
Citation: Liu, Y.; Li, J. Runtime

Verification‑Based Safe MARL for

Optimized Safety Policy Generation

for Multi‑Robot Systems. Big Data

Cogn. Comput. 2024, 8, 49.

https://doi.org/10.3390/bdcc8050049

Academic Editors: Robert Ross and

Alex Stumpf

Received: 7 April 2024

Revised: 3 May 2024

Accepted: 13 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and 
cognitive computing

Article

Runtime Verification‑Based Safe MARL for Optimized Safety
Policy Generation for Multi‑Robot Systems
Yang Liu * and Jiankun Li

Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 200120, China;
202130510003@stu.shmtu.edu.cn
* Correspondence: lyang@shmtu.edu.cn

Abstract: The intelligent warehouse is a modern logistics management system that uses technolo‑
gies like the Internet of Things, robots, and artificial intelligence to realize automated management
and optimize warehousing operations. The multi‑robot system (MRS) is an important carrier for
implementing an intelligent warehouse, which completes various tasks in the warehouse through
cooperation and coordination between robots. As an extension of reinforcement learning and a kind
of swarm intelligence, MARL (multi‑agent reinforcement learning) can effectively create the multi‑
robot systems in intelligent warehouses. However, MARL‑based multi‑robot systems in intelligent
warehouses face serious safety issues, such as collisions, conflicts, and congestion. To deal with these
issues, this paper proposes a safe MARL method based on runtime verification, i.e., an optimized
safety policy‑generation framework, for multi‑robot systems in intelligent warehouses. The frame‑
work consists of three stages. In the first stage, a runtime model SCMG (safety‑constrained Markov
Game) is defined for the multi‑robot system at runtime in the intelligent warehouse. In the second
stage, rPATL (probabilistic alternating‑time temporal logic with rewards) is used to express safety
properties, and SCMG is cyclically verified and refined through runtime verification (RV) to ensure
safety. This stage guarantees the safety of robots’ behaviors before training. In the third stage, the
verified SCMG guides SCPO (safety‑constrained policy optimization) to obtain an optimized safety
policy for robots. Finally, amulti‑robot warehouse (RWARE) scenario is used for experimental evalu‑
ation. The results show that the policy obtained by our framework is safer than existing frameworks
and includes a certain degree of optimization.

Keywords: intelligentwarehouse; multi‑robot systems; multi‑agent reinforcement learning; runtime
verification

1. Introduction
The intelligent warehouse is a logistics‑warehousing‑management ‑system platform

and an important application scenario of the 5G Industrial Internet. Intelligentwarehouses
improve the efficiency and accuracy of warehouses through automated warehousing,
automated sorting, automated distribution, and other intelligent processes, while also
reducing labor costs and enhancing service quality [1]. In addition, intelligent warehouses
can optimize warehouse logistics operations and improve business‑response speed
through real‑time data analysis and intelligent decision‑making, thereby better meeting
customer needs and bringing greater economic benefits and market competitiveness to en‑
terprises. Intelligent warehouses can improve the competitiveness and sustainability of
the national economy [2].

Multi‑Robot Systems (MRSs) [3] in smart warehouses are a type of technology that
uses multiple robots to work together to complete warehouse management and logisti‑
cal operations. This system combines automation, machine learning, artificial intelligence,
and advanced sensing technologies to optimize the efficiency and accuracy of warehouse
operations. These robots can be autonomously moving AGVs (automated guided vehi‑
cles) [4], automatic stacking robots, drones, etc. They achieve efficient work processes and
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precise positioning through communication and coordination with a central or decentral‑
ized control system. Multi‑robot systems bring new opportunities and challenges to the
logistics industry. They have brought many benefits to intelligent warehouses, including
increasing cargo loading and unloading speeds, reducing labor costs, reducing operational
risks, and accurately tracking the location and status of cargo [5].

As a paradigm of swarm intelligence, multi‑agent reinforcement learning (MARL) [6]
extends reinforcement learning (RL) [7]. with single‑agent to multi‑agent scenarios [8].
MARL has been widely used in various fields such as industrial automation, logistical dis‑
tribution, rescue missions, etc. Theoretically speaking, MARL can effectively organize the
multi‑robot systems in intelligent warehouses. However, the randomness of MARL lim‑
its its application in intelligent warehouses multi‑robot systems. In the context of MARL,
ensuring the safety of the system poses important and complex challenges. These chal‑
lenges come not only from the design of the algorithm itself, but also from the uncertainty
of the environment and the interactions between multiple agents. Although safe multi‑
agent reinforcement learning is an active research area that has attracted much attention,
it still has some shortcomings. For example, current safe MARL algorithms still need to
improve their modeling of uncertainty, especially when facing partially observable envi‑
ronments or partially observable agents. Furthermore, existing safe MARL methods are
usually designed for specific problems and scenarios, which are difficult to generalize to
other fields. The applicability and scalability of these algorithms remain a challenge when
facing different types of tasks and environments. In a word, it is difficult to provide formal
safety guarantees for MARL. Therefore, MARL‑based multi‑robot systems in intelligent
warehouses face a series of challenges, one of which is how to ensure the safety and reli‑
ability of multi‑robot operations. How to design safe multi‑agent reinforcement learning
(safe MARL) [9] to achieve real‑time verification, risk identification, and intelligent deci‑
sion support for multiple robots has become an important topic in multi‑robot systems of
intelligent warehouses.

This paper aims to explore a universal and formal safety guarantee framework of
MARL for multi‑robot systems in intelligent warehouses. We exploit runtime verifica‑
tion (RV) [10] to construct a safety‑constrained runtime model of a multi‑robot system,
and propose a safe MARL method, i.e., an optimized safety policy‑generation framework,
for multi‑robot systems in intelligent warehouses, as shown in Figure 1. It includes three
stages: Modeling @ Runtime, Runtime Verification, and Constraint Training. In the first
stage, we extend theMarkovGame (MG)with safety constraints to define a runtimemodel
SCMG (safety‑constrained Markov Game) for multi‑robot systems in intelligent
warehouses. In the second stage, rPATL (probabilistic alternating‑time temporal logic with
rewards) is used to express safety properties, and SCMG is cyclically verified and refined
through runtime verification (RV) to ensure the safety of the model SCMG. This stage
guarantees the safety of robot behaviors before training. In the third stage, the verified
SCMG guides MARL, i.e., SCPO (safety‑constrained policy optimization), to obtain an op‑
timized safety policy for robots. Finally, a multi‑robot warehouse (RWARE) scenario of
the Shanghai Intelligent Warehouse is used to demonstrate the effectiveness of our frame‑
work. Experimental results show that our framework is safer than existing methods and
can obtain policies with better performance than general baseline methods. This work will
provide useful guidance and inspiration for the development and practical application of
multi‑robot systems in intelligent warehouses, and will further promote the widespread
application of safe MARL.

The remainder of this paper is structured as follows: Section 2 introduces relatedwork
on safe RL and safe MARL, explaining the shortcomings of existing work; Section 3 intro‑
duces preliminary concepts and terminology; Section 4 introduces our safe MARL frame‑
work based on runtime verification, i.e., optimized safety policy‑generation framework
for multi‑robot systems; Section 5 presents the experimental cases and results; and, finally,
Section 6 concludes the paper. For full‑text abbreviations and their meanings, please see
Table A1 in Appendix A.
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Figure 1. Overview of a universal and formal safety guarantee framework of MARL for MRS. 
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MARL [14], most methods are specifically designed for learning robotic tasks and there is 
a lack of evaluation of their applicability and generalization capabilities. For example, bar-
rier certificate techniques [15] or model-predictive shielding from control theory [16] are 
used to model safety. However, these methods are derived from the traditional robotics 
perspective. CMIX [17] extends QMIX [18] by modifying the reward function to consider 
peak constraint violations, but this approach has no safety guarantees during training. 
Some approaches to safe MARL [15] are to reduce unsafe behaviors through human inter-
ference [19], but this is not applicable to all problems. Although the above methods take 
into account the multi-agent safety, they are not applicable to general MARL problems 
but only focus on specific problems. 

Constraint-based informal methods. In safety reinforcement learning, constrained 
Markov decision processes (CMDPs) [20] are used to ensure that certain safety or perfor-
mance criteria are met while optimizing the behavior policy to maximize the expected 
reward. A study conducted in safe RL utilized constrained MDP and proposed a novel 
policy-optimization algorithm that uses a convex quadratic function obtained from a pol-
icy-gradient estimator [21]. Gu et al. [12] proposed using a constrained Markov Game to 
describe the safe MARL problem and used policy-optimization theory to implement the 
policy update of safety constraints. However, it is difficult for the above methods to 
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2. Related Works
In this section, wemainly review two categories of works related to this paper. One is

the safety policy of MARL (also known as safe MARL in some references) [11]. The other
is the policy optimization of MARL [12]. Comparatively speaking, the former is closer to
our work.

2.1. Safety Policy of MARL
Informal methods for specific problems. Traditional safe RL constructs controllers

that meet specifications under known environmental dynamics. These methods combine
reaction synthesis with precise environmental modeling and abstraction but are compu‑
tationally too difficult for more complex dynamics [13]. Despite the importance of safe
MARL [14], most methods are specifically designed for learning robotic tasks and there is
a lack of evaluation of their applicability and generalization capabilities. For example, bar‑
rier certificate techniques [15] or model‑predictive shielding from control theory [16] are
used to model safety. However, these methods are derived from the traditional robotics
perspective. CMIX [17] extends QMIX [18] by modifying the reward function to consider
peak constraint violations, but this approach has no safety guarantees during training.
Some approaches to safe MARL [15] are to reduce unsafe behaviors through human inter‑
ference [19], but this is not applicable to all problems. Although the above methods take
into account the multi‑agent safety, they are not applicable to general MARL problems but
only focus on specific problems.

Constraint‑based informal methods. In safety reinforcement learning, constrained
Markov decision processes (CMDPs) [20] are used to ensure that certain safety or perfor‑
mance criteria are met while optimizing the behavior policy to maximize the expected
reward. A study conducted in safe RL utilized constrained MDP and proposed a novel
policy‑optimization algorithm that uses a convex quadratic function obtained fromapolicy‑
gradient estimator [21]. Gu et al. [12] proposed using a constrained Markov Game to de‑
scribe the safe MARL problem and used policy‑optimization theory to implement the pol‑
icy update of safety constraints. However, it is difficult for the above methods to provide
formal safety guarantees. This lack of formal guarantees is due to the difficulty in appro‑
priately adjusting the reward‑function‑customization process [22].

Formalmethods. Several recentworks [23–25] developed reward‑shaping techniques
to transform logical constraints expressed in Linear Temporal Logic (LTL) into reward func‑
tions for RL. Garcıa et al. [11] considered different safety goals for RL, such as reward vari‑
ance or limited access to error states. In this work, we synthesize safety specifications that
are expressed in LTL [26], a logical system for expressing temporal properties, in particular
conditions that a systemmust satisfy during its execution [27]. For example, LTL has been
used to express complex task specifications for robotic planning and control [28]. How‑
ever, LTL is not sufficient for MARL methods required to learn policies that guarantee
safety (e.g., collision‑free movement).
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Formal verificationmethods. This technology has been successfully applied to multi‑
agent systems [29,30] and single‑agent reinforcement learning [31]. Such agent‑behavior‑
constraint techniques are well documented in safe RL [12], but they can be overly restric‑
tive, unnecessarily reducing the agent’s potential optimality or eliminating behaviors
needed to complete a task. Mason et al. [31] proposed a technique to avoid this problem
while still providing formal guarantees on the level of safety at which agent learning is
considered acceptable. Assured RL [32] took the novel step of incorporating the QV stage
into the RL process and produced very promising results. There are recent works [33,34]
that apply it to MARL research, but there is still the problem of reducing the optimality of
the agent.

2.2. Policy Optimization in MARL
The policy safety described in Section 2.1 is very close to our work. In addition, there

is another topic that is also related to this work, which is policy optimization inMARL.We
will present some recent advances in this topic.

Policy optimization methods estimate the behavior value of each agent by introduc‑
ing a baseline policy. They try to directly optimize the policy to maximize the cumula‑
tive reward. Witt et al. [35] propose an independent proximal policy optimization (IPPO)
method, i.e., a multi‑agent variant of proximal policy optimization, which has limitations
in cooperative MARL. Yu et al. [36] propose a Multi‑Agent Proximal Policy Optimization
(MAPPO) method, which can effectively handle training problems in multi‑agent environ‑
ments. For high‑dimensional state spaces or complex tasks, it needsmore training samples
to converge than do other methods. Kuba et al. [37] propose a Heterogeneous‑Agent Prox‑
imal Policy Optimization (HAPPO) method to solve training problems in heterogeneous‑
agent environments, which requires more computing resources and training samples. Ye
et al. [38] put forward a Shared Network Actor‑Critic (SNAC) method based on Actor‑
CriticMARL.When one agent behaves poorly, it will affect the performance of other agents
in the SNACmethod. The Independent Actor‑Critic (IAC) [39] method is very effective in
dealing with problems in continuous action space and high‑dimensional‑state space but
faces problems such as low sample efficiency and unstable training. Christianos et al. [40]
propose a Shared Experience Actor‑Critic (SEAC) method to improve training effects on
agents through shared experience, but shared experience may lead to competition and
conflict between agents. In all the above policy optimization methods of MARL, agents
may choose unsafe behaviors, which will affect the performance and safety of the entire
multi‑agent system.

2.3. The Relation between Our Work and Existing Works
Our work belongs to the category of formal verification methods for the safety policy

ofMARL. It is a universal and formal safety guarantee framework forMARL, based on run‑
time verification. We first extend the general modeling method of safe MARL to modeling
at runtime, and then innovatively use runtime verification to formally ensure the safety
of agent behavior before training. Compared with other formal verification methods for
MARL, the advantage of our work is that it can ensure a certain degree of optimization
based on safety through the constrained training of agents. In summary, our work has
made outstanding contributions in terms of scalability, formally ensuring the safety of
robot behaviors, and optimizing the performance of multi‑robot policies. In addition to
this, we apply this framework to the multi‑robot system in the Shanghai Intelligent Ware‑
house, which exhibits good performance.

3. Preliminaries
In this section, we introduce the preliminaries of our work, i.e., reinforcement learn‑

ing, multi‑agent reinforcement learning, Markov Games, and runtime verification.
Reinforcement learning (RL). In RL, the agent seeks to maximize its total reward

over time through trial and error. This involves a sequence of observations, actions, and
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rewards. The environment provides feedback in the form of rewards, which can be pos‑
itive or negative, based on the actions taken by the agent. The key components of an RL
setup are the agent, the environment, the policy, the reward signal, and the value function.
The agent is the decision‑maker, the environment includes everything the agent interacts
with, the policy is the strategy used by the agent to decide its actions, the reward signal in‑
dicates how well the action taken by the agent aligns with the goal, and the value function
estimates the long‑term benefit of the decisions.

Multi‑agent reinforcement learning (MARL).MARL extends the principles of tradi‑
tional RL to environments where multiple agents interact simultaneously. In MARL, each
agent learns to make decisions based on their own experiences, while also considering the
actions and potential strategies of other agents. This creates a complex dynamic, as each
agent’s actions can affect the state of the environment and, consequently, the outcomes for
other agents.

The central challenge in MARL is that of coordination versus competition among
agents. Agents may either cooperate to achieve a common goal, compete against each
other for resources, or exhibit a mixture of both behaviors. The dynamics of these interac‑
tions make learning and decision‑making significantly more complex than in single‑agent
scenarios. MARL models typically involve defining policies for each agent that maximize
their expected rewards over time. These policies must account for the joint state and action
spaces of all agents, which exponentially increases the complexity of the problem. Learning
can be centralized, where a single entity observes and controls all agents, or decentralized,
where each agent operates independently based on local observations.

Applications of MARL are found in areas such as autonomous vehicle coordination,
robotic teams, strategic game playing, and resourcemanagement, wheremultiple decision‑
makers must effectively interact within a shared environment.

Markov Game (MG). Single‑agent reinforcement learning tasks are usually modeled
asMarkovDecision Processes (MDPs), andMarkov Game can be considered amulti‑agent
extension of MDP. Markov Game, which is also known as random game or Markov coun‑
termeasure, is a theoretical framework that combines dynamic programming and game
theory. It describes how multiple agents choose strategies in an environment with state
transitions to achieve their respective goals. The mathematical analysis of Markov Game
usually involves solving the optimal policy, that is, a series of decision rules that define
which action should be chosen in each state to maximize the total reward. The Bellman
equation is the basis for finding the optimal policy, which expresses the problem of maxi‑
mizing the sum of the immediate reward obtained by the current action and the expected
future reward.

Runtime verification (RV).Runtime verification, in this paper, refers to obtaining sys‑
tem runtime parameters to build a runtime system model and then verifying the safety of
the system in the subsequent finite time as efficiently as possible based on model‑checking
methods. It is a lightweight system‑verification technique at runtime, comparedwith tradi‑
tional model checking at design time. Runtime verification includes modeling at runtime
and verification at runtime, which is complementary to modeling and verification at de‑
sign time. It is an important component of MBSE (Model‑Based Systems Engineering) and
can be seen as the lightweight‑level MBSE.

We use PRISM‑games as the model checker for runtime model of the multi‑robot sys‑
tem. PRISM‑games provide a formal language and tools that allow users to describe and
analyze systems with uncertainty and randomness. It supports many types of game mod‑
els, including zero‑sum games, Markov decision processes (MDP), stochastic games, etc.

4. Optimized Safety Policy‑Generation Framework
As shown in Figure 2, the safe MARL method for multi‑robot systems, i.e., the opti‑

mized safety policy‑generation framework, consists of three stages.
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In the first stage, we use the runtime information of multi‑robot requirements, envi‑
ronmental requirements, and safety requirements to define a runtimemodel SCMG (Safety‑
Constrained Markov Game), which is a safety‑constraint extension of the Markov Game.
At this stage, it is important to remove all unnecessary details of the problem to avoid
the state space explosion problem. Therefore, during data collection, we mainly need
to identify the following: all potential states of the agent in the environment, the capa‑
bilities of the agent, the reward structure needed to evaluate the system, the objectives,
and the constraints.

In the second stage, the runtime model SCMG is verified by PRISM‑games, and re‑
fined until all safety properties are satisfied, in which functional requirements and safety
constraints are expressed with rPATL [41]. Runtime verification using PRISM‑games en‑
sures that the model SCMG satisfies the safety constraints, i.e., only safe actions can be
taken in themulti‑robot systembeing considered. If not, then counterexamples frommodel
checking are used to refine and removemodel actions until the safety constraints and func‑
tional requirements are met.

The third stage involves generating a safety policy, inwhich the verified SCMGguides
safety‑constrained policy optimization (SCPO) to trainmulti‑agents to obtain an optimized
safety policy. SCPO uses constrained optimization methods to maximize the objective
function and satisfy the constraints, using a technique called Lagrangian Relaxation to
solve constrained optimization problems. As the verified SCMG continuously adjusts the
corresponding parameters, the SCPO algorithm can find a set of strategies that satisfy the
constraints. In each training cycle, SCPOuses an optimizer to update the policy parameters
and penalty terms to ensure that the constraints are met. In addition, the SCPO algorithm
also uses an experience replay‑based method to cache previous experience samples and
randomly select sample sets to further improve training efficiency and stability. At the
same time, based on the runtime verification results, constraints are used to divide and
constrain the task and domain space of the agent.
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After the above three stages, this framework obtains an optimized safety policy for
implementing multi‑agent tasks. Compared with existing work, our work can obtain a rel‑
atively optimized policy under the premise of formally guaranteeing safety. The detailed
process for achieving this is described in the following subsections.

4.1. Modeling @ Runtime
We model the MRS @ runtime as a Markov Game with the extension of safety‑

constraint, named as Safety‑Constrained Markov Game (SCMG): < N, S, A, p, ρ, γ, R, C >.
Here, N is the set of agents, S is the state space, A = Πn

i=1 Ai is the product of the agent
action spaces, called the joint action space, p : S × A × S → R is the probability transition
function, ρ is the initial state distribution, γ ∈ [0, 1) is the discount factor, and R is the joint

reward function. C =
{

Ci
j

}i∈N

1≤j≤m
is a set of cost functions in the form of Ci

j : S × Ai → R .

At the time step t, an agent i in the state st takes action ai
t according to its policy πi(ai

∣∣st) .
Together with the actions of other agents, a joint action is denoted as a joint policy is
π(a

∣∣s) = ∏n
i=1 πi(ai

∣∣s) . The agent receives the reward R(st, at), and at the same time, each
agent i pays the cost Ci

j(st, ai
t), ∀j = 1, . . . , mi. Then, the multi‑robot system transitions to

the new state st+1 with probability p(·|st, at) . The goal of this paper is to maximize the
expected reward:

max
π

J(π) ≜ E[
∞

∑
t=0

γtR(st, at)] (1)

At the same time, each agent tries to satisfy the safety constraints, written as

Ji
j(π) ≜ E[

∞

∑
t=0

γtCi
j(st, ai

t)] ≤ ci
j, ∀j = 1, . . . , mi (2)

We define the policy value and state value function according to the reward as

Qπ(s, a) ≜ E[
∞

∑
t=0

γtR(st, at)
∣∣s0 = s, a0 = a ] (3)

Vπ(s) ≜ E[Qπ(s, a)] (4)

The joint policy π that satisfies inequality (2) is said to be feasible. It is worth noting
that in the above formula, although the action of an agent i does not directly affect the

cost
{

Ck
j (st, ak

t )
}mk

j=1
of other agents, the action ai

t will implicitly affect their total cost due

to their dependence on the next state st+1. We use this to truly describe real‑world multi‑
agent interactions: an agent’s actions only have an immediate impact on the system locally,
but other agents may be affected by its consequences at a later stage.

We denote any subset {i1, . . . , ih} of an agent by referring to its complement. Given
a subset of agents i1:h, for disjoint sets j1:k, the multi‑agent advantage function is defined
as follows:

Ai1:h
π (s, aj1:k , ai1:h) ≜ Qj1:k ,i1:h

π (s, aj1:k , ai1:h)− Qj1:k
π (s, aj1:k ) (5)

One fact about the above multi‑agent advantage function is that any advantage Ai1:h
π

can be written as the sum of multi‑agent advantages sequentially expanded by a single
agent, which is calculated using GAE [7].

4.2. Runtime Verification
For SCMG, the safety property specification is expressed using probabilistic

alternating‑time temporal logic with rewards (rPATL), which combines PATL with
expected rewards in an unknown multi‑robot environment. PATL is a probabilistic ex‑
tension of ATL, which is used for reasoning in multi‑robot systems. For each robot in a
coalition or competition, rPATL can specify a policy that ensures the probability of a safe
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event occurring or that the expected reward meets a certain threshold. All formulas of
rPATL refer to [41].

The syntax of rPATL is given by the following:

ϕ ::= T
∣∣a∣∣¬ϕ

∣∣ϕ ∧ ϕ
∣∣CP▷q[ψ]

∣∣CRr
▷x[F

∗ϕ] (6)

ψ ::= Xϕ
∣∣∣ϕU≤kϕ

∣∣∣ϕUϕ (7)

where a ∈ AP, C ⊆ Π, ▷∈ {<,≤,≥,>}, q ∈ Q ∩ [0, 1], r is the reward structure,
∗ ∈ {0, ∞, c}, k ∈ N.

rPATL is a CTL‑style branch‑time sequential logic, in which a distinction is made be‑
tween state formulas (ϕ) and path formulas (ψ). Combining with the probability operator
P▷q, path formula in PCTL, and the generalization of reward operator Rr

▷x, rPATL adopts
the joint operator C of. ATL to specify the safety property for a multi‑robot system.

There are three standard temporal operators in rPATL, namelyX (next state),U (until),
and U≤k (qualified until).

rPATL is an enhancedCTL‑style branching time sequential logic, specifically designed
for analyzing and verifying systems with probabilistic and reward mechanisms. It intro‑
duces the concepts of probability and reward based on traditional ATL, allowing for more
complex quantitative analysis of strategies in the system. rPATL creatively introduces a re‑
ward calculation mechanism based on PATL. Through the reward calculation mechanism,
it is possible to calculate how much reward value can be accumulated when the system
reaches a certain state. Ideally, the corresponding reward value can be effectively calcu‑
lated, but when the target state cannot be reached, it may not be possible to give a correct
reward value, so rPATL stipulates a reward type.

The basic semantics of rPATL are as follows: In rPATL, s|= ϕ is used to represent
the state s satisfying the formula ϕ, and {s ∈ S|s|= ϕ} is used to represent the formula ϕ
being satisfied on the state set S. Therefore, the satisfaction relation of rPATL is defined
as follows:

(1) s|= T , always holds;
(2) s|= a , if and only if a ∈ X(s);
(3) s|= ¬ϕ , if and only if s does not satisfy ϕ;
(4) s|= ϕ1 ∧ ϕ2 , if and only if s|= ϕ1 and s|= ϕ2 ;
(5) s|= ϕ1 ∨ ϕ2 , if and only if s|= ϕ1 or s|= ϕ2 .
Runtime verificationwith PRISM‑games ensures that themodel SCMG satisfies safety

constraints, i.e., only safe actions can be taken in the multi‑robot system under consider‑
ation. As the model checker of a runtime model, PRISM‑games determines whether the
runtime model SCMG satisfies all of the safety constraints and functional requirements. If
it does not, then the counterexample of model checking is used to refine the model opera‑
tions until it satisfies safety constraints and functional requirements. Specifically, runtime
verification of SCMG can follow the following steps, as shown in Figure 3:
• Model checking: Use PRISM‑gamesmodeling language to describe the runtimemodel

SCMG, and use rPATL to specify the safety constraints and functional requirements
and verify whether SCMG meets rPATL specifications.

• Counterexample discovery: If an error is discovered during model checking,
then a counterexample is discovered, which is a trajectory (state and action sequence)
that violates the safety property or functional requirements. These counterexamples
provide information about possible unexpected behaviors of robots in the
multi‑robot system.

• Counterexamples‑guided runtime model refinement: Based on counterexamples,
the accuracy and precision of the model can be improved by dividing the states (or
actions) into the refined states (or actions) or eliminating the unsafe or unexpected
states (actions).
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• Repeat loop: Continuously iterate model checking, counterexample discovery, and
the refinement process until all of the functional requirements and safety constraints
are satisfied or the refinement cannot be executed.
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Through the above steps, a multi‑robot system can be verified at runtime and a ver‑
ified SCMG can be provided for constraint training in the next stage. However, if the
SCMG cannot satisfy the functional or safety requirements, and the refinement cannot be
executed, then this may be caused by safety constraints that are too strict, or by a function
that cannot be implemented. It is necessary to go back to the first stage to modify the spec‑
ification regarding functional and safety constraints. Due to the cyclic and iterative nature
of runtime verification, this is a continuous and time‑consuming process, and this type of
model checking is computationally intensive and so takes a lot of time, with the length of
time depending on the scale and complexity of the system. However, runtime verification
ensures that the agent always adheres to predefined safety properties, thereby reducing
risk and reducing the need for adjustments or corrections after the fact. In this way, run‑
time verification simplifies the learning process and improves the efficiency of agent task
execution, so it does not significantly affect the speed of MARL. Through the process in
Figure 3, the parameters of the SCPO strategy in the next stage are adjusted according to
the verified SCMG, and finally a set of strategies that meet the constraints are found. The
detailed process is shown in Section 4.3.

4.3. Constraint Training
The verified runtime model SCMG can guide a multi‑agent reinforcement learning

algorithm to obtain safe policies. SCMG is suitable for any general MARL algorithm.
Compared with existing safe MARL algorithms, the SCPO (safety‑constrained policy opti‑
mization) algorithm aims to achieve collaboration between multiple agents and can main‑
tain fast and stable learning performance when facing complex constraints. The core idea
of SCPO is to use constrained optimization methods to minimize the objective function
and satisfy the constraints. Specifically, SCPO uses a technique called Lagrangian Relax‑
ation [42] to solve constrained optimization problems. It converts safety constraints into
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penalties and uses a set of parameters to control the strength of penalties. As a verified
runtime model SCMG continuously adjusts corresponding parameters, SCPO can find a
set of policies that satisfy the constraints.

In SCPO, the agent’s policy is optimized through alternate training. In each training
cycle, SCPO uses an optimizer to update the policy parameters and a penalty term to en‑
sure that constraints are satisfied. In addition, SCPO also uses an experience replay‑based
method to cache previous experience samples and randomly selects sample sets to further
improve training efficiency and stability. When SCPO uses experience replay, the agent’s
behavior policy collects data through interaction with the environment, and this data (in‑
cluding state, action, reward, and next state) is saved in the replay buffer instead of being
used to update the policy immediately. This approach enables SCPO to learn from past ex‑
perience rather than relying solely on the latest data, which helps to reduce correlation in
the data and ensures the safety and stability of policy updates, thereby improving overall
training efficiency. Meanwhile, based on the runtime verification results, constraints are
used to divide and constrain the agent’s behavior, enabling the robot to complete the task
without violating safety properties.

The SCPO algorithm allows joint actions so that all agents are synchronized. Syn‑
chronous action usually means that all agents take actions and update policies at the same
point in time. However, this does not mean that while one agent performs its action other
agents have to wait. Instead, a synchronized environment means that the environment ad‑
vances to the next time step only after all agents have completed their actions for the current
time step, so that each agent operates at the same time step. Therefore, a synchronized en‑
vironment does not mean that agents need to wait for each other, but that the environment
steps are synchronized for all agents. In the SCPO algorithm, even if an agent completes
an action, then it can still help other agents that have not yet completed the action to learn
by sharing information without waiting for each other.

There is a problem in that large state and action spaces prevent the agent from speci‑
fying a policy πi(·

∣∣s) for each state individually. To solve this problem, we parameterize
each agent by θi. Correspondingly, the joint policy πθ is parameterized as θ = (θ1, . . . , θn).
In each iteration, each agent ih maximizes its agent reward and is subject to agent cost
constraints. However, directly computing the max − KL constraint is tricky in practical
settings because it requires computing the KL divergence for each state [7]. Instead, we
can relax it by taking the form of an expected KL constraint DKL(π

ih
K , πih) ≤ δ. This ex‑

pectation can be approximated by random sampling. The SCPO process may produce an
infeasible policy πθi

k+1
, so a feasible policy needs to be recovered by applying the TRPO [7]

step to the cost alternatives, which is written as follows:

θ
ih
k+1 = θ

ih
k − αj

√
2δ

bihT(Hih)
−1bih

(Hih)
−1

bih (8)

where αj is adjusted by backtracking line search, Hih = ∇2
θih

Dkl(π
ih
θ

ih
k

,πih)|
θih=θ

ih
k
is the

Hessianmatrix of the averageKL divergence [7] of the agent ih, and bih
j is the agent gradient

of the agent ih. The SCPO algorithm process is shown in Algorithm 1.
The obtained policies fromAlgorithm 1may also have some risks, but we can guaran‑

tee that the cumulative risk and probability of risk events are bounded based on runtime
verification. It should be noted that the SCPO algorithm does not aim to obtain the global
optimal policies but instead ensures that the safety constraints are embodied in the poli‑
cies of all agents. The safety policies obtained from the SCPO algorithm are optimized on
the current runtime model SCMG. From the point of view of the current SCMG, the safety
policies obtained from the SCPO algorithm are optimal.
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Algorithm 1. SCPO

1: Initialization: policy space πi
θi with parameters θi, Lagrange multiplier λih

2: for iteration N = 0, 1, …, n do
3:   A set of trajectories is collected by running the joint policy πθ .
4:   for each agent i do
5:     Collect transition samples < N, S, A, p, ρ0, γ, R, C > using policyπi

θi , considering
partial observability, and Share observations with other agents
6:     Store transitions in the experience replay buffer
7:     Sample a batch from the experience replay buffer 
8:     Compute the advantage function Ai1:h

π  with GAE 
9:     Update policy πi

θi by maximizing the agent’s return subject to the cost constraint
using an optimizer, with trust region to ensure small updates 
10:      Adjust λih using a backtracking line search to satisfy the expected cost constraint 
11:      Update policy πi

θi by maximizing the augmented objective function Ji
j(π), which

includes intrinsic rewards and safety terms, while satisfying safety constraints
12:      If the policy is infeasible, apply a TRPO step to the cost surrogate term to recover a
feasible policy
13:  end for
14:  Runtime verification ensures that the policy satisfies the rPATL property πθ |= ϕ ,
ensuring that the cumulative risk and the probability of risk events are bounded
15: end for

5. Experimental Evaluation
5.1. Case Study

In this section, we evaluate whether our framework for multi‑robot systems can guar‑
antee safety and help improve overall return. We use the multi‑robot warehouse program
RWARE [40] to simulate a multi‑robot system of the Shanghai Intelligent Warehouse, and
use python and PRISM‑games to implement SCPO. The multi‑robot warehouse (RWARE)
environment has a grid‑world warehouse where robots move and deliver the required
goods, as shown in Figure 4. RWARE is inspired by real‑world applications where robots
pick up shelves and deliver them to workstations. The environment requires the robot
(the circle) to move the requested shelf (the colored square) to the goal post (the letter “G”)
and back to the empty position. RWARE is a notoriously difficult environment to explore,
and independent robots have been shown to struggle in this environment. A significant
task for the robot in this environment is to deliver the requested shelf while also finding
an empty location to return the previously delivered shelf to.
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We present the experimental environment as a small (10 × 11) warehouse. We use
two robots as an example, each with a control module and a transformation of disjoint
subsets of action labels. The robots pick up the shelves and carry them to the workstation.
Two trained agents are controlling the two robots, respectively. Here the agent has the
following discrete action space: A = {move up, move down, move left, move right, load,
unload}. Loading/unloading is only possiblewhen the agent is effectively under a shelf at a
pre‑specified location, and the set number of shelves is two, which are randomly requested
each time. In the runtimemodel, the agent is assumed tomove between different locations
without complex travel and movement within the room. This formal model building is
necessary for the runtime validation of analytical models, as large and complex models
cannot be analyzed using traditional computing resources. Below, we give some examples
of the built SCMG.

Target. We set the goal for a robot to deliver the shelf to reach destination G, where
shelf = 0 when the robot does not load the shelf, shelf = 2 when it delivers the shelf, and
shelf = 1 when it returns the shelf:

label “reach_target” = (r1_x = 0 & r1_y = 4 & r1_shelf = 2) | (r2_x = 0 & r2_y = 5 & r2_shelf
= 2)|(r1_x = 0 & r1_y = 5 & r1_shelf = 2) | (r2_x = 0 & r2_y = 4 & r2_shelf = 2);//Robot reaches
target

Action. The action space in a multi‑robot warehouse environment is very similar to
a level‑based foraging domain, with six discrete actions to choose from, corresponding to
move up, move down, move left, move right, load shelves, and unload shelves:

player player1
robot1, [up1], [down1], [ left1], [right1], [ pickup1], [ putdown1]
endplayer
Robot status. Each agent controls a robot designed to collect the required shelves. At

any given time, two shelves are requested, and at each time step the request is delivered to
the target location, and new (currently not requested) shelves are uniformly sampled and
added to the request list. The agent observes a 3 × 3 grid, including information about
potential close agents (given by their positions and rotations), as well as information and
request lists of surrounding shelves. The action space is discrete and contains six actions,
corresponding to moving up, moving down, moving left, moving right, loading shelves,
and unloading shelves. The agent is rewarded only if it delivers the requested shelf to the
target location.

module robot1
r1_x: [0...10] init r1_init_x;//x coordinate
r1_y: [0...9] init r1_init_y;//y coordinate
r1_shelf: [0...max_shelf] init 0;//Current shelves
//Actions and transitions
[up1] r1_y < 9 &! (r1_x = r2_x & r1_y + 1 = r2_y) ‑> (r1_y’ = r1_y + 1);
[down1] r1_y > 0 &! (r1_x = r2_x & r1_y − 1 = r2_y) ‑> (r1_y’ = r1_y − 1);
[left1] r1_x > 0 &! (r1_x − 1 = r2_x & r1_y = r2_y) ‑> (r1_x’ = r1_x − 1);
[right1] r1_x < 10 &! (r1_x + 1 = r2_x & r1_y = r2_y) ‑> (r1_x’ = r1_x + 1);
[pickup1] r1_shelf < max_shelf ‑> (r1_shelf’ = r1_shelf + 1);
[putdown1] r1_shelf > 0 ‑> (r1_shelf’ = r1_shelf − 1);
endmodule
Collision. To prevent collisions, two robots cannot be in the same position, and their

movement is solved in a way that maximizes mobility. When two robots try to move to
the same location, we prioritize the moving robot which also blocks the other robots. Oth‑
erwise, the selection is arbitrary. A certain selection of two shelves are requested each
time. The robot cannot collect newly requested shelves without unloading previously
delivered shelves.

formula collision = (r1_x = r2_x) & (r1_y = r2_y);
label “safe” = ! collision;//Safety condition
rewards “safety_violations”
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collision: 1;
endrewards
Property. We use rPATL to define three properties to verify the runtime model.

Property 1.  Among all possible policies, the system has the maximum probability of completing
the goal:

<<player1, player2>>Pmax = ? [F “reach_target”] (9)

Property 2.  Among all possible policies, the minimum expected number of collisions:

<<player1, player2>>Rmin = ? [C] (10)

Property 3.  Among all possible policies, the minimum probability that the system will eventually
reach a safe state (i.e., without robot collisions):

<<player1, player2>>Pmin = ? [F “safe”] (11)

5.2. Experimental Results
PRISM‑games use a set of memory elements to resolve the choices in each state, with

each memory element representing a possible “state”. The memory element is updated
(possibly randomly) on each transition, and the actions chosen by a robot are determined
by the current memory element and the current state. If there is only onememory element,
then it is memoryless; if there are a finite number, then it has limited memory. Updating
memory elements and selecting actions is deterministic if it is not probabilistic; otherwise,
it is updated randomly. After multiple cycles of verification and refinement in Figure 3,
we obtained the safety property verification results of SCMG, as shown in Table 1.

Table 1. Property verification results.

Property Method Result

Property 1: <<player1, player2>>Pmax = ? [F “reach_target”] Verification 1.0
Property 2: <<player1, player2>>Rmin = ? [C] Verification 0.0

Property 3: <<player1, player2>>Pmin = ? [F “safe”] Verification 1.0

The above verification results show that the maximum probability of completing the
goal in the SCMG is 1, indicating that the corresponding multi‑robot system can complete
the task. The minimum expected number of collisions between two robots is 0, indicating
that the policies of two robots can be expected to be safe and collision‑free. The minimum
probability in the SCMG that the robots finally reach a safe state (i.e., no robot collision)
is 1, indicating that the final model we obtained through runtime verification is safe. The
above results demonstrate that our framework meets the required target properties and
safety properties.

Next, we use the verified SCMG to guide constraint training. First, we generate a ran‑
dom environment Env of size N in RWARE. We then train the SCPO agents from scratch
on Env, until they converge and repeat the process for n iterations. Finally, we collect the
results of these runs and start training again in the RWARE environment. It is worth noting
that the SCPO algorithm achieves a safe‑line search through hard constraints
and backtracking.

Figure 5 shows the status of the two robots in 100 training steps during constraint
training, where (r1_x, r1_y, r1_shelf) represents the (abscissa position, ordinate position,
cargo status) of robot 1, and (r2_x, r2_y, r2_shelf) represents robot 2’s status. If r1_x = r2_x
and r1_y = r2_y, then it means that two robots collide. Otherwise, it means that two robots
do not overlap in position, which indicates that there is no violation of properties 2 and
3 within 100 steps, i.e., two robots are safe and collision‑free. It is demonstrated that our
framework ensures the safety of the robot system before training to avoid losses during the
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training process. We point out that the case we tested is computationally challenging and
is characterized by the choice to access a combination of location strategies. Furthermore,
our framework does not incur significant overhead compared to simpler approaches that
only maximize task‑satisfaction probability.
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Figure 6 is the average training return obtained by our framework and the baseline
(SNAC [38], IAC [39], and SEAC [40]) in 80 million steps of training. The mean training
returns are the averages of return values obtained during the training process based on
the current policy and environmental dynamics, which are used to evaluate the quality
of a policy. A higher mean training return value means that the policy performs better
at completing tasks in the environment. As this metric is calculated based on all evalua‑
tions performed during training, it also takes into account the learning speed in addition
to the final realized return. During the constraint training process, choosing an appropri‑
ate initial policy, parameters such as constraint limits and learning rates, and providing
high‑quality training samples are crucial to maximizing the mean training returns. If the
goal requires multiple steps to reach, then it may face time constraints, which will affect
the implementation of preventive measures and lead to a decrease in safety probability.
Conversely, a more conservative policy may be necessary to improve safety, but this may
result in performance degradation. Therefore, when weighing safety and performance, it
needs to consider different factors and find a balance point. The average episode costs of
SCPO, SEAC, SNAC, and IAC are shown in Table 2. The average episode cost reflects the
indicators of safety violations of different algorithms. The lower the cost value, the bet‑
ter the algorithm performs in satisfying security constraints. Compared with the baseline,
the results show that our framework is the safest. SCPO performs worse than the state‑of‑
the‑art method SEAC during training, which is mainly because the agent’s policy in our
framework is subject to certain safety constraints during training. These constraints may
limit the action space of the agent, thus affecting its performance. However, our frame‑
work still achieves a higher average training return than SNAC while ensuring the safety
of the agent’s behavior. As the number of training steps increases, the effect is similar to
that of IAC. The performance of SCPO usually requires sufficient training time and iter‑
ations to gradually optimize the policy. If the training time or iterations are insufficient,
then optimal performance may not be achieved, resulting in lowmean training returns. In
general, robots in RWARE can achieve considerable results under constraint training, that
is, they can obtain an optimized safety policy. Compared with existing work based on for‑
mal verification, our framework not only focuses on the safe behaviors of agents but also
achieves a certain degree of optimization of safety policy.
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Table 2. Average episode cost.

Millions of Steps SCPO SEAC SNAC IAC

10 M 3 15 18 23
20 M 2 13 17 21
30 M 1 12 16 20
40 M 1 11 15 19
50 M 0 10 15 18
60 M 0 9 14 17
70 M 0 8 13 16
80 M 0 7 12 15

Figure 7 shows the optimized safety policies obtained by our framework.
Module/[action] represents [robot 1 action, robot 2 action]. Each robot has six discrete
actions corresponding to move up, move down, move left, move right, load the shelf, and
unload the shelf. This can be seen in the actions taken by two robots to complete the goal.
The results show that our framework allows robot 1 to safely and effectively achieve the
goal once in step 14. That is to say, our framework can successfully implement a safe
MARL in multi‑robot systems. In conclusion, our framework ensures the safety of robots’
behaviors before training and can obtain optimized policies in the MARL training process.
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6. Conclusions
Creating a safe MARL‑based multi‑robot system is an important direction for the fu‑

ture development of the logistics industry. It will promote digitalization, in addition to
intelligent and sustainable development of the logistics industry, andwill improve the effi‑
ciency and automation of variouswarehouse tasks. In this paper, we propose an optimized
safety policy‑generation framework, i.e., a safeMARL framework, for multi‑robot systems
in intelligent warehouses. In this framework, we extendMarkov Game as SCMG tomodel



Big Data Cogn. Comput. 2024, 8, 49 16 of 18

a multi‑robot system, use rPATL runtime verification to ensure the safety of robot behav‑
iors, and apply the verified SCMG to guide SCPO for multi‑agent reinforcement learning.
Finally, this framework is used in the multi‑robot warehouse (RWARE) of Shanghai In‑
telligent Warehouse, and exhibits good performance and results, compared with existing
works. It does not aim to obtain the optimal policies in terms of maximizing returns; it
aims to develop an optimized safety policy that implements warehouse tasks. In the fu‑
ture, we will develop an automated learning runtime model method for the multi‑robot
system at runtime, which can improve the efficiency and correctness of modeling multi‑
robot systems at runtime. Moreover, designing a heuristic algorithm for counterexample
generation is also an important topic for refining the runtime model SCMG. As building
the runtime model accurately is difficult, this research direction is extremely valuable. An‑
other valuable research direction is to extend this framework with multi‑agent deep rein‑
forcement learning, which may further improve the efficiency of multi‑robot systems in
intelligent warehouses.
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Appendix A

Table A1. Abbreviations and their meanings.

Abbreviations Meanings

MRS multi‑robot systems
RL reinforcement learning

MARL multi‑agent reinforcement learning
SCMG safety‑constrained Markov Game
RV runtime verification

rPATL probabilistic alternating‑time temporal logic with rewards
SCPO safety‑constrained policy optimization
AGVs automated guided vehicles
RWARE the multi‑robot warehouse
CMIX Cooperative Multi‑agent Information eXchang
QMIX Monotonic Value Function Factorization for Deep Multi‑Agent Reinforcement Learning
CMDP Constrained Markov Decision Process
MDP Markov Decision Process
LTL Linear Temporal Logic
QV quantitative verification
IPPO independent proximal policy optimization

MAPPO Multi‑Agent Proximal Policy Optimization
HAPPO Heterogeneous‑Agent Proximal Policy Optimization
SNAC Shared Network Actor‑Critic
SEAC Shared Experience Actor‑Critic
IAC Independent Actor‑Critic
MG Markov Game
MBSE Model‑Based Systems Engineering
GAE Generalized Advantage Estimation
PATL Probabilistic Alternating‑time Temporal Logic
ATL Alternating‑time Temporal Logic
CTL Computation Tree Logic
TRPO Trust Region Policy Optimization
KL Kullback‑Leibler Divergence
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