Dα
x− f (t) := −D ◦ I1−α

x− f (t) =
−1

Γ(1 − α)

d
dt

∫ x

t

f (s)
(s − t)α

ds, t < b, x ∈ (a, b] (15)

Proposition 1 ([14], pp. 74–75). For y(t) ∈ L1(a, b) and I1−α
a y, I1−α

b y ∈ AC[a, b], we have
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Iα
a Dα

a y(t) = y(t)− (t − a)α−1

Γ(α)
I1−α
a y(a),

Iα
b Dα

b y(t) = y(t)− (b − t)α−1

Γ(α)
I1−α
b y(b).

Proposition 2 ([14], p. 71).

Dα
a

(
(x − a)β

)
=

{
0, if α − β − 1 ∈ N = {0, 1, . . .},

Γ(β+1)
Γ(β−α+1) (x − a)β−α, otherwise.

Proposition 3 ([14], p. 91). Whenever 0 < α < 1 then,

Dα
a f (t) =

f (a)
Γ(1 − α)

(t − a)−α + Dα
a f (t).

So, Dα
a f (t) = Dα

a f (t) if f (a) = 0.

Proposition 4 ([16], p. 44, [14], p. 77). For 0 < α < 1 and f ∈ L1(a, b) we have

Dα
a Iα

a f (t) = f (t) and Dα
b Iα

b f (t) = f (t).

Proposition 5 ([14], pp. 93). A semigroup property holds, i.e., for any α > 0, β

Iα
a Iβ

a f (t) = Iα+β
a f (t), D(Iα+1 f )(t) = Iα f (t),

if all the integrals exist.

Proposition 6 ([14], p. 71, proposition 2.1). For α, β > 0 we have,

Iα
a ((t − a)β−1)(x) =

Γ(β)

Γ(α + β)
(x − a)α+β−1.

Proposition 7 ([5], pp. 406). If all the integrals exist, we have two integration by parts formulae
given by ∫ b

a
f (x)Dα

b g(x)dx =
∫ b

a
g(x)Dα

a f (x)dx − f (x)I1−α
b g(x)|bx=a

and ∫ b

a
f (x)Dα

a g(x)dx =
∫ b

a
g(x)Dα

b f (x)dx + f (x)I1−α
a g(x)|bx=a

3. Reduction to a Hybrid Fractional Equation

We refer to [13] for fundamental existence and uniqueness questions related to (3).
We will, therefore, tacitly assume that, besides the hypotheses presented in the sequel,
additional assumptions are to be specified to allow for the existence and uniqueness of
either absolutely continuous or L2(a, b) solutions on [a, b] (see [13] for detailed assumptions
in this case).

Although the results in [13] are formulated for the measurable coefficients pandq
in (3), in the sequel we will assume that p, q are continuous on [a, b] and p(x) > 0 through-
out. Unless otherwise specified we will always assume that 0 < α < 1.

In this section we will transform (3), which involves a right-Caputo derivative, to a
more convenient form whose principal part is a classical Sturm–Liouville operator. Indeed,
we will show the following:
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Lemma 1. The change of variable z = I1−α
a y transforms (3) into an equation of the form

−(p(x)z′)′ + D1−α
b (q(x) D1−α

a z(x)) = 0. (16)

In addition, the boundary conditions

c1 I1−α
a y(a) + c2 (pDα

a y)(a) = 0, (17)

d1 I1−α
a y(b) + d2 (pDα

a y)(b) = 0, (18)

are transformed into the classical looking ones

c1z(a) + c2 (pz′)(a) = 0, (19)

d1z(b) + d2 (pz′)(b) = 0. (20)

Finally, z ∈ C1(a, b).

Proof. Using definitions (12) and (9), we obtain

−I1−α
b D

(
pDI1−α

a y
)
(x) + q(x) y(x) = 0,

or, since z = I1−α
a y implies both z′ = DI1−α

a y and y = D1−α
a z (by Proposition 4), we have

−I1−α
b (p(x)z′(x))′ + q(x) D1−α

a z(x) = 0,

Applying D1−α
b to the previous equation and using Proposition 4, we obtain (16). The

form of the boundary conditions (19) and (18) transformed into (19)–(20) is clear from the
definitions of z and its Riemann–Liouville derivative.

It was shown in [13] that, if y is a solution of (3) then

y(x) = K1
(x − a)α−1

Γ(α)
+ K2 Iα

a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(21)

Thus, whenever z(a) = 0 there holds

y(x) = K2 Iα
a

(
1
p

)
(x) + Iα

b (qy)(a) Iα
a

(
1
p

)
(x)

−Iα
a

(
1
p

Iα
b (qy)

)
(x).

(22)

Applying the operator I1−α
a to both sides of (22) and using the semigroup property,

Proposition 5, we obtain

z(x) = K2 I1
a

(
1
p

)
(x) + Iα

b (qy)(a) I1
a

(
1
p

)
(x)− I1

a

(
1
p

Iα
b (qy)

)
(x)

Since I1
a is an ordinary integral and all integrands are continuous functions according

to either a hypothesis or the existence theorem, it follows that each integral itself is at least
absolutely continuous.

If z(a) ̸= 0, using (21) along with Proposition 6 with α = β therein, gives
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z(x) =
K1

Γ(α)
I1−α
a ((t − a)α−1)(x) + K2 I1

a

(
1
p

)
(x) + Iα

b (qy)(a) I1
a

(
1
p

)
(x)

−I1
a

(
1
p

Iα
b (qy)

)
(x),

= K1 + K2 I1
a

(
1
p

)
(x) + Iα

b (qy)(a) I1
a

(
1
p

)
(x)− I1

a

(
1
p

Iα
b (qy)

)
(x),

a quantity that is always L2(a, b).
Finally, by definition, z = I1−α

a y is necessarily absolutely continuous since y is and the
integrand in I1−α

a is L1(a, b). On the other hand, pz′ is also necessarily absolutely contin-
uous as it is the indefinite integral of an L1 function. Hence both zandpz′ are absolutely
continuous. Since p is continuous everywhere and is positive, this implies that z ∈ C1(a, b).
Hence all solutions of (16) are at least C1(a, b).

4. Spectral Theory
4.1. Fractional Boundary Conditions

In this part we develop a theory, analogous to the Sturm–Liouville theory, for equations
in the form (26)–(28) or, equivalently, (23)–(25). We recall that the classical Sturm–Liouville
theory is recovered by letting α → 1−.

The basic idea behind Sturm’s theory shines in the formulation of its oscillation
theorem for the eigenfunctions arising from the eigenvalue problem. This is usually referred
to as Sturm’s oscillation theorem

(p(x)z′)′ + (λ w(x)− q(x)) z = 0.

Thus, when p(x) > 0, the convexity is well understood. Things are not so clear if
p(x) and w(x) have sign changes, but there are studies in this direction. Normally, we
will assume that w(x) > 0 and is continuous in [a, b] but the first few results here are of a
general nature and do not necessarily involve the positivity of w(x).

Now, we consider the fractional eigenvalue problem

Dα
b(pDα

a y)(x) + (q(x)− λw(x))y(x) = 0, (23)

subject to the boundary conditions

c1 I1−α
a y(a) + c2 (pDα

a y)(a) = 0, (24)

d1 I1−α
a y(b) + d2 (pDα

a y)(b) = 0, (25)

in which c1, c2, d1, d2 are constants and we are looking for values of λ such that there is a
non-trivial solution satisfying the boundary conditions (24) and (25). Such a solution, when
it exists, will be called an eigenfunction corresponding to the eigenvalue λ.

Remark 1. We note that (16) has a leading part that is a classical Sturm–Liouville operator
(i.e., with ordinary derivatives) while the remaining part consists of fractional derivatives. Thus,
whenever y is a solution to (3), the functions I1−α

a y themselves satisfy a Sturm-type differential
equation. We shall see below that this transformation to the hybrid form (16) has definite advantages
for spectral theory.

Replacing q with q − λw in (3) and applying Lemma 1, the eigenvalue problem (23),
subject to both (24) and (25) is now converted to a hybrid eigenvalue problem of the form,

−(p(x)z′)′ + D1−α
b ((q(x)− λ w(x)) D1−α

a z) = 0, (26)
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but now, as per Lemma 1, it is subject to the transformed boundary conditions,

c1z(a) + c2(pz′)(a) = 0, (27)

d1z(b) + d2(pz′)(b) = 0. (28)

Remark 2. The existence and uniqueness theorems for initial value problems proved in [13] for (3)
now carry over to the Equation (26) for each λ. So, in particular, the initial value problem for an
equation of the form

−(p(x)z′)′ + D1−α
b (Q(x) D1−α

a z) = 0, z(a) = 0, (pz′)(a) = K2

has a unique C1-solution in (a, b).

Remark 3. Once we have two solutions, z1, z2 of (16) such that z1(a)z′2(a)− z2(a)z′1(a) ̸= 0,
(so they must be linearly independent) then any other solution φ can be written as a linear combina-
tion of these two, as all we need are its initial values and these are given at the outset to ensure its
existence and uniqueness.

Remark 4. Note that, on account of the earlier existence results, solutions z of (26) are at least
absolutely continuous functions with pz′ which is also absolutely continuous and (26) is satisfied
a.e. In addition, note that the transformation in Lemma 1 is isospectral in the sense that the spectrum
is preserved when passing from (23) to (26).

We start with the basic theory that will be necessary in the sequel. Once again, as this
is an inaugural paper in a new area, we will consider the homogeneous Dirichlet problem
for (26).

Theorem 1. Let w(x) not be identically zero. Then, any solution z (real or complex) to the
proble, (26) with z(a) = z(b) = 0 satisfies

∫ b

a

(
p(x)|z′(x)|2 + (q(x)− λw(x))|D1−α

a z(x)|2
)

dx = 0. (29)

Proof. By multiplying (26) by z̄(x) and integrating we obtain, after simplification,

∫ b

a
p(x)|z′(x)|2 dx +

∫ b

a
z̄(x)D1−α

b

(
(q(x)− λw(x))D1−α

a z(x)
)

dx = 0.

By applying Proposition 7 to the second integral, we find that

∫ b

a
p(x)|z′(x)|2 dx +

∫ b

a
(q(x)− λw(x))D1−α

a z(x)D1−α
a z̄(x) dx

− z̄(x) Iα
b ((q(x)− λw(x))Dα

a z(x))|x=b
x=a = 0.

Since z(a) = z(b) = 0, Proposition 3 and its conjugation shows us that D1−α
a z(x) =

D1−α
a z(x) with a similar relation to z̄, i.e.,

D1−α
a z(x)D1−α

a z̄(x) = D1−α
a z(x)D1−α

a z̄(x) = D1−α
a z(x)D1−α

a z(x) = |D1−α
a z(x)|2.

from which there follows (29).

The next result is analogous to the ordinary Sturm–Liouville case and deals with
weight functions w that may possibly change sign in (a, b).
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Theorem 2. Assume that p, q, w are continuous in [a, b]. Let w(x) ̸= 0 somewhere in (a, b),
q(x) ≥ 0 in (a, b) and p(x) > 0 in [a, b]. Then, any eigenvalue of the Dirichlet problem associated
with (26) must be real.

Proof. From Theorem 1 we know that such a solution z must satisfy,

∫ b

a

(
p(x)|z′(x)|2 + (q(x)− λw(x))|D1−α

a z(x)|2
)

dx = 0.

Let λ ∈ C, Im λ ̸= 0 be a possibly complex eigenvalue and z a corresponding complex
eigenfunction. Then,

∫ b

a

(
p(x)|z′(x)|2 + q(x) |D1−α

a z(x)|2
)

dx = λ
∫ b

a
w(x)|D1−α

a z(x)|2 dx. (30)

Since p, q, w are real-valued we can take the imaginary part of both sides to find that

Im λ
∫ b

a
w(x)|D1−α

a z(x)|2 dx = 0.

However, since Im λ ̸= 0, we must have∫ b

a
w(x)|D1−α

a z(x)|2 dx = 0.

Thus, the left hand side of (30) must be zero. The positivity of p(x) now implies
that |z′(x)| = 0 identically on [a, b]. Since z is absolutely continuous, this implies that
z(x) = z(a) is a constant, i.e., z(x) = 0, contrary to the hypothesis that z is an eigenfunction.
Thus, Im λ = 0 and all eigenvalues are real.

Remark 5. The proof above is actually valid for the measurable coefficients p, q, w subject to the
usual conditions for the existence and uniqueness of solutions to the initial value problems, see [13].

Next, we exhibit an orthogonality relationship between the eigenfunctions correspond-
ing to distinct eigenvalues.

Theorem 3. Let w be continuous and non-zero somewhere in (a, b), q be continuous, and p be
continuous and positive (although this too can be relaxed). Then eigenfunctions zn and zk of (26),
corresponding to distinct eigenvalues λn ̸= λk from the Dirichlet problem, are orthogonal in the
sense that ∫ b

a
D1−α

a zn(x) D1−α
a zk(x)w(x) dx = 0.

Proof. Let λn and λk (λn ̸= λk) be the eigenvalue of the eigenfunctions zn(x) and zk(x),
respectively. Then,

−(p(x)z′n(x))′ + D1−α
b

(
(q(x)− λnw(x))D1−α

a zn(x)
)
= 0, (31)

with a similar equation for zk(x) in the form

−(p(x)z′k(x))′ + D1−α
b

(
(q(x)− λnw(x))D1−α

a zk(x)
)
= 0, (32)

Multiplying (31) by zk(x) and (32) by zn(x), and then integrating the first term by parts
and the second term by parts using Proposition 7, we obtain, after some simplification,

∫ b

a

(
p(x)z′n(x)z′k(x) + zk(x) (q(x)− λnw(x))D1−α

a zn(x)D1−α
a zk(x)

)
dx = 0.
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and ∫ b

a

(
p(x)z′k(x)z′n(x) + zn(x) (q(x)− λkw(x)) D1−α

a zk(x) D1−α
a zn(x)

)
dx = 0.

Subtracting the last two equations we obtain

(λn − λk)
∫ b

a
w(x) D1−α

a zn(x) D1−α
a zk(x)dx = 0, (33)

and the result follows.

The next result will be useful later on and deals with the uniqueness of solutions to
certain initial value problems associated with (26).

Theorem 4 ([13], Theorem 3.4). Let p, q be measurable complex-valued functions satisfying

c1 ≡ sup
x∈[a,b]

Iα
a

(
1
|p|

)
(x) < ∞, (34)

and
c2 ≡ sup

x∈[a,b]
Iα
b (|q|)(x) < ∞. (35)

In addition, let x0 ∈ (a, b],

Iα
a

(
1
p

)
(x0) ̸= 0.

and assume that 2c1 c2 < 1. Then, the only solution to the initial value problem (3) that satisfies

I1−α
a y(x0) = 0 (pDα

a y)(x0) = 0 (36)

and is continuous on [a, b] is the trivial solution.

Now, as is well known in the ordinary Sturm–Liouville theory, we show that any
(non-trivial) solution to (26) can only have a finite number of zeros in [a, b], if any at all.

Lemma 2. Let p, q ∈ C[a, b], p(x) > 0 there. Consider the solution to the problem

−(p(x)z′)′ − D1−α
b (q(x) D1−α

a z) = 0, (37)

where z(a) = 0, (pz′)(a) ̸= 0. Then, z can only have a finite number of zeros in (a, b).

Proof. The solution is clearly non-trivial. We assume, on the contrary, that this solution
has an infinite number of zeros, say tn; then, they must accumulate somewhere at t0, say
t0 ∈ (a, b). Since z ∈ C[a, b] by existence and tn → t0 (as n → ∞), it follows that z(t0) = 0.
On the other hand, since z ∈ C1, z′(t0) = limtn→t0(z(tn)− z(t0))/(tn − t0) = 0. Since
z and pz′ are both zero at t = t0, this violates Theorem 4 as it implies that z is the trivial
solution. The case where t0 = b is similar and so is omitted.

Corollary 1. For a fixed λ, every non-trivial solution y to (23) satisfying I1−α
a y(a)= 0, (pDα

a y)(a) ̸= 0,
has the property that I1−α

a y has a finite number of zeros.

Proof. Replace q in (37) by q − λw. If, on the contrary, there was a solution y with an I1−α
a y

with an infinite number of zeros, then, according to Rolle’s theorem, so would its derivative,
i.e., Dα

a y. But this would contradict Lemma 2 in our equations.

Remark 6. The relationship between the number of zeros of a function and the number of zeros
of its left-Riemann–Liouville integral is an old one and goes back to at least Steinig [17]. There
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the author shows that, generally speaking, there exists functions f having a finite number of zeros
whose left-Riemann–Liouville integral has an infinite number of zeros. (Here, we showed that, if f
satisfies some specific differential equation, then this is impossible, i.e., the left-Riemann–Liouville
integral must have a finite number of zeros.)

In order to prove the existence of eigenvalues for the boundary problem (26) that
satisfy z(a) = z(b) = 0, we can consider the solutions z(x) as a function of λ, denoted by
z(x, λ), and show that, in fact, z(x, λ) is, for each x ∈ [a, b] an entire function of λ ∈ C. This
will show that the zeros of z(b, λ) are at most countable and we will prove that there is at
least one of them (thereby proving the existence of eigenvalues). We will also show that the
zeros of z(b, λ) (each one of which gives an eigenvalue) move to the left as λ increases so
that there can be finite limit as to the number of zeros, such as λ → ∞.

Lemma 3. Let y, g, h be non-negative continuous functions on [a, b] satisfying

y(x) ≤ c +
∫ b

x
g(s) y(s) ds +

∫ x

a
h(s) y(s) ds, x ∈ [a, b]. (38)

where c ≥ 0 is a constant. If

M = sup
x∈[a,b]

(∫ b

x
g(s) ds +

∫ x

a
h(s) ds

)
< 1, (39)

then
||y||∞ ≤ c

1 − M
.

Remark 7. At this point one may conjecture that a general a priori-type inequality similar to the
Gronwall inequality is valid for (38); for example, something like the following:

Conjecture 5. Let y, g, h be non-negative continuous functions on [a, b] satisfying (38); then,
c ≥ 0 is a constant. Then,

y(x) ≤ C e−
∫ b

x g(s) ds+
∫ x

a h(s) ds, x ∈ [a, b]. (40)

where C = c e
∫ b

a g(s) ds.

Since the right-hand side of (40) is a solution to (38) with equality for the value of c chosen
therein, it appears to be a maximal solution. It is not, however, a maximal solution because the initial
condition fails, i.e., the initial condition y(a) depends on y itself

y(a) =
∫ b

a
g(s)y(s) ds.

A counterexample to this general conjecture is given by setting c = 0, a = 0, b = 1,
g(x) ≡ 1, h(x) ≡ 1, for all x ∈ [0, 1]. It is easy to verify that (38) holds for y(x) ≡ 1, but since
c = 0, (40) fails.

In this last set of lemmata we assume that all integrals and derivatives exist and
provide a more general integration by parts formula when interior points are involved in
the limits of integration.
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Lemma 4 (Another integration by parts formula). For any x ∈ [a, b] there holds

∫ x

a
f (t) Dα

b g(t) dt = − f (t) I1−α
b g(t)

∣∣∣∣x

a
+

∫ x

a
g(t)Dα

a f (t) dt

+
1

Γ(1 − α)

∫ b

x

∫ x

a

f ′(t) g(s)
(s − t)α

dt ds. (41)

Proof. Integrating the left hand-side by parts and applying the definitions of the various
fractional terms along with Fubini’s theorem, we find

∫ x

a
f (t) Dα

b g(t) dt = − 1
Γ(1 − α)

∫ x

a
f (t)

d
dt

∫ b

t

g(s) ds
(s − t)α

dt

= − f (t) I1−α
b g(t)

∣∣∣∣x

a
+

1
Γ(1 − α)

∫ x

a

∫ b

t

f ′(t) g(s)
(s − t)α

ds dt

= − f (t) I1−α
b g(t)

∣∣∣∣x

a
+

1
Γ(1 − α)

∫ x

a

(∫ s

a

f ′(t)
(s − t)α

dt
)

g(s) ds

+
1

Γ(1 − α)

∫ b

x

∫ x

a

f ′(t) g(s)
(s − t)α

dt ds

= − f (t) I1−α
b g(t)

∣∣∣∣x

a
+

∫ x

a
g(s)Dα

a f (s) ds

+
1

Γ(1 − α)

∫ b

x

∫ x

a

f ′(t) g(s)
(s − t)α

dt ds

as required.

Remark 8. We observe that, by setting x = b in Lemma 4, the first part of Proposition 7 holds.

This idea can be utilized to generate analogous formulae for other fractional integrals,
as demonstrated below:

Lemma 5. For any x ∈ [a, b] there holds,

∫ x

a
f (t) Dα

a g(t) dt = f (t) I1−α
b g(t)

∣∣∣∣x

a
+

∫ x

a
g(s)Dα

x− f (s) ds. (42)

Proof. ∫ x

a
f (t) Dα

a g(t) dt =
1

Γ(1 − α)

∫ x

a
f (t)

d
dt

∫ t

a

g(s) ds
(t − s)α

dt

= f (t) I1−α
a g(t)

∣∣∣∣x

a
− 1

Γ(1 − α)

∫ x

a

∫ t

a

f ′(t) g(s)
(t − s)α

ds dt

= f (t) I1−α
a g(t)

∣∣∣∣x

a
− 1

Γ(1 − α)

∫ x

a

(∫ x

s

f ′(t)
(t − s)α

dt
)

g(s) ds

= f (t) I1−α
a g(t)

∣∣∣∣x

a
+

∫ x

a
g(s)Dα

x− f (s) ds.

as required.

Lemma 6. For any x ∈ [a, b], there holds

∫ b

x
f (t)Dα

b g(t) dt = −g(t) I1−α
x+ f (t)

∣∣∣∣b
x
+

∫ b

x
g(t) Dα

x+ f (t) dt. (43)
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Proof. ∫ b

x
f (t)Dα

b g(t) dt = − 1
Γ(1 − α)

∫ b

x
f (t)

∫ b

t

g′(s)ds
(s − t)α

dt

= − 1
Γ(1 − α)

∫ b

x
g′(s)

∫ s

x

f (t)
(s − t)α

dt ds

= −g(s)I1−α
x+ f (s)

∣∣∣∣b
x
+

∫ b

x
g(s)Dα

x+ f (s) ds.

and the result follows.

Lemma 7. For any x ∈ [a, b], there holds∫ b

x
f (t)Dα

a g(t) dt = g(t) I1−α
b f (t)

∣∣∣∣b
x
+

∫ b

x
g(t) Dα

b f (t) dt

+
1

Γ(1 − α)

∫ x

a

∫ b

x

f (t) g′(s)
(t − s)α

dt ds.

(44)

Proof. ∫ b

x
f (t)Dα

a g(t) dt =
1

Γ(1 − α)

∫ b

x
f (t)

∫ t

a

g′(s)ds
(t − s)α

dt

=
1

Γ(1 − α)

∫ b

x
g′(s)

∫ b

s

f (t)dt
(t − s)α

ds

+
1

Γ(1 − α)

∫ x

a

∫ b

x

f (t)g′(s)
(t − s)α

dtds

= g(s) I1−α
b f (s)

∣∣∣∣b
x
+

∫ b

x
g(s) Dα

b f (s) ds

+
1

Γ(1 − α)

∫ x

a

∫ b

x

f (t) g′(s)
(t − s)α

dt ds.

Lemma 8. For any x ∈ [a, b], there holds

∫ x

a
f (t)Dα

b g(t) dt = −g(t) I1−α
a f (t)

∣∣∣∣x

a
+

∫ x

a
g(t) Dα

a f (t) dt

− 1
Γ(1 − α)

∫ b

x

∫ x

a

f (t) g′(s)
(s − t)α

dt ds.

(45)

Proof. ∫ x

a
f (t)Dα

b g(t) dt = − 1
Γ(1 − α)

∫ x

a
f (t)

∫ b

t

g′(s) ds
(s − t)α

dt

= − 1
Γ(1 − α)

∫ x

a

∫ s

a

f (t) g′(s)
(s − t)α

dt ds

− 1
Γ(1 − α)

∫ b

x

∫ x

a

f (t) g′(s)
(s − t)α

dt ds

= −g(t) I1−α
a f (t)

∣∣∣∣x

a
+

∫ x

a
g(s) Dα

a f (s) ds

− 1
Γ(1 − α)

∫ b

x

∫ x

a

f (t) g′(s)
(s − t)α

dt ds
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Remark 9. We observe that, by setting x = b in Lemma 8, the second part of Proposition 7 holds.

4.2. Classical Boundary Conditions

Lemma 9 (A Sturm comparison theorem). Let q1, q2 be real-valued continuous functions over
[a, b] such that q1(x) ≥ q2(x) for all x ∈ [a, b] with strict inequality for at least one point in (a, b).
Let y = y1 be a nontrivial solution to

Dα
b(pDα

a y)(x) + q1(x)y(x) = 0, (46)

such that y1(a) = y1(b) = 0, y1(x) ̸= 0 in (a, b). Then, every real solution, y2, to

Dα
b(pDα

a y)(x) + q2(x)y(x) = 0, (47)

has at least one zero in (a, b).

Proof. Without a loss of generality, we may take it that y1(x) > 0 on (a, b). The proof is
by contradiction, as usual. We assume, on the contrary, that there is a solution y2(x) > 0
on (a, b). By multiplying (46) with y = y1 by y2(x) and (52) with y = y2 by y1(x) and
subtracting we obtain

Dα
b(pDα

a y1)(x)y2(x)− Dα
b(pDα

a y2)(x)y1(x) = (q2(x)− q1(x)) y1(x)y2(x),

for all x ∈ (a, b). On the other hand, integrating one of these integrals by parts, say the first,
and using the second of Proposition 7 we obtain (suppressing the variables of integration
for simplicity of form)

∫ b

a
Dα

b(pDα
a y1) y2 dx =

∫ b

a
(pDα

a y1)(Dα
a y2) dx −

[
(pDα

a y1) (I1−α
a y2)

]∣∣∣∣b
a
.

Similarly,

∫ b

a
Dα

b(pDα
a y2) y1 dx =

∫ b

a
(pDα

a y2)(Dα
a y1) dx −

[
(pDα

a y2) (I1−α
a y1)

]∣∣∣∣b
a
.

By subtracting the previous two equations and simplifying we obtain

[
(pDα

a y2) (I1−α
a y1)− (pDα

a y1) (I1−α
a y2)

]∣∣∣∣b
a
=

∫ b

a
(q2 − q1) y1 y2 dx. (48)

Using the transformed variables z defined in Lemma 1 and the definitions of the
various fractional derivatives, we rewrite the left hand side of (48) so as to obtain

(pz′2)(b) z1(b)− (pz′2)(a) z1(a)− (pz′1)(b) z2(b) + (pz′1)(a) z2(a),

which, when combined with (48), yields the identity,

(pz′2)(b) z1(b)− (pz′2)(a) z1(a)− (pz′1)(b) z2(b) + (pz′1)(a) z2(a)

=
∫ b

a
(q2 − q1) y1 y2 dx.

(49)

However, since both y1(x) > 0, y2(x) > 0 and q1(x) ≥ q2(x) on (a, b), the right-hand
side of (49) must be strictly negative. On the other hand, since y1(x) > 0 we also have
I1−α
a y1(x) > 0, i.e., z1(x) > 0 on (a, b). Similarly, z2(x) > 0 on (a, b). But, the positivity of

p and the fact that z1, z2 are differentiable in (a, b) implies that (pz′2)(b) z1(b) ≤ 0. Similarly,
−(pz′2)(a) z1(a) ≤ 0. Similar arguments show that, finally, −(pz′1)(b) z2(b) ≥ 0 and that
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(pz′1)(a) z2(a) ≥ 0. Thus, the left side of (49) is positive or zero while the right-side is
strictly negative. This contradiction proves the lemma.

Remark 10. Note that when α = 1 this becomes Sturm’s comparison theorem as the Caputo
derivatives introduce a negative sign before the leading coefficient.

Corollary 2. Let q1, q2 be real-valued continuous functions over [a, b] such that q1(x) > q2(x)
for all x ∈ (a, b). Let z = z1 be a nontrivial solution to

−(p(x)z′1)
′ + D1−α

b (q1(x) D1−α
a z1) = 0, (50)

such that D1−α
a z1(a) = D1−α

a z1(b) = 0. Then, every real solution to

−(p(x)z′2)
′ + D1−α

b (q2(x) D1−α
a z2) = 0, (51)

has the property that D1−α
a z2(x) has at least one zero in (a, b).

Proof. This is an immediate consequence of Lemmas 1, 9, and Proposition 4.

Corollary 3. Let p(t) > 0 and q both be continuous in [a, b] and q(x) ≥ 0 with strict inequality
in at least one point of [a, b]. Then every solution to the equation

Dα
b(pDα

a y)(x) + q(x) y(x) = 0, (52)

has at most one zero in [a, b].

Proof. The proof is by contradiction. Simply use Lemma 9 with q1 = q, q2 = 0. Note that
Dα

b(pDα
a y)(x) = 0 has the particular solution

y(t) = (pDα
a y)(b) Iα

a (1/p)(t)

whose only zero is at t = a (since p(t) > 0). Consequently, no nontrivial solution of (52)
can exist and have two zeros in [a, b].

Lemma 9, can now be used to guarantee the existence of oscillations in (a, b).

Theorem 6. Consider the equations

Dα
b(pDα

a y1)(x) + (q(x)− λ1w(x)) y1(x) = 0, (53)

and
Dα

b(pDα
a y2)(x) + (q(x)− λ2w(x)) y2(x) = 0, (54)

where y1(x) is a (nontrivial) solution of (53) satisfying y1(a) = y1(b) = 0 and y1(x) ̸= 0 in
(a, b). If λ1 < λ2, then every solution to (54) has at least one zero in (a, b).

Proof. The proof is a straightforward consequence of Lemma 9 as the condition
q1(x) > q2(x) is equivalent to λ1 < λ2.

Remark 11. It will be shown that there exists a value of λ = λ0 and a corresponding solution
to (23) satisfying the classical Dirichlet boundary conditions at a, b, i.e., y(a) = y(b) = 0, and that
it is indeed positive in (a, b). Of course, this means that λ0 is an eigenvalue of (23) with y = y1 as
an eigenfunction. Theorem 6 then guarantees that any other eigenvalues must have eigenfunctions
with zeros in (a, b).

Conjecture 7. The number of zeros in any non-trivial solution to (3) satisfying y(a) = 0 on [a, b]
is necessarily finite.
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Discussion: This is clear if q(x) ≥ 0 according to Corollary 3. If there is a nontrivial
solution, y, with y(tn) = 0, then the tn must accumulate somewhere at t0, say t0 ∈ [a, b].
Since y ∈ C[a, b] by existence, it follows that y(t0) = 0. There are two then cases: either
t0 = b or t0 < b.

Let t0 = b. Now, (3) and definition (9) force∫ b

tn

D((pDα
a y)(s))

(s − tn)α
ds = 0, n = 1, 2, . . . , (55)

which, in turn, implies that D((pDα
a y)(t)) must change sign an infinite number of times

in (a, b). However, it is conceivable that (pDα
a y)(t) remains of one sign throughout a

closed interval near b. We will show that this is impossible. Assume for the moment
that (pDα

a y)(t) > 0 for all t ∈ [tm, b) and for some m (and therefore for infinitely many
subsequent m). Since p(t) > 0, we obtain Dα

a y(t) > 0 for all t ∈ [tm, b). On the other hand,
y(a) = 0 shows us that y ∈ C[a, b] and is therefore bounded by M, say. Thus,

|I1−α
a y(a)| ≤ M

Γ(1 − α)
lim

t→a+

∫ t

a
(t − s)α−1 ds = 0. (56)

Of course, boundedness near x = a is sufficient in the preceding argument. A case
where t0 < b is unclear and open.

5. Variational Characterization of the First Eigenvalue

In this section we show that whenever the minimum λ0 of the functional∫ b
a p |z′|2 + q |D1−α

a z|2∫ b
a w|D1−α

a z|2
(57)

exists and is attained for a function z in some appropriate space, then z must be an eigen-
function of (26) with λ0 as an eigenvalue and z(x) must be of one sign. The existence
of the minimum of (57) was essentially shown in [5] but under the additional boundary
condition that I1−α

a y(b) = 0, (i.e., z(b) = 0), a condition that is generally independent of
y(b) = 0. (Note that y(a) = 0 implies I1−α

a y(a) = 0 as a result of (56)). We therefore assume
in this section that the infinitum of (57) is attained for all z in an appropriate function space
defined below without assuming that y(b) = 0 but by requiring that z(b) = 0.

We begin with some necessary conditions. Using (26) we obtain

−z(pz
′
)
′
+ zD1−α

b ((q − λw)D1−α
a z) = 0,

which, after an integration and use of the homogeneous Dirichlet boundary conditions

z(a) = z(b) = 0,

in the first boundary term and Proposition 7, gives

∫ b

a
p|z′|2 dx +

∫ b

a
(q − λw)

∣∣D1−α
a z

∣∣2dx − zIα
b (q − λw)D1−α

b z
∣∣b
a = 0,

so that ∫ b

a
p|z′|2 + (q − λw)

∣∣D1−α
a z

∣∣2dx = 0.

Now consider the quadratic functional,

L(x, z
′
, D1−α

a z) = p(x)|z′|2 + (q(x)− λw(x))
∣∣D1−α

a z
∣∣2
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and its integral,

J(z) =
∫ x1

x0

L(x, z′(x), D1−α
a z(x)) dx.

where x0 < x1 and x0, x1 ∈ [a, b]. Let h ∈ C∞
0 (a, b) satisfy h(x0) = h(x1) = 0. For ε ≥ 0,

define the function φ by

φ(ϵ) = J(z + ϵh) =
∫ x1

x0

L(x, (z + ϵh)′, D1−α
a (z + ϵh)) dx.

where we suppressed the variables of integration for clarity. Using the chain rule, in order
for φ to have a minimum at ε, we must have

φ′(ϵ) =
∫ x1

x0

(Lz′(x, z′ + ϵh′, D1−α
a (z + ϵh)) h′

+ LD1−α
a

(x, z′ + ϵh′, D1−α
a (z + ϵh)) D1−α

a h ) dx (58)

= 0.

(The subscripts on the L denote partial derivatives with respect to that variable.)
For the special case where x0 = a, x1 = b we find that h(a) = 0 = h(b) for our test

functions and, in addition, Proposition 4 provides us with D1−α
a h(x) = D1−α

a h(x).
With these identifications and ϵ = 0, (58) can now be rewritten as

φ′(0) =
∫ b

a
(Lz′(x, z′, D1−α

a z) h′ + LD1−α
a

(x, z′, D1−α
a z)D1−α

a h) dx

= Lz′(x, z′, D1−α
a z) h

∣∣b
a −

∫ b

a
h

d
dx

Lz′(x, z′, D1−α
a z) dx

+
∫ b

a
h D1−α

b

(
LD1−α

a
(x, z′, D1−α

a z)
)
+ h I1−α

a

(
LD1−α

a
(x, z′, D1−α

a z)
) ∣∣b

a (59)

= 0,

where we used Proposition 7 in order to evaluate the second integral in (58). Simplifying (59)
we find ∫ b

a
h
(

D1−α
b

(
LD1−α

a
(x, z

′
, D1−α

a z)
)
− d

dx
(Lz′ (x, z

′
, D1−α

a z)
)

dx = 0,

for every h in a dense subset of L2(a, b). Consequently, for x ∈ [a, b],

D1−α
b

(
LD1−α

a
(x, z

′
, D1−α

a z)
)
− d

dx

(
Lz′ (x, z

′
, D1−α

a z)
)
= 0,

(a.e.) is the Euler–Lagrange equation of the functional,

L(x, z′, D1−α
a z) = p|z′|2 + (q − λw)

∣∣D1−α
a z

∣∣2.

Writing u = z′, v = D1−α
a z, we obtain Lu = 2pu and Lv = 2(q − λw)v. Therefore,

D1−α
b (2(q − λw)D1−α

a z)− d
dx

(2pz′) = 0,

or, equivalently,
−(pz′)′ + D1−α

b ((q − λw)D1−α
a z) = 0,

and, as expected, this is (26).
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Remark 12. The previous argument is independent of the sign of the weight function, w(x), so
long as it appears explicitly in (26). For this to happen it suffices that w be continuous and non-zero
somewhere in (a, b).

Now, the proof of Theorem 2 implies that, for any eigenvalue/eigenfunction pair
of (26) satisfying z(a) = z(b) = 0, we must have

λ
∫ b

a
w(x)|D1−α

a z(x)|2 dx > 0.

Assuming for the moment that λ0 > 0 is the smallest eigenvalue whose eigenfunction
z0 satisfies λ0

∫ b
a w(x)|D1−α

a z0(x)|2 dx > 0, then

λ0 =

∫ b
a p |z|′2 + q |D1−α

a z|2∫ b
a w|D1−α

a z|2
.

We define the space V as a collection of functions z such that z(a) = z(b) = 0,
z ∈ AC[a, b], pz′ ∈ AC[a, b] and D1−α

a z ∈ C[a, b]. We have already shown above that if

λ0 = min
z∈V

∫ b
a p |z|′2 + q |D1−α

a z|2∫ b
a w|D1−α

a z|2

exists and is attained for some minimizer z (z = z0 here) , then λ0 must be an eigenvalue
of (26) and z must be a corresponding eigenfunction. We now show that z must be of
one sign. For z ∈ V, |z(x)| ∈ V, and |z(x)| is also a minimizer. However, both z and |z|
must satisfy (26) with the same eigenvalue λ0. If these eigenfunctions were independent
then every solution to (26) would be a linear combination of these two. In particular,
every solution would have to satisfy the boundary conditions at a, b, which is impossible
according to the uniqueness results in [13]. Hence, z and |z| must be linearly dependent,
i.e., |z(x)| = z(x) is necessary for all x ∈ [a, b]. So, z(x) ≥ 0, i.e., z(x) has one sign. If
z(x0) = 0 for some x0 ∈ (a, b), then z′(x0) = 0 as z(x) has one sign and z is continuous. So,
according to (36) and Theorem 4, z ≡ 0. Thus, z(x) ̸= 0 in (a, b) and z can only vanish at
the end points. This proves,

Theorem 8. If λ0 is the smallest positive eigenvalue of the Dirichlet problem for (26), then
z0(x) ̸= 0 for x ∈ (a, b).

Remark 13. Theorem 8 is valid not only for w(x) > 0 and q(x) arbitrarily, but for w(x) > 0
somewhere, and q(x) ≥ 0.

Example 1. Consider (23) where the coefficients are defined by q(x) = x(1 − x), w(x) ≡ 1,
p(x) ≡ 1, and [a, b] = [0, 1]. We apply the finite difference method to compute the eigenvalues for
the resulting Dirichlet fractional Sturm–Liouville problem, i.e.,

Dα
1(Dα

0 y)(x) + (x(1 − x)− λ)y(x) = 0, (60)

I1−α
0 y(0) = 0, I1−α

0 y(1) = 0. (61)

Our methods show that the preceding eigenvalue problem is equivalent to the eigenvalue
problem for the hybrid equation

−z′′ + D1−α
1 ((x(1 − x)− λ) D1−α

0 z) = 0, (62)

subject to the boundary conditions

z(0) = 0, z(1) = 0,
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via the isospectral transformation, z(x) = I1−α
0 y(x) applied to (60).

The table below gives the first five eigenvalues of the Dirichlet problem for (62) (and so (60))
on [0, 1], where the eigenvalues corresponding to the classical Sturm–Liouville problem (α = 1)
were computed using the MATSLISE software [18]. The table indicates that the eigenvalues for our
problem converge towards those of the classical Sturm–Liouville problem as α approaches 1.

The Figure 1 illustrates the first eigenfunction of our problem for varying values of α as
in Table 1. The plot clearly demonstrates that as α approaches 1, the graph of the eigenfunction
increasingly aligns with that of the classical eigenfunction.

Table 1. The first five eigenvalues of (60) and (61) for varying α.

λk α = 0.7 α = 0.8 α = 0.9 α = 0.95 α = 0.999 α = 1 [18]

λ1 6.9295 8.0786 9.1256 9.6161 10.0840 10.0869
λ2 14.6601 20.5433 28.6143 33.7137 39.5553 39.6577
λ3 25.7724 39.1419 59.1001 72.5553 88.6937 88.9987
λ4 36.8219 60.0181 97.5375 124.2440 157.4271 158.0835
λ5 50.4162 85.8096 145.6650 189.7199 245.7714 246.9088

Figure 1. The first eigenfunction for varying values of α in (60) and (61).

Other Fractional Differential Operators

We note that fractional differential operators can be defined in such a way so as to
generate a spectral theory completely analogous to Sturm–Liouville theory in every respect.
For example, for 0 < α < 1, we must consider the fractional differential equation

D(p(x) Dα
a y)(x) + (λ w(x)− q(x)) I1−α

a y(x) = 0. (63)

obtained by replacing the Caputo derivative in (3) with an ordinary derivative and the
unknown variable with a left Riemann–Liouville integral of order 1 − α. We associate the
fractional boundary conditions (17) and (18) with this equation, i.e.,

c1 I1−α
a y(a) + c2 (pDα

a y)(a) = 0, (64)

d1 I1−α
a y(b) + d2 (pDα

a y)(b) = 0. (65)
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Using the same idea as in Section 3 above, we note that the change in variable
z(x) = I1−α

a y(x) will produce, in this case, the classical Sturm–Liouville equation

(p(x)z′)′ + (λ w(x)− q(x)) z(x) = 0, (66)

as opposed to (26), and therefore a spectral theory can be deduced for the eigenvalues
and eigenfunctions of (63) subject to (64) and (65) without much effort. The point of
this transformation is that every solution to (63) has the property that its left-Riemann–
Liouville integral of order 1 − α satisfies an ordinary Sturm–Liouville equation, (66), and
consequently the ordinary Sturm–Liouville theory applies to those particular solutions.

This transformation, being isospectral, preserves the eigenvalues, λn, while the eigen-
functions of (63)–(65) are now in the form yn(x) = D1−α

a zn(x) where the zn(x) are the
eigenfunctions of a classical Sturm–Liouville problem satisfying boundary conditions of
the form (27) and (28), i.e.,

c1z(a) + c2(pz′)(a) = 0, (67)

d1z(b) + d2(pz′)(b) = 0. (68)

Besides the existence of real eigenvalues, we also obtain their asymptotic distribution
(in possibly very general settings (see [19])) and an oscillation theorem for the functions
I1−α
a yn(x), i.e., the eigenfunctions yn(x) of (66)–(68) now have the property that, for each α,

0 < α < 1, I1−α
a yn(x) has exactly n zeros in (a, b). The variational characterization of the

eigenvalues being routine in the case of (63), (67), and (68) (see [20]), now becomes new in
the case of (63)–(65). The same is true of the expansion theorem for arbitrary functions in
various spaces (see [20])).

As a sample of what is readily provable by known methods and under very general
conditions on p, q, w, (see, e.g., ([1], Chapter 8)) and so whose proofs will be omitted, is
the following:

Theorem 9. Let w(x) > 0 in [a, b]. The eigenvalue problem (63)–(65) has a countable number of
real eigenvalues

−∞ < λ0 < λ1 < λ2 < . . . < λn < . . .

whose eigenfunctions yn are orthogonal in the sense that

∫ b

a
(I1−α

a yn)(x) (I1−α
a yk)(x)w(x) dx = 0,

for k ̸= n and they form a complete set in L2(a, b). Indeed, any function φ ∈ C2[a, b] satisfying the
boundary conditions may be expanded into a uniformly convergent series of the eigenfunctions of
our problem, i.e.,

φ(x) =
∞

∑
n=0

cn(I1−α
a yn)(x),

with the expansion holding uniformly on [a, b], and

cn =
∫ b

a
φ(x) (I1−α

a yn)(x)w(x) dx.

In addition, the eigenfunctions yn corresponding to λn have the property that I1−α
a yn(x) have

exactly n zeros in (a, b). The eigenvalues admit the asymptotic distribution

λn ∼ n2π2(∫ b
a

√
w(x)
p(x) dx

)2 ,

as n → ∞ [19].
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6. Conclusions

In this paper we considered a Sturm–Liouville-type problem (23)–(25) generated by a
composition of various fractional derivatives, namely one of Riemann–Liouville type and
the other of Caputo type. Using a transformation of dependent variables we showed that it
could be reduced to the study of a hybrid differential equation where the leading term is
classical Sturm–Liouville type and the other terms involve fractional derivatives, see (26),
and whose boundary conditions look like well-known classical, homogeneous, separated
boundary conditions. We also formulated an analog of Sturm’s comparison theorem, as in
Lemma 9, and, in so doing, planted the seeds for a new qualitative theory for the study
of the solutions to our equations (number and placement of zeros, etc.) in Section 4.2. We
also extended the formulae for integration by parts by including cases where the limits of
integration may be an interior point, see Lemmas 4–8.

Among the open questions and directions for future research we note the following.

1. Prove Conjecture 7, i.e., that under suitable hypotheses on the coefficients, the number
of zeros of any non-trivial solution of (3) is always finite.

2. Prove an oscillation theorem of Sturm type for (23)–(25). All that is known so far
is that the first eigenfunction, corresponding to the eigenvalue λo, is zero-free in
(a, b), Theorem 8. Thus, for example, we expect that the next eigenvalue, λ1, has
an eigenfunction with exactly one zero in (a, b). More generally, we believe that
(whenever w(x) > 0) all subsequent eigenfunctions λn, n ≥ 1, have exactly n zeros
in (a, b).

3. Study the possible presence of singularities in the solution as in [21,22]. The use of
methods from the classical analysis of singularity formation (e.g., [23]) can be applied
in this context under suitable conditions.
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