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Abstract: In this paper, a generalized fractional three-species food chain model with delay is inves-
tigated. First, the existence of a positive equilibrium is discussed, and the sufficient conditions for
global asymptotic stability are given. Second, through selecting the delay as the bifurcation parameter,
we obtain the sufficient condition for this non-control system to generate Hopf bifurcation. Then, a
nonlinear delayed feedback controller is skillfully applied to govern the system’s Hopf bifurcation.
The results indicate that adjusting the control intensity or the control target’s age can effectively
govern the bifurcation dynamics behavior of this system. Last, through application examples and
numerical simulations, we confirm the validity and feasibility of the theoretical results, and find that
the control strategy is also applicable to eco-epidemiological systems.

Keywords: stability; nonlinear feedback controller; fractional system; time delay; hopf bifurcation

1. Introduction

Any population in an ecosystem does not exist in isolation, and certain relationships
are bound to exist among different species. Predation, competition, mutualism, and
parasitism are the primary population relationships [1]. Predation is widespread in nature
and serves as a fundamental prerequisite for sustaining the reproduction and proliferation
of biological populations [2–5]. Studying complex food chains and food web issues is
a crucial aspect of ecological research [6–9]. Delay is prevalent in population systems,
for instance, predators may experience gestational delay after consuming prey. Delay
reflects inherent population characteristics [10–14]. In comparison to population systems
without delay, delayed population systems can exhibit more complex nonlinear dynamical
behaviors [15–20].

In recent years, the theory of fractional calculus has rapidly advanced and has been
extensively used in all kinds of fields, such as population ecology and neural networks [21–25].
Fractional derivative encompasses the entire time domain, whereas the integer derivative only
represents characteristics or changes at specific moments. Fractional differential equations
are better suited for characterizing the genetic and memory effects in biological systems in
comparison to integer derivative [26]. In [27], Li et al. established a fractional population model
and utilized the Lyapunov direct method to study the generalized Mittag–Leffler stability of
the fractional nonlinear system. In [28], Das and Samanta proposed a fractional (Caputo) three-
species food chain model with fear effect and prey shelter to study the stability of delayed and
non-delayed system. In [29], Nisar et al. considered the fractional (Atangana–Baleanu–Caputo)
delayed food chain model with the Allee effect, analyzed the system solution’s existence and
stability utilizing the fixed point theorem, and also applied the Adams–Bashforth–Moulton
method to simulate the results of mutual interference between prey and intermediate predator.

The branching problem of ecosystems has also been widely studied by scholars. Hopf
bifurcation, an important concept in dynamical system theory, is a bifurcation phenomenon
that occurs when a singularity on a two-dimensional central manifold changes from a
stable focus to an unstable focus (or from an unstable focus to a stable focus), and generates
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or vanishes closed trajectories in the vicinity of the singularity [30]. Hopf bifurcation theory
is considered to be a classical method for analyzing the generation and disappearance of
the periodic solutions of differential equations. Alidousti [31] studied the stability and
Hopf bifurcation of a fractional differential system by the Central manifold theorem and
Normal form theory. In [32], Wang et al. founded a delayed fractional predator–prey
model with intraspecific competition and analyzed system solutions’ existence, uniqueness,
stability, and bifurcation behavior. In [33], Rihan et al. examined a fractional-order time-
delayed dynamical system with Holling-II type functional response and derived sufficient
conditions for inducing a Hopf bifurcation. In [34], Chinnathambi and Rihan established a
predator–prey model, and discussed Hopf bifurcation induced by the order of fractional
derivative on the basis of stability analysis.

Biological system control plays an important role in maintaining ecosystem balance
and species diversity [35–39]. In 1992, K. Pyragas [40] designed a linear feedback controller
with delay, aiming at managing bifurcation of the system. The basic idea of the controller is
to realize the continuous control of the dynamical system by applying a feedback signal
proportional to the gap between the dynamic variable and its delay value. In [41], Jiang
et al. implemented a nonlinear feedback controller containing delay in a fractional-order
phytoplankton–zooplankton system and proved a Hopf bifurcation triggered through
changing the delay and crossing a threshold value. In [42], Huang et al. studied the
bifurcation control problem of a incommensurate fractional predator–prey system, and
analyzed the conditions of Hopf bifurcation with delay as a bifurcation parameter. The
results showed that both the delay and the feedback gain coefficient could suppress the
emergence of Hopf bifurcation. Moreover, in [43], Qi H and Zhao W considered the factor
of manual intervention and proposed a delayed fractional-order eco-epidemiological model
with a feedback controller, which verified the critical role of the controller for the stability
of the system.

Currently, there has been extensive research on integer-order food chain models.
However, the fractional delay food chain models have received limited attention, especially
with general functional responses and nonlinear control. This paper introduces a time-
delayed fractional-order food chain model with a general functional response to address
this gap. It also deals with the nature of Hopf bifurcation dynamics of the system based
on the delay as its bifurcation parameter. Additionally, to address the control issue of the
system, a novel nonlinear feedback controller with delay is proposed.

The basic structure of this paper is as follows: In Section 2, we establish the fundamen-
tal mathematical model and provide the necessary background knowledge. In Section 3,
we select delay as a bifurcation parameter and investigate the stability and Hopf bifurcation
issues for both the non-controlled and controlled systems. In Section 4, we test the effec-
tiveness of the theoretical results through application examples and numerical simulations.
Final, in Section 5, we present the conclusions and discussion.

2. Preliminaries

This paper considers a generalized fractional-order food chain model with delay
Dαµ(t) = µ(t)(h11(µ(t))− h12(µ(t), ν(t))− h13(µ(t), ω(t))),
Dαν(t) = ν(t)(h21(µ(t − τ), ν(t − τ))− h22(ν(t))− h23(ν(t), ω(t))),
Dαω(t) = ω(t)(h31(µ(t − τ), ω(t − τ)) + h32(ν(t − τ), ω(t − τ))− h33(ω(t))),

(1)

here 0 < α ≤ 1. µ(t), ν(t), and ω(t) represent the density of prey, intermediate predator,
and advanced predator. τ denotes the transformation delay. Dαξ(t) represents the abbrevi-
ation for the Caputo fractional derivative. For simplicity, we define C+ := C([−τ, 0],R3

+),
where C([−τ, 0],R3

+) is the Banach space of continuous functions mapping [−τ, 0] into R3
+ and

R3
+ = {(x1, x2, x3) : xi ≥ 0, i = 1, 2, 3}. We suppose that the initial condition for model (1) is

µ(ϖ) = ϕ1(ϖ), ν(ϖ) = ϕ2(ϖ), ω(ϖ) = ϕ3(ϖ), ϖ ∈ [−τ, 0], ϕ = (ϕ1(ϖ), ϕ2(ϖ), ϕ3(ϖ)) ∈ C+. (2)
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In the following discussion, we always assume that hij(i, j = 1, 2, 3) are non-negative
and that their partial derivatives are all continuous.

The function µh11(µ) indicates that the prey population conforms to a logistic growth
rate in the absence of a predator population. Since prey are competitive for resources,
mates, or territory, then there is h

′
11(µ) < 0.

The function h1i(·, ·) for i = 2, 3 is an impact of the predator on the prey per unit of
time. Since the prey is preyed upon by the predator, h1i(·, ·) is preceded by a negative sign
and has ∂h12(µ,ν)

∂ν > 0, ∂h13(µ,ω)
∂ω > 0, ∂h12(µ,ν)

∂µ ≤ 0, ∂h13(µ,ω)
∂µ ≤ 0.

The function hii(·) for i = 2, 3 is the decrease of the predator population’s density in
unit time due to intraspecific competition or natural mortality, so hii(·) is also preceded by
a negative sign and h

′
22(ν) ≥ 0, h

′
33(ω) ≥ 0.

Functions h23(ν, ω) and h32(ν, ω) are used to characterize the predation phenomenon
that exists between two types of the predator, and have ∂h23(ν,ω)

∂ω > 0, ∂h32(ν,ω)
∂ν > 0,

∂h23(ν,ω)
∂ν ≤ 0, ∂h32(ν,ω)

∂ω ≤ 0.
Functions h21(µ, ν) and h31(µ, ω) describe the energy transfer after prey is captured by

the intermediate and the top predator, respectively, and positively affect predator species
growth, where ∂h21(µ,ν)

∂µ > 0, ∂h31(µ,ω)
∂µ > 0, ∂h21(µ,ν)

∂ν ≤ 0, ∂h31(µ,ω)
∂ω ≤ 0.

In a food chain system, many predacious functions [44] satisfy the above condi-
tions. Examples include the Holling-I functional response βxy, the Holling-II functional
response βxy

1+γx , the proportional-deterministic functional response function βxy
N , and the

ratio-dependent functional response βxy
mz+x or βxy

mz+y , where β, γ, m are all numbers greater
than zero. In the following discussion, we assume that hij(i, j = 1, 2, 3) satisfy the
above conditions.

2.1. Persistence of the System

Based on reference [45], and considering the biological background of system (1), we
make the following hypothesis:

(A1) The survival of the predator population is completely dependent on the prey and
will disappear with the extinction of the prey populations, i.e.,

h21(0, υ)− h22(υ)− h23(υ, ω) < 0, h31(0, ω) + h32(0, ω)− h33(ω) < 0.

(A2) The prey increases to carrying capacity without predator, i.e.,

h11(0)− h12(0, 0)− h13(0, 0) = h11(0) > 0, h′11(µ)− ∂h12(µ,υ)
∂µ − ∂h13(µ,ω)

∂µ < 0,

∃K, h11(K)− h12(K, 0)− h13(K, 0) = 0.

(A3) There is no equilibrium point in the ν − ω plane.
(A4) The intermediate predator can rely on prey for survival, leading to the existence

of a boundary equilibrium, E1(e1, r1, 0). Similarly, the top predator can survive by preying
only on the lowest-level prey, meaning another boundary equilibrium exists, E2(e2, 0, l2).

Proposition 1 ([45]). Let (A1)-(A4) hold. If

h31(e1, 0) + h32(r1, 0)− h33(0) > 0,

h21(e2, 0)− h22(0)− h23(0, l2) > 0,

then, for system (1), there exists at least one positive equilibrium, i.e., system (1) is persistent in
infinite time.

Based on the model (1), we design a nonlinear delayed feedback controller to control
the bifurcation in the system to obtain the required dynamic behavior. Here, we choose to
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introduce the delayed feedback controller Φ(t) = ke−dσ(ν(t)− ν(t− σ)) in the intermediate
predator (where k, σ and d denote the control intensity, the control target’s age, and the
intermediate predator’s reduction rate in unit time, respectively), which yields the following
dynamical system:

Dαµ(t) = µ(t)(h11(µ(t))− h12(µ(t), ν(t))− h13(µ(t), ω(t))),

Dαν(t) = ν(t)(h21(µ(t − τ), ν(t − τ))− h22(ν(t))− h23(ν(t), ω(t))) + ke−dσ(ν(t)− ν(t − σ)),

Dαω(t) = ω(t)(h31(µ(t − τ), ω(t − τ)) + h32(ν(t − τ), ω(t − τ))− h33(ω(t))),

(3)

where the initial value is µ(ϖ) = ϕ1(ϖ), ν(ϖ) = ϕ2(ϖ), ω(ϖ) = ϕ3(ϖ), ϖ ∈ [−max(τ, σ), 0].
The research is grounded in the theory of the Caputo fractional derivative.

2.2. The Well-Posedness of System (1)

It is not difficult to verify that the right side of Equation (1) satisfies the local Lipschitz
condition, and therefore, can be obtained

Theorem 1. For any given initial value ϕ = (ϕ1(ϖ), ϕ2(ϖ), ϕ3(ϖ)), when t ≥ 0, the system (1)
has a unique solution X(t) = (µ(t), ν(t), ω(t)).

Considering the biological significance of this system, we are only interested in non-
negative solutions. The below result guarantees the non-negativity of the solutions of
system (1).

Theorem 2. All solutions of system (1) are non-negative.

Proof. Suppose that there exists a constant t1 > t0, t+1 > t1 and that t+1 is close enough to
t1 such that 

µ(t) > 0, t0 < t < t1,

µ(t1) = 0,

µ(t+1 ) < 0.

There are two possible situations as follows:
(1) If Dαµ(t) ≥ 0 for all t ∈

[
t1, t+1

]
, by relying on Theorem 1 in [46], it follows

that µ(t) is a non-decreasing function for any t ∈
[
t1, t+1

]
, then µ(t+1 ) ≥ 0. It contradicts

the assumption.
(2) If Dαµ(t) ≤ 0 for all t ∈

[
t1, t+1

]
, from the first equality of Equation (1), we get

Dαµ(t) =µ(t)(h11(µ(t))− h12(µ(t), ν(t))− h13(µ(t), ω(t)))

≥µ(t) · max(h11(µ(t))).

Define N = max(h11(µ(t))), then

Dαµ(t) ≥ µ(t)N.

Applying the Laplace transform to the above inequality, we have that

µ(t) ≥ µ(t1)Eα(N(t − t1)
α), t ∈

[
t1, t+1

]
.

Thus, for any t > t1, we have µ(t) ≥ 0 inconsistent with the above assumption. Combining
both cases (1) and (2), we conclude that µ(t) is non-negative.

In the same way, we can justify that ν(t) and ω(t) are also non-negative.

3. Main Results

We know that there exists one positive equilibrium point of the system (1), assuming
that its positive equilibrium is Ê(µ̂, ν̂, ω̂). Let P1(t) = µ(t) − µ̂, P2(t) = ν(t) − ν̂, and
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P3(t) = ω(t)− ω̂, through variable transformation, and combined with system (1), we can
obtain the linearized system as follows:

DαP1(t) = (a11 − a12 − a13)µ̂P1(t)− a12µ̂P2(t)− a13µ̂P3(t),
DαP2(t) = a21ν̂P1(t − τ)− (a22ν̂ + a23ν̂)P2(t) + a21ν̂P2(t − τ)− a23ν̂P3(t),
DαP3(t) = a31ω̂P1(t − τ) + a32ω̂P2(t − τ)− a33ω̂P3(t) + (a31ω̂ + a32ω̂)P3(t − τ),

(4)
where

h′11(µ̂) = a11, ∂h12
∂µ (µ̂, ν̂) = a12, ∂h12

∂ν (µ̂, ν̂) = a12, ∂h13
∂µ (µ̂, ω̂) = a13, ∂h13

∂ω (µ̂, ω̂) = a13,

h′22(ν̂) = a22, ∂h21
∂µ(t−τ)

(µ̂, ν̂) = a21, ∂h21
∂ν(t−τ)

(µ̂, ν̂) = a21, ∂h23
∂ν (ν̂, ω̂) = a23, ∂h23

∂ω (ν̂, ω̂) = a23,

h′33(ω̂) = a33, ∂h31
∂µ(t−τ)

(µ̂, ω̂) = a31, ∂h31
∂ω(t−τ)

(µ̂, ω̂) = a31, ∂h32
∂ν(t−τ)

(ν̂, ω̂) = a32, ∂h32
∂ω(t−τ)

(ν̂, ω̂) = a32.

(5)

Then, in order to study the stability of the system, we perform a Laplace transform on
Equation (4) to obtain its characteristic matrix ∆(s) at the positive equilibrium Ê(µ̂, ν̂, ω̂).

∆(s) =

 sα − (a11 − a12 − a13)µ̂ a12µ̂ a13µ̂

−a21ν̂e−sτ sα + (a22 + a23)ν̂ − a21ν̂e−sτ a23ν̂

−a31ω̂e−sτ −a32ω̂e−sτ sα + a33ω̂ − (a31 + a32)ω̂e−sτ

. (6)

3.1. Dynamic Analysis of the System (1) without Delay

First, we study the delay-free system
Dαµ(t) = µ(t)(h11(µ(t))− h12(µ(t), ν(t))− h13(µ(t), ω(t))),
Dαν(t) = ν(t)(h21(µ(t), ν(t))− h22(ν(t))− h23(ν(t), ω(t))),
Dαω(t) = ω(t)(h31(µ(t), ω(t)) + h32(ν(t), ω(t))− h33(ω(t))).

(7)

The Jacobian matrix of the system (7) at the positive equilibrium Ê is

J =

 (a11 − a12 − a13)µ̂ −a12µ̂ −a13µ̂

a21ν̂ (a21 − a22 − a23)ν̂ −a23ν̂

a31ω̂ a32ω̂ (a31 + a32 − a33)ω̂

.

Theorem 3. If [H1] and [H2] are established, the positive equilibrium Ê of the fractional system (7)
is locally asymptotically stable. [H1] and [H2] are given during the proof.

Proof. Let λ = sα, the characteristic equation at the positive equilibrium Ê can be simplified to

λ3 + p1λ2 + p2λ + p3 = 0, (8)

where

p1 =− (a11 − a12 − a13)µ̂ − (a21 − a22 − a23)ν̂ − (a31 + a32 − a33)ω̂,

p2 =((a11 − a12 − a13)(a21 − a22 − a23) + a12a21)µ̂ν̂ + ((a21 − a22 − a23)(a31 + a32 − a33)

+ a23a32)ν̂ω̂ + ((a11 − a12 − a13)(a31 + a32 − a33) + a13a31)µ̂ω̂,

p3 =(a13a21a32 − a12a23a31 − a13a31(a21 − a22 − a23)− a23a32(a11 − a12 − a13)

− a12a21(a31 + a32 − a33)− (a11 − a12 − a13)(a21 − a22 − a23)(a31 + a32 − a33))µ̂ν̂ω̂.

According the qualification of model (1) to the functions hij(i, j = 1, 2, 3) (in the Preliminar-
ies section), and combined with the formula (5), we know a11 < 0, a12 ≤ 0, a12 > 0, a13 ≤ 0,
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a13 > 0, a22 > 0, a23 ≤ 0, a23 > 0, a32 > 0, a32 ≤ 0, a33 > 0, a21 > 0, a21 ≤ 0, a31 > 0,
a31 ≤ 0, thus, a31 + a32 − a33 < 0. Define the following formulas

[H1] : a21 − a22 − a23 < 0, a11 − a12 − a13 < 0,

[H2] : p1 p2 > p3 > 0.

Then, we have

p1 =− (a11 − a12 − a13)µ̂ − (a21 − a22 − a23)ν̂ − (a31 + a32 − a33)ω̂ > 0,

p2 =((a11 − a12 − a13)(a21 − a22 − a23) + a12a21)µ̂ν̂ + ((a21 − a22 − a23)(a31 + a32 − a33) + a23a32)ν̂ω̂

+ ((a11 − a12 − a13)(a31 + a32 − a33) + a13a31)µ̂ω̂ > 0,

p3 =(a13a21a32 − a12a23a31 − a13a31(a21 − a22 − a23)− a23a32(a11 − a12 − a13)

− a12a21(a31 + a32 − a33)− (a11 − a12 − a13)(a21 − a22 − a23)(a31 + a32 − a33))µ̂ν̂ω̂ > 0,

p1 p2 − p3 =− (a11 − a12 − a13)[(a11 − a12 − a13)(a21 − a22 − a23) + a12a21]µ̂
2ν̂

− (a21 − a22 − a23)[(a11 − a12 − a13)(a21 − a22 − a23) + a12a21]µ̂ν̂2

− (a21 − a22 − a23)[(a21 − a22 − a23)(a31 + a32 − a33) + a23a32]ν̂
2ω̂

− (a31 + a32 − a33)[(a21 − a22 − a23)(a31 + a32 − a33) + a23a32]ν̂ω̂2

− (a11 − a12 − a13)[(a11 − a12 − a13)(a31 + a32 − a33) + a13a31]µ̂
2ω̂

− (a31 + a32 − a33)[(a11 − a12 − a13)(a31 + a32 − a33) + a13a31]µ̂ω̂2

− [a13a21a32 − a12a23a31 + 2(a11 − a12 − a13)(a22 + a23 − a21)(a33 − a31 − a32)]µ̂ν̂ω̂ > 0.

Thus, under assumptions [H1] and [H2], we have H1 = p1 > 0, H2 = p1 p2 − p3 > 0, and
H3 = p3(p1 p2 − p3) > 0, which satisfies the Hurwitz criterion that all roots of the character-
istic equation have negative real parts, i.e., |arg(sα

1,2,3)| >
απ
2 hold. Through this argument,

the positive equilibrium Ê of the delay-free system (7) is locally asymptotically stable.

Theorem 4. Assuming that the positive equilibrium Ê of the system (7) satisfies conditions [H1]
and [H3] : a13a21a32 = a12a23a31, then Ê is globally asymptotically stable.

Proof. At the positive equilibrium Ê = (µ̂, ν̂, ω̂), we have
h11(µ̂)− h12(µ̂, ν̂)− h13(µ̂, ω̂) = 0,
h21(µ̂, ν̂)− h22(ν̂)− h23(ν̂, ω̂) = 0,
h31(µ̂, ω̂) + h32(ν̂, ω̂)− h33(ω̂) = 0.

Define the Lyapunov function

V(µ, ν, ω) = f1(µ − µ̂ − µ̂ ln
µ

µ̂
) + f2(ν − ν̂ − ν̂ ln

ν

ν̂
) + f3(ω − ω̂ − ω̂ ln

ω

ω̂
), (9)

where fi(i = 1, 2, 3) are constants, given by the later calculation. Through Lemma 1 of [47]
and the continuity of the partial derivative of hij(i, j = 1, 2, 3), we have
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DαV ≤ f1(µ − µ̂)(h11(µ(t))− h12(µ(t), ν(t))− h13(µ(t), ω(t))) + f2(ν − ν̂)(h21(µ(t), ν(t)))

− h22(ν(t))− h23(ν(t), ω(t)) + f3(ω − ω̂)(h31(µ(t), ω(t)) + h32(ν(t), ω(t))− h33(ω(t)))

= f1(µ − µ̂)(h11(µ(t))− h12(µ(t), ν(t))− h13(µ(t), ω(t))− (h11(µ̂)− h12(µ̂, ν̂)− h13(µ̂, ω̂)))

+ f2(ν − ν̂)(h21(µ(t), ν(t))− h22(ν(t))− h23(ν(t), ω(t)))− (h21(µ̂, ν̂)− h22(ν̂)− h23(ν̂, ω̂))

+ f3(ω − ω̂)(h31(µ(t), ω(t)) + h32(ν(t), ω(t))− h33(ω(t)))− (h31(µ̂, ω̂) + h32(ν̂, ω̂)− h33(ω̂))

= f1(µ − µ̂)[(µ − µ̂)h′11(µ̂) + γ1] + f1(µ − µ̂)[−(µ − µ̂)
∂h12

∂µ
(µ̂, ν̂)− (ν − ν̂)

∂h12

∂ν
(µ̂, ν̂) + α1]

+ f1(µ − µ̂)[−(µ − µ̂)
∂h13

∂µ
(µ̂, ω̂)− (ω − ω̂)

∂h13

∂ω
(µ̂, ω̂) + β1] + f2(ν − ν̂)[(µ − µ̂)

∂h21

∂µ
(µ̂, ν̂)

+ (ν − ν̂)
∂h21

∂ν
(µ̂, ν̂) + α2] + f2(ν − ν̂)[−(ν − ν̂)

∂h23

∂ν
(ν̂, ω̂)− (ω − ω̂)

∂h23

∂ω
(ν̂, ω̂) + β2]

+ f2(ν − ν̂)[−(ν − ν̂)h′22(ν̂) + γ2] + f3(ω − ω̂)[(µ − µ̂)
∂h31

∂µ
(µ̂, ω̂) + (ω − ω̂)

∂h31

∂ω
(µ̂, ω̂) + α3]

+ f3(ω − ω̂)[(ν − ν̂)
∂h32

∂ν
(ν̂, ω̂) + (ω − ω̂)

∂h32

∂ω
(ν̂, ω̂) + β3] + f3(ω − ω̂)[−(ω − ω̂)h′33(ω̂) + γ3],

where αi, βi and γi(i = 1, 2, 3) are infinitesimals of higher order with respect to distance.
So we can obtain

DαV ≤ f1(µ − µ̂)2(a11 − a12 − a13) + f2(ν − ν̂)2(a21 − a22 − a23)

+ f3(ω − ω̂)2(a31 + a32 − a33) + ( f2a21 − f1a12)(µ − µ̂)(ν − ν̂)

+ ( f3a31 − f1a13)(µ − µ̂)(ω − ω̂) + ( f3a32 − f2a23)(ν − ν̂)(ω − ω̂).

If [H3] : a13a21a32 = a12a23a31 and [H1] : a21 − a22 − a23 < 0 are held, we consider
f1 = a31a23

a13
= a21a32

a12
, f2 = a32, and f3 = a23, then we have

DαV ≤ f1(µ − µ̂)2(a11 − a12 − a13) + f2(ν − ν̂)2(a21 − a22 − a23) + f3(ω − ω̂)2(a31 + a32 − a33) ≤ 0.

When [H3] holds, [H2] also follows, and by Theorem 3, if [H1] is satisfied, then Ê is locally
asymptotically stable. From [H1] and [H3], we obtain DαV ≤ 0. Furthermore, utilizing
LasSalle’s invariant set principle for differential system (7), Ê is globally asymptotically
stable, thereby concluding the proof of Theorem 4.

3.2. Dynamic Analysis of the System (1) with Delay

Next, we study the delayed fractional system (1), where systems (1) and (7) have the
same equilibrium. The stability of the fractional system needs to be revisited due to the
effect of delay τ. We calculate the critical value of bifurcation with delay τ serving as a
branch parameter and explore the sufficient condition leading to a Hopf bifurcation.

When τ > 0, the characteristic equation of the non-controlled system (1) at the
equilibrium Ê is organized as follows:

M1(s) + M2(s)e−sτ + M3(s)e−2sτ = 0, (10)

where
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M1(s) =s3α + ((a22 + a23)ν̂ − (a11 − a12 − a13)µ̂ + a33ω̂)s2α + [a33((a22 + a23)ν̂ω̂

− (a11 − a12 − a13)µ̂ω̂)− (a22 + a23)(a11 − a12 − a13)µ̂ν̂]sα

− (a22 + a23)(a11 − a12 − a13)a33µ̂ν̂ω̂,

M2(s) =(−a21ν̂ − (a31 + a32)ω̂)s2α + [(a12a21 + a21(a11 − a12 − a13))µ̂ν̂ + (a23a32 − a21a33

− (a31 + a32)(a22 + a23))ν̂ω̂ + ((a11 − a12 − a13)(a31 + a32) + a13a31)µ̂ω̂]sα

+ [(a11 − a12 − a13)((a22 + a23)(a31 + a32) + a21a33 − a23a32) + a12a21a33

+ a13a31(a22 + a23)− a12a23a31]µ̂ν̂ω̂,

M3(s) =a21(a31 + a32)ν̂ω̂sα + (a13a21a32 − a13a21a31 − a12a21(a31 + a32)

− a21(a31 + a32)(a11 − a12 − a13))µ̂ν̂ω̂.

Multiplying both sides of the equation by esτ , then we obtain

M1(s)esτ + M2(s) + M3(s)e−sτ = 0. (11)

Assuming s = iρ(ρ > 0) represents a purely imaginary root of Equation (11), then sepa-
rating the real and imaginary parts of the above equation, we obtain the following system
of equations {

(MR
1 + MR

3 ) cos ρτ + (MI
3 − MI

1) sin ρτ = −MR
2 ,

(MI
1 + MI

3) cos ρτ + (MR
1 − MR

3 ) sin ρτ = −MI
2,

(12)

where

MR
1 =ρ3α cos

3απ

2
+ ((a22 + a23)ν̂ − (a11 − a12 − a13)µ̂ + a33ω̂)ρ2α cos απ + (a33((a22 + a23)ν̂ω̂

− (a11 − a12 − a13)µ̂ω̂)− (a22 + a23)(a11 − a12 − a13)µ̂ν̂)ρα cos
απ

2
− (a22 + a23)(a11 − a12 − a13)a33µ̂ν̂ω̂,

MI
1 =ρ3α sin

3απ

2
+ ((a22 + a23)ν̂ − (a11 − a12 − a13)µ̂ + a33ω̂)ρ2α sin απ + (a33((a22 + a23)ν̂ω̂

− (a11 − a12 − a13)µ̂ω̂)− (a22 + a23)(a11 − a12 − a13)µ̂ν̂)ρα sin
απ

2
,

MR
2 =(−a21ν̂ − (a31 + a32)ω̂)ρ2α cos απ + [(a12a21 + a21(a11 − a12 − a13))µ̂ν̂ + (a23a32 − a21a33

− (a31 + a32)(a22 + a23))ν̂ω̂ + ((a11 − a12 − a13)(a31 + a32) + a13a31)µ̂ω̂]ρα cos
απ

2
+ [(a11 − a12 − a13)((a22 + a23)(a31 + a32) + a21a33 − a23a32) + a12a21a33

+ a13a31(a22 + a23)− a12a23a31]µ̂ν̂ω̂,

MI
2 =(−a21ν̂ − (a31 + a32)ω̂)ρ2α sin απ + [(a12a21 + a21(a11 − a12 − a13))µ̂ν̂ + (a23a32 − a21a33

− (a31 + a32)(a22 + a23))ν̂ω̂ + ((a11 − a12 − a13)(a31 + a32) + a13a31)µ̂ω̂]ρα sin
απ

2
,

MR
3 =a21(a31 + a32)ν̂ω̂ρα cos

απ

2
+ (a13a21a32 − a13a21a31 − a12a21(a31 + a32)

− (a31 + a32)a21(a11 − a12 − a13))µ̂ν̂ω̂,

MI
3 =a21(a31 + a32)ν̂ω̂ρα sin

απ

2
.
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By solving the Equation (12), we derive that
cos ρτ =

MI
2(MI

3−MI
1)−MR

2 (MR
1 −MR

3 )

(MR
1 )

2+(MI
1)

2−(MR
3 )

2−(MI
3)

2 ≡ φ1(ρ),

sin ρτ =
MR

2 (MI
3+MI

1)−MI
2(MR

1 +MR
3 )

(MR
1 )

2+(MI
1)

2−(MR
3 )

2−(MI
3)

2 ≡ φ2(ρ).
(13)

Making ρ1 is a positive real root of equation φ2
1(ρ)+ φ2

2(ρ) = 1, then based on the Equation (13),
it is obtained that

τ(k) =
1
ρ1

[arccos
MI

2(MI
3 − MI

1)− MR
2 (MR

1 − MR
3 )

(MR
1 )

2 + (MI
1)

2 − (MR
3 )

2 − (MI
3)

2
+ 2kπ], k = 0, 1, 2, · · · .

Define the bifurcation point

τ0 = min
{

τ(k)
}

, k = 0, 1, 2, · · ·.

Using the chain rule to differentiate both sides of (10) regarding τ, then

M1
′(s)

ds
dτ

+

[
M2

′(s)
ds
dτ

e−sτ + M2(s)e−sτ(−τ
ds
dτ

− s)
]
+

[
M3

′(s)
ds
dτ

e−2sτ + M3(s)e−2sτ(−2τ
ds
dτ

− 2s)
]
= 0.

Processing the above equation gets

Re
[

ds
dτ

]∣∣∣
(ρ=ρ1,τ=τ0)

=
Λ1∆1 + Λ2∆2

∆2
1 + ∆2

2
, (14)

where

Λ1 =ρ1(MR
2 sin ρ1τ0 − MI

2 cos ρ1τ0 + 2MR
3 sin 2ρ1τ0 − 2MI

3 cos 2ρ1τ0),

Λ2 =ρ1(MR
2 cos ρ1τ0 + MI

2 sin ρ1τ0 + 2MR
3 cos 2ρ1τ0 + 2MI

3 sin 2ρ1τ0),

∆1 =M
′R
1 + (M

′R
2 − τ0MR

2 ) cos ρ1τ0 + (M
′ I
2 − τ0MI

2) sin ρ1τ0

+ (M
′R
3 − 2τ0MR

3 ) cos 2ρ1τ0 + (M
′ I
3 − 2τ0MI

3) sin 2ρ1τ0,

∆2 =M
′ I
1 + (M

′ I
2 − τ0MI

2) cos ρ1τ0 − (M
′R
2 − τ0MR

2 ) sin ρ1τ0

+ (M
′ I
3 − 2τ0MI

3) cos 2ρ1τ0 − (M
′R
3 − 2τ0MR

3 ) sin 2ρ1τ0.

If [H4] :
Λ1∆1 + Λ2∆2

∆2
1 + ∆2

2
> 0, it shows that the transversality condition Re

[
ds
dτ

]∣∣∣
(ρ=ρ1,τ=τ0)

> 0 holds. Thus, we receive the following theorem:

Theorem 5. Assuming condition [H4] is true, then
(i) If τ ∈ [0, τ0), Equation (10) has all roots with negative real parts, then the positive

equilibrium Ê is locally asymptotically stable;
(ii) If τ = τ0, Equation (10) has a purely imaginary root, and system (1) exhibits a Hopf

bifurcation at the positive equilibrium Ê, which implies it has a branch of periodic solution bifurcating
from Ê near τ = τ0;

(iii) If τ > τ0, Equation (10) has at least one root with a positive real part, then the positive
equilibrium Ê is unstable.

3.3. Bifurcation Dynamics in the System (3) with Control

Artificially controlling population dynamics systems enables human to better protect
populations and more effectively exploit resources. In this section, we make it possible to
achieve an increase in the system’s stability range of the system by designing a nonlinear
feedback control strategy containing delay. For the control system (3), we select τ and σ
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as the key parameters, research the stability and branch of the controlled system (3), and
precisely discuss the threshold bifurcation value.

To better investigate the system’s stability, it is relatively easy to obtain the characteri-
zation matrix Λ(s) of the system (3) at Ê as

Λ(s) =

 sα − (a11 − a12 − a13)µ̂ a12µ̂ a13µ̂

−a21ν̂e−sτ sα + (a22 + a23)ν̂ − a21ν̂e−sτ + F(s) a23ν̂

−a31ω̂e−sτ −a32ω̂e−sτ sα + Y(s)

, (15)

where F(s) = −ke−dσ + ke−dσe−sσ, Y(s) = a33ω̂ − (a31 + a32)ω̂e−sτ .

3.3.1. Bifurcation Dynamics Due to Delay τ in System (3) with Control

Theorem 6. Assuming condition [H5] is established, which is given in the proof, we can draw the
following conclusions:

(i) If τ ∈ [0, τ1), all roots of Equation (16) have negative real parts, ensuring local asymptotic
stability of the equilibrium Ê in the control system (3);

(ii) If τ = τ1, one root of Equation (16) is a pure imaginary number, then the control system (3)
undergoes a Hopf bifurcation at the positive equilibrium Ê;

(iii) If τ > τ1, at least one root of Equation (16) has a positive real part, rendering the
equilibrium Ê in the control system (3) unstable.

Proof. The characteristic equation of the system (3) at the positive equilibrium Ê is

W1(s) + W2(s)e−sτ + W3(s)e−2sτ = 0, (16)

where

U(s) = s2α + (a33ω̂ − (a11 − a12 − a13)µ̂)sα − a33(a11 − a12 − a13)µ̂ω̂,

N(s) = −(a31 + a32)ω̂sα + (a13a31 + (a11 − a12 − a13)(a31 + a32))µ̂ω̂,

W1(s) = M1(s) + ke−dσ(e−sσ − 1)U(s),

W2(s) = M2(s) + ke−dσ(e−sσ − 1)N(s),

W3(s) = M3(s).

The equation is then organized as

W1(s)esτ + W2(s) + W3(s)e−sτ = 0. (17)

Assume that there exists a purely imaginary root s = iη(η > 0) of Equation (17), and
substitute s into Equation (17) can be obtained{

(WR
1 + WR

3 ) cos ητ + (W I
3 − W I

1) sin ητ = −WR
2 ,

(W I
1 + W I

3) cos ητ + (WR
1 − WR

3 ) sin ητ = −W I
2 ,

(18)

where

UR =η2α cos απ + (a33ω̂ − (a11 − a12 − a13)µ̂)η
α cos

απ

2
− a33(a11 − a12 − a13)µ̂ω̂,

UI =η2α sin απ + (a33ω̂ − (a11 − a12 − a13)µ̂)η
α sin

απ

2
,

NR =− (a31 + a32)ω̂ηα cos
απ

2
+ (a13a31 + (a11 − a12 − a13)(a31 + a32))µ̂ω̂,

NI =− (a31 + a32)ω̂ηα sin
απ

2
,
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WR
1 =MR

1 + ke−dσ(UR cos ησ + UI sin ησ)− kURe−dσ,

W I
1 =MI

1 + ke−dσ(UI cos ησ − UR sin ησ)− kUIe−dσ,

WR
2 =MR

2 + ke−dσ(NR cos ησ + NI sin ησ)− kNRe−dσ,

W I
2 =MI

2 + ke−dσ(NI cos ησ − NR sin ησ)− kNIe−dσ,

WR
3 =MR

3 , W I
3 = MI

3.

Considering Equation (18), we get  cos ητ = Φ1(η)
Φ3(η)

,

sin ητ = Φ2(η)
Φ3(η)

,
(19)

where
Φ1(η) =W I

2(W
I
3 − W I

1)− WR
2 (WR

1 − WR
3 ),

Φ2(η) =WR
2 (W I

3 + W I
1)− W I

2(W
R
1 + WR

3 ),

Φ3(η) =(WR
1 )2 + (W I

1)
2 − (WR

3 )2 − (W I
3)

2.

By means of Equation (19), it procures that

Φ2
3(η) = Φ2

1(η) + Φ2
2(η). (20)

Meanwhile, it can be defined from Equation (20) that

Φ(η) = Φ2
1(η) + Φ2

2(η)− Φ2
3(η) = 0. (21)

Assuming that there exists a positive real root η1 of Equation (21), substituting this into the
first equation of (19) we have

τ(k) =
1
η1

[arccos
Φ1(η1)

Φ3(η1)
+ 2kπ], k = 0, 1, 2, · · · .

We define the bifurcation of the fractional system (3) as follows:

τ1 = min
{

τ(k)
}

, k = 0, 1, 2, · · ·.

Using the chain rule to differentiate both sides of (16) regarding τ, then

W1
′(s)

ds
dτ

+

[
W2

′(s)
ds
dτ

e−sτ + W2(s)e−sτ(−τ
ds
dτ

− s)
]
+

[
W3

′(s)
ds
dτ

e−2sτ + W3(s)e−2sτ(−2τ
ds
dτ

− 2s)
]
= 0.

Processing the above equation gets

Re
[

ds
dτ

]∣∣∣
(η=η1,τ=τ1)

=
Π1Γ1 + Π2Γ2

Γ2
1 + Γ2

2
, (22)

where

Π1 =η1(WR
2 sin η1τ1 − W I

2 cos η1τ1 + 2WR
3 sin 2η1τ1 − 2W I

3 cos 2η1τ1),

Π2 =η1(WR
2 cos η1τ1 + W I

2 sin η1τ1 + 2WR
3 cos 2η1τ1 + 2W I

3 sin 2η1τ1),
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Γ1 =W
′R
1 + (W

′R
2 − τ1WR

2 ) cos η1τ1 + (W
′ I
2 − τ1W I

2) sin η1τ1

+ (W
′R
3 − 2τ1WR

3 ) cos 2η1τ1 + (W
′ I
3 − 2τ1W I

3) sin 2η1τ1,

Γ2 =W
′ I
1 + (W

′ I
2 − τ1W I

2) cos η1τ1 − (W
′R
2 − τ1WR

2 ) sin η1τ1

+ (W
′ I
3 − 2τ1W I

3) cos 2η1τ1 − (W
′R
3 − 2τ1WR

3 ) sin 2η1τ1.

Under [H5] :
Π1Γ1 + Π2Γ2

Γ2
1 + Γ2

2
> 0, the transversality condition is Re

[
ds
dτ

]∣∣∣
(η=η1,τ=τ1)

> 0.

Thus we complete the proof of the theorem.

3.3.2. Bifurcation Dynamics Due to Feedback Delay σ in System (3) with Control

Theorem 7. If the transversality condition [H6] is satisfied, we can conclude the following:
(i) If σ ∈ [0, σ1), the local asymptotic stability of the positive equilibrium Ê in the controlled

system (3) is established;
(ii) If σ = σ1, the fractional system (3) undergoes a Hopf bifurcation, meaning a bifurcation

to a periodic solution is generated from Ê near σ = σ1;
(iii) If σ > σ1, the positive equilibrium Ê in the controlled system (3) becomes unstable.

Proof. Rearrange the characteristic equation of the controlled system at the positive equi-
librium Ê into the following form

Q(s)− kP(s)e−dσ + kP(s)e−dσe−sσ = 0, (23)

where

Q(s) =M1(s) + M2(s)e−sτ + M3(s)e−2sτ ,

P(s) =s2α + (a33ω̂ − (a11 − a12 − a13)µ̂)sα − a33(a11 − a12 − a13)µ̂ω̂

+ (−(a31 + a32)ω̂sα + (a13a31 + (a11 − a12 − a13)(a31 + a32))µ̂ω̂)e−sτ .

Suppose that the characteristic Equation (23) has a purely imaginary root s = iξ(ξ > 0),
substituting s into Equation (23) and separating their imaginary and real parts, we get{

QR − kPRe−dσ + ke−dσPR cos ξσ + ke−dσPI sin ξσ = 0,

QI − kPIe−dσ + ke−dσPI cos ξσ − ke−dσPR sin ξσ = 0,
(24)

where
QR =MR

1 + MR
2 cos ξτ + MI

2 sin ξτ + MR
3 cos 2ξτ + MI

3 sin 2ξτ,

QI =MI
1 + MI

2 cos ξτ − MR
2 sin ξτ + MI

3 cos 2ξτ − MR
3 sin 2ξτ,

PR =UR + NR cos ξτ + NI sin ξτ,

PI =UI + NR cos ξτ − NR sin ξτ.

UR, UI , NR, and NI have already been defined in the proof of Theorem 6. By the aid of
Equation (24), we have 

cos ξσ = 1 − edσ(PRQR+PI QI )

k(P2
R+P2

I )
= Υ1(ξ),

sin ξσ = edσ(PRQI−PI QR)

k(P2
R+P2

I )
= Υ2(ξ).

(25)

In the meantime, from the Equation (25), we can calculate

I(ξ, σ) = edσ(Q2
R + Q2

I )− 2k(PRQR + PI QI) = 0. (26)
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Assuming a positive real root ξ1 for I(ξ, σ) = 0, then

σk =
1
ξ1

[arccos Υ1(ξ1) + 2kπ], k = 0, 1, 2, · · · .

Select the bifurcation point σ1 = min
{

σk, k = 0, 1, 2, · · ·
}

, and then differentiate both sides
of Equation (23) with respect to σ. We have

Q
′
(s)

ds
dσ

+ dkP(s)e−dσ − kP
′
(s)e−dσ ds

dσ
− dkP(s)e−dσe−sσ + kP

′
(s)e−dσe−sσ ds

dσ
+ kP(s)e−dσe−sσ(−σ

ds
dσ

− s) = 0.

Solving the above equation gives
ds
dσ

=
Ξ(s)
Σ(s)

. (27)

Define the real and imaginary parts of Ξ(s) as ΞR, ΞI , and the real and imaginary parts of
Σ(s) as ΣR, ΣI , respectively. Based on the preceding analysis, we can derive that

Re
[

ds
dσ

]∣∣∣
(ξ=ξ1,σ=σ1)

=
ΞRΣR + ΞIΣI

Σ2
R + Σ2

I
, (28)

where

ΞR = ke−dσ(PR(ξ1 sin ξ1σ1 + d cos ξ1σ1 − d)− PI(ξ1 cos ξ1σ1 − d sin ξ1σ1)),

ΞI = ke−dσ(PI(ξ1 sin ξ1σ1 + d cos ξ1σ1 − d) + PR(ξ1 cos ξ1σ1 − d sin ξ1σ1)),

ΣR = Q
′R(s) + ke−dσ1(P

′R(s) cos ξ1σ1 + P
′ I(s) sin ξ1σ1 − P

′R(s)− σ1(PR cos ξ1σ1 + PI sin ξ1σ1)),

ΣI = Q
′ I(s) + ke−dσ1(P

′ I(s) cos ξ1σ1 − P
′R(s) sin ξ1σ1 − P

′ I(s)− σ1(PI cos ξ1σ1 − PR sin ξ1σ1)).

As a result, under the condition of [H6] :
ΞRΣR + ΞIΣI

Σ2
R + Σ2

I
> 0, we conclude that the transver-

sality condition is Re
[

ds
dσ

]∣∣∣
(ξ=ξ1,σ=σ1)

> 0. The analysis above confirms Theorem 7.

4. Practical Applications and Numerical Simulations

In this section, numerical simulations are performed by using the Adams–Bashforth–
Moulton method [48,49]. We provide two application examples to confirm the validity and
biological feasibility of theoretical results for system’s stability and Hopf bifurcation.

4.1. Delayed Feedback Control for a Food Chain Model

We consider the following fractional three-species food chain model with delay
Dαµ(t) = µ(t)

(
0.7(1 − 1

18 µ(t))− 0.6ν(t)
1+0.125µ(t) −

0.55ω(t)
1+0.25µ(t)

)
,

Dαν(t) = ν(t)
(

0.18µ(t−τ)
1+0.125µ(t−τ)

− 0.15ω(t)
1+0.3ν(t) − 0.05ν(t)− 0.02

)
+ ke−0.02σ(ν(t)− ν(t − σ)),

Dαω(t) = ω(t)
(

0.124µ(t−τ)
1+0.25µ(t−τ)

+ 0.075ν(t−τ)
1+0.3ν(t−τ)

− 0.18ω(t)− 0.02
)

.

(29)

where µ(t), ν(t), and ω(t) represent the density of prey, intermediate predator, and ad-
vanced predator, respectively. We define its initial condition as µ(t) = 0.88,
ν(t) = 0.82, ω(t) = 0.44, t ∈ [−τ, 0]. By calculating, we obtain the positive equi-
librium of the system is Ê(0.697, 0.842, 0.445). In the discussion below, we fix α = 0.96
without any special remarks.

When k = 0 or σ = 0, we deal with the fractional system (29) without a controller.
When τ = 0, the delay-free system (29) satisfies the conditions of Theorems 3 and 4,

then the system (29) is globally asymptotically stable at Ê. Figure 1 illustrates the conclusion.
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Figure 1. Numerical simulation of system (29) under uncontrolled: Ê(0.697, 0.842, 0.445), α = 0.96,
τ = 0.

Next, when τ > 0, we can calculate that the critical value of the system to generate a
Hopf bifurcation is τ0 = 0.602. Thus, from Figure 2, we can also observe that the system (29)
is locally asymptotically stable at Ê when τ = 0.51 < τ0, producing a periodic solution
when τ = τ0 and unstable when τ = 0.8 > τ0.
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Figure 2. Numerical simulation of system (29) under uncontrolled (α = 0.96, τ0 = 0.602), where the
blue line corresponds to τ = 0.8; the red line corresponds to τ = 0.51.

To investigate whether the change in the order value causes a difference in the system’s
stability, in Figure 3, we fix τ = 0.8, then take α = 0.9 and α = 0.96, respectively, which are
observed to exhibit stable and unstable states. So, the change in the value of order also
causes a difference in the system’s stability.
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Figure 3. Numerical simulation of system (29) under uncontrolled (τ = 0.8), where the blue line
corresponds to α = 0.96; the red line corresponds to α = 0.9.

Remark 1. To better illustrate that the fractional order suppresses the oscillatory behavior of a
system, we show the corresponding bifurcation thresholds from α = 0.8 to α = 1 in Figure 4a. The
results indicate that the smaller order of the system has a better bifurcation suppression effect, which
means that the fractional system has a wider stable region.
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Figure 4. Figure (a) demonstrates how α affects the bifurcation point τ0 for k = 0, while Figure (b)
illustrates the influence of k on the bifurcation point τ1 for σ = 4.

When k ̸= 0 and σ ̸= 0, we discuss the fractional system (29) with a delay con-
troller.

(i) Initially, we discuss the influence of delay τ on the bifurcation behavior of sys-
tem (29). In Figure 3, when τ = 0.8, the non-control system is unstable. Let k =−0.2, σ = 4,
the controlled system can reach a steady state due to τ = 0.8 < τ1 = 1.025, where τ1 is the
bifurcation point of system (29) (see Figure 5). When τ = τ1, it causes a Hopf bifurcation
and is accompanied by generating a periodic solution near Ê. The above is consistent with
the conclusion of Theorem 6. Therefore, choosing an appropriate controller can effectively
suppress oscillatory behavior in the system.

(ii) Subsequently, we examine how the feedback control gain k influences the bifur-
cation behavior of system (29). Fixing σ = 4, changing the feedback gain k within a
certain range will also change the corresponding system’s bifurcation critical values (as
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shown in Figure 4b). Therefore, the selection of a feedback gain factor also influences the
system’s stability.
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Figure 5. Numerical simulation comparison between no and with controller, where the blue line
corresponds to k = 0, σ = 0; the red line corresponds to k =−0.2, σ = 4.

(iii) Ultimately, we explore how the feedback control delay σ impacts the bifurcation
behavior of system (29). Fixing k = 0.15 and τ = 0.45, we compute the critical value
σ1 = 1.832, at which the system undergoes a Hopf bifurcation and generates a periodic
solution branch near Ê. When σ = 0.5 < σ1, the system is stable at Ê. When σ = 2.25 > σ1,
Ê is unstable (as shown in Figure 6). The conclusion is consistent with Theorem 7.
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Figure 6. Numerical simulation of the system (29) with a controller (k = 0.15, τ = 0.45), where the
blue line corresponds to σ = 2.25; the red line corresponds to σ = 0.5.



Fractal Fract. 2024, 8, 232 17 of 22

4.2. Delayed Feedback Control in an Eco-Epidemiologic System

In the above study, we discussed the stability and Hopf bifurcation of a delayed
fractional food chain model. Through observation, it is found that the above conclusions
are still applicable to the eco-epidemiological system. It also provides novel control strategy
for the spread of disease. For instance, S(t), I(t), and P(t) denote the population density
of susceptible prey, diseased prey, and predator, respectively. We consider the following
fractional eco-epidemiological system

DαS(t) = S(t)
(

1 − S(t)− 1.5I(t)
1+3S(t) −

0.8P(t)
3P(t)+S(t)

)
,

Dα I(t) = I(t)
(

1.5S(t)
1+3S(t) − 0.05 − 0.45P(t)

1.2P(t)+I(t)

)
+ ke−0.05σ(I(t)− I(t − σ)),

DαP(t) = P(t)
(

0.64S(t−τ)
3P(t−τ)+S(t−τ)

+ 0.225I(t−τ)
1.2P(t−τ)+I(t−τ)

− 0.22
)

.

(30)

where the initial condition is S(t) = 0.315, I(t) = 0.620, P(t) = 0.510, t ∈ [−τ, 0]. After com-
putation, system (30) has a unique positive equilibrium Ê(0.298, 0.606, 0.497). In general,
we take α = 0.96.

First, we consider the non-controlled system when k = 0 or σ = 0.
The fractional system’s positive equilibrium Ê is globally asymptotically stable for

τ = 0 (refer to Figure 7). After computing τ0 = 4.253, Ê is asymptotically stable for
τ < 4.253 and unstable for τ > 4.253 (refer to Figure 8). As in example 1, the order affects
the system’s stability. The system is stable and unstable when α = 0.9 and α = 0.96,
respectively (see Figure 9).
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Figure 7. Numerical simulation of system (30) under uncontrolled: Ê(0.298, 0.606, 0.497), α = 0.96,
τ = 0.

Remark 2. At τ = 0, Figure 10 simulates the solutions of the non-controlled system for various
values of the order α. Obviously, we can observe the order’s effect on the convergence speed. As the
order α decreases, the memory effect of the system increases, which slows the rate of convergence,
which means that it takes longer for the predator to eradicate the disease. We can observe that as the
order α approaches 1, the solution of the fractional-order system more closely resembles the pattern
of an integer-order system (all the directions indicated by the arrows in the figure, in which the order
α increases).
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Figure 8. Numerical simulation of system (30) under uncontrolled (α = 0.96, τ0 = 4.253), where the
blue line corresponds to τ = 4.3; the red line corresponds to τ = 2.55.
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Figure 9. Numerical simulation of system (30) under uncontrolled (τ = 4.3), where the blue line
corresponds to α = 0.96; the red line corresponds to α = 0.9.
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Figure 10. The corresponding solution curves at various orders (τ = 0).

Next, we consider the epidemic system (30) with a feedback controller when k ̸= 0
and σ ̸= 0.

By introducing the feedback delay controller with fixed k =−0.2 and σ = 0.9 into the
system, the original system achieves a state transition from oscillatory to stable
(see Figure 11). We calculate σ1 = 12.837. It is observed that the positive equilibrium
Ê of the fractional delayed system is asymptotically stable for σ < 12.837 and unstable for
σ > 12.837 (see Figure 12). They both verify the validity of the theoretical results.
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Figure 11. Numerical simulation comparison between without and with controller, where the blue
line corresponds to k = 0, σ = 0; the red line corresponds to k =−0.2, σ = 0.9.
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Figure 12. Numerical simulation of the system (30) with a controller (k =−1, τ = 4.25), where the
blue line corresponds to σ = 14.5; the red line corresponds to σ = 8.5.

Remark 3. The conclusions in the food chain model described above still apply to the eco-epidemiological
model. The rational intervention and control of eco-epidemiological systems are particularly im-
portant to prevent infectious diseases from causing serious damage or even extinction to plant and
animal populations. In the eco-epidemiological system, we design a nonlinear feedback control
strategy with delay to make the system reach a stable state faster, inhibit its oscillation phenomenon,
and finally obtain the ideal behavior.

5. Conclusions and Discussion

In this paper, we incorporate a delayed nonlinear feedback controller into the predator–
prey system and establish a fractional food chain model with a general functional response.
Initially, the stability of the nontrivial equilibrium and the Hopf bifurcation in the non-
controlled system are analyzed. We also discuss the effects of delay and fractional order
on system stability, revealing that fractional systems have a broader stability region and
effectively suppress systems oscillation compared to integer systems. Additionally, by
appropriately adjusting the delay, a smooth transition from an unstable to a stable state
in the system can be achieved. Subsequently, we investigate the fractional system with a
nonlinear delayed controller, obtaining threshold values for Hopf bifurcation occurrence
by considering delay as bifurcation parameter. Notably, the introduction of the controller
modifies the stability region of the original non-controlled system and enables effective
bifurcation control. Finally, the introduced control strategy is effective in combating disease
prevalence in the ecosystem. Considering the effectiveness of the nonlinear delay feedback
controller for controlling the balance of the system, its application in different fields is still
the exploration direction of future work.
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