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Abstract: The phenomenon of the oxidation and aging of asphalt binders affects the strength and
durability of asphalt mixtures in pavements. Several studies are trying to improve the resistance to this
phenomenon by modifying the properties of the binders with nano-particles. One material that shows
promise in this field is zinc oxide (ZnO), especially in improving ultraviolet (UV) aging resistance. Few
studies have evaluated the effect of these nano-particles on the thermo-oxidative resistance of asphalt
binders, and, on hot-mix asphalt (HMA), studies are even more scarce and limited. Therefore, in the
present study, the resistance to thermo-oxidative aging of an HMA manufactured with an asphalt
binder modified with ZnO was evaluated. An asphalt cement (AC 60–70) was initially modified
with 0, 1, 3, 5, 7.5, and 10% ZnO (percentage by weight of asphalt binder; ZnO/AC in wt%), and
then exposed to aging in Rolling Thin-Film Oven tests (RTFOT) and a Pressure Aging Vessel (PAV).
Penetration, viscosity, and softening point tests were performed on these binders, and aging indices
were calculated and evaluated. Samples of HMAs were then manufactured using these binders and
designed by the Marshall method, determining the optimum asphalt binder content (OAC) and the
optimum ZnO/AC ratio. Control (unmodified) and modified HMA were subjected to short-term
oven aging (STOA) and long-term oven aging (LTOA) procedures. Marshall, Indirect Tensile Strength
(ITS), and resilient modulus (RM) tests were performed on these mixtures. LTOA/STOA results of
the parameters measured in these tests were used as aging indices. In this study, ZnO was shown to
increase the thermo-oxidative aging resistance of the asphalt binder and HMA. It also contributed
to an increase in the resistance under monotonic loading in the Marshall and ITS tests, and under
repeated loading in RM test. Likewise, it contributed to a slightly increasing resistance to moisture
damage. The best performance is achieved using ZnO/AC = 5 wt%.

Keywords: aging; hot-mix asphalt; modified asphalt; Zinc oxide; ZnO

1. Introduction

When an asphalt binder oxidizes and ages, it changes its physicochemical proper-
ties [1–3]. These changes directly affect the mechanical properties and durability of asphalt
pavements. During oxidation, the asphalt binder increases its stiffness, hardness, and
brittleness, and loses cohesion and adhesion with aggregates, increasing the probability
of different pavement distress occurrences such as moisture damage, fatigue cracking,
pothole, stripping, raveling, surface weathering or erosion, and top-down cracking, among
others [4–9]. To decrease the effects of aging in asphalt binders, some researchers recom-
mend modifying them with polymers [10], resins [11], and additives used in warm-mix
asphalts—WMA [12], among others. Researchers also recommend the use of rejuvena-
tors [3] and properly balancing the binder–aggregate composition in the design of asphalt
mixtures [13]. Several techniques are used to simulate the short-term thermo-oxidative
aging of asphalt binders. The most commonly used technique consists of combining heat
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(163 ◦C) and air (4000 mL/min) on a thin asphalt film (approximately 3.2 mm) for 85 min
in a Rolling Thin-Film Oven (RTFO), following the guidelines established by ASTM D 2872
or ASHTO T 240. In the case of asphalt mixtures, the most commonly used method is
short-term oven aging (STOA), which consists of subjecting the mixture in its loose state to
a temperature of 135 ◦C (using a conventional oven) for two hours, and then compacting
it (AASHTO R 30). The simulation of long-term aging of asphalt binders is usually per-
formed using Pressure Aging Vessel (PAV) equipment. Samples previously aged in RTFO
are introduced into the PAV to be subjected to 90, 100, or 110 ◦C (cold, moderate, or hot
climate, respectively) and 2.07 MPa for 20 h (AASHTO R 28). On asphalt mixtures, the
most commonly used method to simulate long-term oven aging is long-term oven aging
(LTOA). In this method, the STOA-aged mixture is subjected to a conventional oven at a
temperature of 85 ◦C for 5 days (AASHTO R 30). In theory, this procedure simulates the
aging that the mixture undergoes between 7 to 10 years of pavement service life [1,14].

Likewise, a material that has been showing a high chance of success in improving
aging resistance is zinc oxide—ZnO [15–19]. ZnO is a colorless material with low toxi-
city [20], showing a high compatibility with asphalt binders [21–23], high conductivity,
heat capacity, and chemical–thermal stability [24]. It also exhibits a low ultraviolet—UV
optical absorption and expansion coefficient [25]. Its nanometer size and piezoelectric
properties promote its study as a modifier of asphalt binders that help improve UV
aging resistance [26–30]. Ref. [31] modified two asphalt cement—AC (AC 73 and AC
92 dmm) with nano-ZnO (2 wt% to binder mass) and evaluated the morphology and
UV aging resistance of both binders. According to them, the aging resistance of ACs
improved and the influence of ZnO depends on the AC type. Ref. [32] also modified an
AC (3 wt% nano-ZnO), but the nano-particle surface was modified with 3- aminopropy-
ltriethoxysilane, γ—methacryloyloxypropyltrimethoxysilane and γ-(2,3- epoxypropoxy)
propyltrimethoxysilane. The UV aging resistance improves with nano-ZnO but changes
depending on the surface modifier type. A similar study was reported by [26] but mod-
ified with 2 wt% and using c-(2,3-epoxypropoxy) propyltrimethoxysilane. The UV ag-
ing resistance is improved, and it is higher when ZnO is surface-modified with c-(2,3-
epoxypropoxy) propyltrimethoxoxysilane. [33] reported a study with similar conclusions
(AC shows a better UV aging resistance), but comparing the results with two other nano-
particles (nano-TiO2 and nano-SiO2). Another similar study reporting an increased UV
aging resistance is stated by [34], modifying an AC with ZnO and organically expanded
vermiculite—OEVMT (3 wt%). [35] improved an AC (1 wt% of OEVMT) and 1, 2, 3, and
4 wt% (ZnO-modified with two surface modifiers). The optimum content of both materials
was 3% ZnO + 1% OEVMT. Researchers found that ZnO negatively influences the physical
properties of AC when it exceeds 4 wt%. Similar studies reporting increased UV resistance
employing ZnO can be found in Zhu et al. [36,37]. [38] was modified with nano-ZnO (1, 2, 3,
4, and 5 wt%). ZnO improved its rheological properties and stiffness of the AC, and its UV
aging resistance. The optimum ZnO content was reported to be 3 wt%. [39] reported similar
conclusions and an equal optimum percentage (3 wt%) modifying an AC with rodlike
ZnO (0.5, 1, 2, 3, and 4 wt%). [8] modified an AC with vermiculite-EV and ZnO (2, 3, 4, 5,
and 6 wt%). ZnO/EV improved binder properties at high temperatures but compromised
them at low temperatures. It also improved the performance of asphalt mixtures when
ZnO/EV = 5% was used. [15] modified an AC with nano-TiO2/ZnO = 2, 4, 6, and 8 wt%.
Researchers also used basalt fiber—BF (6 wt). All three modifiers increase the rutting,
fatigue (intermediate temperature), and aging resistance of the binder. The optimum
nano-TiO2/ZnO content was 4 wt%. [40] evaluated the influence of ZnO nanometer size
(10–30 nm, 50–70 nm, 100–200 nm) on the morphology, rheological, physical properties, and
aging resistance of an AC (PG 64–22) modified with ZnO concentrations of 1, 3, and 5 wt%.
ZnO improved the binder elastic performance and rutting resistance. It also increased the
short-term (RTFO) and long-term (PAV) aging resistance of the AC. A content of 3–5 wt%
of ZnO with a particle size ranging between 10 to 30 nm was recommended.
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The use of nano-ZnO as an asphalt binder modifier is a relatively new technique.
Few studies have evaluated the influence of ZnO on the aging resistance of binders, and
most have focused on analyzing the performance against UV radiation. As asphalt binder
modifiers for hot-mix asphalt (HMA), studies are scarcer and more limited [19]. From
the literature consulted, only one study evaluated the performance of an asphalt mixture
against the effects of thermo-oxidative aging [8], but, in this study, before modifying the
binder, the ZnO was previously synthesized with EV to deagglomerate the nano-particles.
In contrast to the studies reported in the reference literature, in the present research, the
influence that a ZnO (without modifying its surface) has on the thermo-oxidative resistance
of an HMA when used as an AC modifier was evaluated. To this end, the AC was modified
with 0, 1, 3, 5, 7.5, and 10% ZnO (percentage by weight of asphalt binder; ZnO/AC in wt%),
and exposed to aging procedures in RTFO Tests (RTFOT) and PAV. Penetration (ASTM D5),
viscosity (ASTM D4402), and softening point (ASTM D36) tests were performed on the
residues of these aged binders, and aging indices were calculated and evaluated. HMAs
manufactured with these binders were designed by the Marshall method (the optimum
asphalt binder content—OAC and the optimum ZnO/AC ratio were determined). Control
(unmodified) and modified HMA were subjected to STOA and LTOA thermo-oxidative
aging procedures. Marshall (AASHTO T 245), Indirect Tensile Strength (AASHTO T 283),
and resilient modulus—RM tests (UNE-EN 12697-26) were performed on these mixtures.
The LTOA/STOA ratio of the parameters measured in these tests was used as an indicator
of resistance to thermo-oxidative aging.

2. Materials and Methods
2.1. Materials

An AC 60–70 (penetration range in dmm, according to ASTM D5 procedure) was
used as an asphalt binder. This AC complies with the quality requirements of Colombian
INVIAS standard [41] (see Table 1). To manufacture the HMA mix, an aggregate was used
that also met the quality requirements demanded by INVIAS [41] (see Table 2).

Table 1. AC 60–70 properties.

Test Unit Method Result Recommended

Neat asphalt binder

Softening point ◦C ASTM D 36 48.7 48–54
Penetration dmm ASTM D 5 61.6 60–70

Penetration index - NLT 181 −1.05 −1.2 to +0.6
Specific gravity - AASHTO T 228 1.024 -

Viscosity (135 ◦C) P ASTM D 4402 4.72 4 minimum
Ductility cm ASTM D113 128 100 minimum

Flash and fire points ◦C ASTM D8254 288 230 minimum

After RTFOT

Mass loss % ASTM D2872 0.22 0.8 maximum
Percent penetration retained % ASTM D 5 82.8 50 minimum
Increase in softening point ◦C ASTM D 36 2.3 9 maximum

The ZnO used is commercial and over-the-counter (Figure 1). To date, it is a material
whose approximate cost is US$ 7.5/kg. At room temperature (20 ◦C), the coloration of
ZnO is white. Its particles (size less than 0.075 mm) were visualized (between 500 and
40,000 magnification) in a scanning electron microscope—SEM (JEOL JSM-6700F) with
an accelerating voltage of 4 to 20 kV and a working distance of approximately 4 to 9 mm
(Figure 2). ZnO particles and their elemental chemical composition were measured. Based
on the observations, ZnO is agglomerated in sizes below 20 µm (Figure 2a–d), and each
nano-particle in the agglomeration is tubular with extremely small dimensions (nanometer
scale; approximately 200 to 600 nm; e.g., Figure 2d). To disperse these nano-particles,
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one could use a dispersing agent or mechanism, or modify the ZnO surface as has been
recommended in the reference literature [8,19,33,42,43]. However, in the present study, the
effect of ZnO without modification was evaluated. The elemental chemical composition
shows a high-purity modifier (ZnO). On average, each particle showed Zn and O contents
of 80 and 20%, respectively. These values agree with those provided by the supplier: 99.0%
ZnO (80.28% Zn, and low bacterial and trace organic content). On the other hand, the
specific gravity of ZnO is 5.6 g/cm3 and it is an alkaline material (pH higher than 7).

Table 2. Aggregate properties.

Test Method Recommended Result

Absorption (fine aggregate)

AASHTO T 84, 85

- 1.65%
Absorption (coarse aggregate) - 1.88%

Specific gravity (fine) - 2.652
Specific gravity (coarse) - 2.671

Soundness using magnesium sulphate AASHTO T 104 18.0% maximum 5.3%
Fractured particles (1 side) ASTM D5821 85% minimum 92.7%

Abrasion in Los Angeles machine AASHTO T 96 25% maximum 22.7%
10% of fines (dry resistance) DNER-ME 096 110 kN minimum 122.5 kN
10% of fines (wet resistance) DNER-ME 096 82.5 kN minimum 108.9 kN

Micro-Deval AASHTO T 327 20% maximum 18.6%
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2.2. Asphalt Binder Modification and Aging Assessmen

AC was modified using addition percentages of 1, 3, 5, 7.5, and 10% (respect to mass of
AC; ZnO/AC = 1, 3, 5, 7.5, and 10 wt%). Mixing was performed in high shear equipment at
155 ± 5 ◦C and 4000 rpm. These addition percentages, temperature, and mixing speed were
chosen based on the literature review [19]. Technical and environmental criteria were also
taken into account (not to use very high temperatures to avoid aging of the binder, as well
as increased pollutant emissions and production costs; [44]). The mixing time (MT) varied
between 30, 60, and 90 min. This time range was chosen, taking into account experiences
from previous studies reported on the subject [19]. The modified asphalt binders were
exposed to short-term aging in RTFOT (163 ◦C for 85 min; AASHTO T 240). These samples
were also conditioned for long-term aging (AASHTO R 28) in a PAV equipment (the residue
obtained from RTFOT was subjected to 2.07 MPa at 100 ◦C for 20 h). Penetration (ASTM
D 5), softening point (ASTM D 36), and viscosity at 135 ◦C (ASTM D 4402) tests were
performed on samples of unaged, RTFOT-aged, and RTFOT + PAV-aged modified asphalt.
The results obtained from these tests were used to calculate aging indices (Penetration
Decrease Index—PDI, Softening Point Increment—SPI, and Viscosity Aging Index—VAI),
calculated according to Equations (1)–(3). AP and UP are aged and unaged penetration,
respectively, in dmm. ASP and USP are aged and unaged softening points, respectively, at
◦C. AV and UV are aged and unaged viscosity at 135 ◦C, respectively, in cP. Based on these
tests and evaluation indices, the MT was chosen and the effect of ZnO on the resistance to
thermo-oxidative aging of the binder was evaluated.

PDI =
AP
UP

(1)

SPI = ASP − USP (2)

VAI =
AV
UV

(3)

2.3. Asphalt Mixture Design and Choice of ZnO/AC Ratio

Once the AC 60–70 was modified with ZnO (ZnO/AC = 1, 3, 5, 7.5 and 10 wt%) at
150 ◦C, 4000 rpm, and MT chosen from the previous phase, the performance of the HMA
mixtures was evaluated using the Marshall method (AASHTO T 245). A total of six types
of mixes were analyzed: the Control HMA with ZnO/AC = 0 wt% and five modified
mixes (ZnO/AC = 1, 3, 5, 7.5, and 10 wt%). The aggregate particle size distribution is
shown in Table 3. This gradation is for HMA-19 according to INVIAS [41]. The mixes
were manufactured using four binder contents (4.5, 5.0, 5.5, and 6.0%). The mixing and
compaction temperatures were 155 and 145 ◦C, respectively (viscosity of 170 ± 20 cP and
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280 ± 30 cP, respectively). Three Marshall samples for each mixture type and asphalt
content were manufactured. The samples were compacted by applying 75 blows per
face. Voids filled with asphalt—VFA, air void content—Va, flow—F, stability—S, and S/F
ratio were determined for each sample. S and F were determined at 60 ◦C, applying in
a Marshall compression machine, a monotonic loading rate of 50.8 mm/minute. With
the results obtained from the Marshall test, the OAC and the ZnO/AC ratio were chosen.
These parameters were used to manufacture the samples in the subsequent experimental
phases. The design criteria for choosing the OAC are those established by INVIAS [41].

Table 3. HMA-19—Particle size distribution.

Sieve, mm 19.0 12.5 9.5 4.75 2.0 0.43 0.18 0.075

Sieve ¾′′ ½′′ 3/8′′ #4 #10 #40 #80 #200

Passing, % 100 87.5 79.0 57.0 37.0 19.5 12.5 6.0

2.4. Mechanical Strength and Aging Analysis

Indirect Tensile Strength—ITS, Marshall, and resilient modulus—RM tests were per-
formed to evaluate the mechanical strength and measure aging rates of the control (un-
modified; ZnO/AC = 0 wt%) and modified (ZnO/AC = 5%, chosen from the previous
phase) HMA mixes. These tests were performed on samples subjected to STOA and LTOA
aging protocols. Following the recommendations of AASHTO R30, to simulate the STOA
condition, the samples were initially heated during 4 h at 135 ◦C in a loose state in a
conventional laboratory oven, and then compacted at 75 blows (per face). LTOA condition
was simulated after the STOA process; the samples were kept for five days in an oven at
85 ◦C. The LTOA/STOA ratios of each of the strength parameters measured for each test
were measured as an index of aging.

The Marshall test was performed on three samples per type of mixture (ZnO/AC = 0 wt%
subjected to STOA and LTOA, and ZnO/AC = 5 wt% subjected to STOA and LTOA)
following the process described in the previous experimental phase (Section 2.3) and the
guidelines of AASHTO T 245. The strength parameter evaluated was the S/F ratio (also
known as Marshall Quotient), which is an indirect indicator of stiffness under monotonic
loading. ITS tests were performed on three dry samples (ITSD) and three conditioned
samples (immersed in water for one day in a water bath at 60 ◦C; ITSC) per type of mix,
following the guidelines of AASHTO T 283. The Va of the mixes in the ITS test varied
between 7 ± 0.5%. ITSD and ITSC were measured at 25 ◦C applying a loading rate of
50 mm per minute in the Marshall compression machine. The ITSC/ITSD ratio was used to
calculate the Tensile Strength Ratio (TSR) to evaluate the resistance to moisture damage.
The RM was measured per type of mixture at 10, 20, and 30 ◦C, and frequencies of 2.5, 5,
and 10 Hz, using a Nottingham Asphalt Tester (NAT), following the guidelines of UNE-EN
12697-26.

2.5. ANOVA—Analysis of Variance

To evaluate whether the changes observed in the measured properties due to the use
of ZnO were statistically significant, an ANOVA—analysis of variance (F-test) with 95%
confidence was performed. In the F-test, an F > F0.05 means that the measured change in
the evaluated property is statistically significant.

3. Results
3.1. Modified Asphalt Properties and Aging Assessment

The penetration, softening point, and viscosity test results performed on unmodified
(ZnO/AC = 0 wt%) and modified (ZnO/AC = 1, 3, 5, 7.5, and 10 wt%) AC 60–70 are
shown in Figure 3a–c, respectively. This figure also shows the effect of MT during the
modification process (30, 60, and 90 min). As the MT and ZnO/AC content increases, the
binder stiffens (the penetration decreases and the softening point and viscosity increase).
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At ZnO/AC = 1 wt%, the changes are not significant. Figure 3a,b shows that the highest
rate of decrease in the penetration and increase in the softening point is achieved when
ZnO/AC = 5 wt%. From this value onwards, these rates decrease. Viscosity, on the other
hand, increases with ZnO/AC content. The above is mainly because ZnO nano-particles
increase the internal friction forces in the binder during the test [1]. Additionally, ZnO
presents a high specific surface area, facilitating the adsorption of light components on
the binder [45]. The gain in binder stiffness due to ZnO is also explained by the high
mechanical strength and structural stability of the nano-particles, which have been shown
in rheology tests to increase rutting resistance [18,42].
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As AC 60–70 ages, the penetration decreases, and softening points and viscosity in-
crease. The above has been widely reported in the reference literature (e.g., [46–48]). The
asphalt binder is a colloidal dispersion composed of asphaltenes (A) within an oily matrix
(maltenes—M) composed of aromatic naphthenes (Ar), saturated agents (S), and resins
(R) [1,49]. The oily component of the binder tends to be lost during oxidation, restructuring
its molecular composition (the fraction of asphaltenes increases and maltenes decrease,
stiffening and causing the brittleness of the binder; [50,51]). Additionally, oxidation in-
creases the molecular weight and large molecular size (LMS), generating increases in
viscosity [52–54]. On the short (RTFOT)- and long (PAV)-term aged samples, PDI, SPI,
and VAI indices were measured (Figures 4–6, respectively). It is observed that the aging
resistance improves when ZnO is used since PDI increases and the SPI and VAI indices
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decrease. The best performance is observed with ZnO/AC = 5 wt%. Di et al. [16], based on
liquid-state nuclear magnetic resonance (NMR) spectroscopy tests, report an increase in
the percentage of aromatic carbon in an asphalt binder when ZnO is used as a modifier
to explain the increase in thermo-oxidative resistance. According to Zhu et al. [40], per-
forming Fourier-Transform Infrared Spectroscopy (FTIR) tests, nano-ZnO modified binders
show lower carbonyl and sulfoxide ratios after the aging of RTFO and PAV relative to the
unmodified binder. On the other hand, an increase in MT generates the greater oxidation
and aging of the samples due to the longer exposure time to which the binders are subjected
to high temperatures [55], which could promote the increase in the asphaltenes fraction
and the asphaltenes/resins ratio, as well as the decrease in the aromatics content [56,57].
Taking into account the literature consulted and to avoid excessive oxidation of the binder,
an MT = 60 min was chosen. Additionally, it is observed in Figure 3a–c that the modified
binders undergo similar values of penetration, softening point, and viscosity when using
MT = 60 or 90 min.
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3.2. Mixture Design and Choice of ZnO/AC Ratio

The Marshall test results for choosing the OAC and the ZnO/AC ratio are shown in
Figure 7. As the ZnO/AC ratio increases, the mixtures tend to be more porous (Figure 7a,b).
This is because the ZnO particles increase the viscosity of the binder, making the work-
ability of the mixture and its compaction more difficult. The modified mixture with
ZnO/AC = 1 wt% performs similarly in the Marshall test to the Control mix. For the
case of the S/F ratio, for example, the ANOVA analysis reports no significant change
(F = 0.87 < F0.05 = 7.71). The changes in strength under monotonic loading (S, S/F) are
statistically significant concerning the Control mixture from a ZnO/AC ≥ 3%. The max-
imum S/F ratio is obtained when using ZnO/AC = 5 wt% and an AC content of 5.5%
(Figure 7c,d). With this ZnO/AC and AC content, HMA undergoes a 17.7% increase in
this parameter concerning the Control mixture, and this increase is statistically significant
(F = 64.2 > F0.05 =7.71). The nano-oxides tend to form with the binder a structure that in-
creases the yield stress [38]. Additionally, the volumetric design criteria (Va between 3 to 5%
and VFA between 60 to 75%; Figure 7a,b) recommended by the INVIAS [41] standard are
met at this ZnO/AC and AC content. A higher ZnO/AC content could be used; however,
the changes in the S/F ratio are smaller, and a higher AC (increasing manufacturing costs)
is required to meet the volumetric criteria. Therefore, OAC = 5.5% and ZnO/AC = 5 wt%
were chosen. Although it is not an objective of this study, an approximate increase of 30%
in the cost of m3 of HMA is estimated (without taking into account the cost of the binder
modification process).
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3.3. Mechanical Strength and Aging Analysis
3.3.1. Marshall Test

The S/F ratios obtained from the Control sample and the one modified with ZnO/AC = 5 wt%
(ZnO) in the STOA and LTOA condition are shown in Figure 8. When the LTOA/STOA
ratio is calculated, the value of the Control mixture (LTOA/STOA = 1.19) is higher for the
one modified with ZnO (LTOA/STOA = 1.11). In other words, the ZnO mixture tends
to stiffen less and is, therefore, more resistant to thermo-oxidative aging. In this test, it is
also possible to relate the S/F values obtained from the unaged—U (Figure 7d) and aged
(Figure 8) mixtures. The STOA/U ratio = 1.26 for the Control mixture, while, for the ZnO
mixture, the STOA/U parameter = 1.11. This ratio also indicates that ZnO is a material
that helps to decrease the oxidation and aging processes in the analyzed mixture. These
results are consistent with previously reported PDI, SPI, and VAI values, which show that
the ZnO-modified asphalt binder undergo smaller growths in stiffness when exposed to
short-term (RTFOT) and long-term (PAV) aging processes.
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3.3.2. Indirect Tensile Strength (ITS) Test

The ITS test results are shown in Figure 9. The ITSD and ITSC parameters of the ZnO
blend are higher than the Control mixture, and the changes are statistically significant. In
the STOA condition, the ITSD of the ZnO mixture is 21.7% higher than the Control mixture
(F = 163.4 > F0.05 = 7.71), and the increase in ITSC is 23% (F = 140.0 > F0.05 = 7.71). In the
LTOA condition, the increase in ITSD of the ZnO mixture concerning the Control mixture
is 8.1% (F = 10.5 > F0.05 = 7.71), while, in ITSC, it is 8.7% (F = 9.5 > F0.05 = 7.71). On the
other hand, in the STOA and LTOA conditions, the Control mixture presents TSR = 86.5
and 82.7%, respectively, while these values are 87.4 and 83.1% in the ZnO mixture. In



Infrastructures 2024, 9, 81 11 of 16

other words, ZnO contributes to significantly increasing the indirect tensile strength and
slightly increasing the resistance to moisture damage. The above is possible because ZnO
reduces the acidic component and increases the basic component, increasing the Surface
Free Energy (SFE) and improving the binder–aggregate adhesion [58–60]. An increase
in binder stiffness by the presence of ZnO (Figure 3) could contribute to increasing ITSD
and ITSC [61–63]. Additionally, ZnO has been shown to increase the peak stress in shear
stress–strain curves obtained from linear amplitude sweep (LAS) tests [16], and enhance
the bitumen/aggregate adhesion since it generates a network within the structure of the
binder, generating a strong connection between the functional groups of the binder and the
nano-particles [64]. On the other hand, the ITSD LTOA/STOA ratio is 1.29 and 1.15 for the
Control and ZnO mixture, respectively. These values change to 1.24 and 1.09, respectively
for the case of ITSC. In other words, ZnO tends to decrease the stiffness and hardening of
the binder during aging processes, which is consistent with the PDI, SPI, and VAI indices
calculated on the asphalt binders analyzed (AC 60–70 modified and unmodified).
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3.3.3. Resilient Modulus Test

The RM test results are presented in Figure 10. In the STOA condition, ZnO contributed
to an increase in the stiffness under the cyclic loading of HMA at temperatures of 20 and
30 ◦C for any loading frequency (Fr), and these increases were statistically significant
(Table 4; F > F0.05 = 7.71). The increase in stiffness is consistent with the decrease in
penetration and the increase in viscosity and softening point that AC undergoes when
modified with ZnO. Moreover, based on the rheological characterization, the reference
literature shows that ZnO helps to increase rutting resistance [16,28,36–38,42,60,65]. The
high surface-to-volume ratio of ZnO nano-particles to the asphalt binder can increase the
viscosity and adhesion, and improve the functional performance of bitumen, increasing
stiffness and decreasing its sensitivity to rutting [64]. At 20 ◦C, the ZnO mixture in the
STOA condition (ZnO-S) underwent an increase in stiffness (between 3.3 and 9.3%) for
the Control mixture (Control-S). This increase ranged from 25.2 to 46% at 30 ◦C. At 10 ◦C,
the ZnO-S mixture decreased stiffness by approximately 2% concerning the Control-S mix,
which could be beneficial in reducing cracking in low-temperature climates. In the LTOA
condition, the behavior changes because the LTOA/STOA ratio of the RM values is lower
in the ZnO-L mixture than in the Control-L mixture (Table 5). When changing from the
STOA to LTOA condition, the increase in RM in the Control mixture varies between 12.7
and 24.1% (depending on the test temperature), while this increase in the ZnO mixture is
about 5%. In other words, ZnO helps to decrease stiffness during thermo-oxidative aging
processes, which is an indicator of increased aging resistance. As in the Marshall test, the
lower LTOA/STOA ratio of the ZnO mixture can be explained based on the higher PDI
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values and the decrease in SPI and VAI undergone by the modified asphalt binder for the
unmodified AC 60–70.
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Table 4. F-test ANOVA for RM tests.

Fr (Hz)

Control-S
ZnO-S

Control-L
ZnO-L

Control-S
ZnO-S

Control-L
ZnO-L

Control-S
ZnO-S

Control-L
ZnO-L

10 ◦C 20 ◦C 30 ◦C

F

2.5 2.8 906.2 8.3 28.9 9.7 1.37
5.0 11.2 127.7 15.1 0.2 61.0 23.2

10.0 13.2 134.5 12.7 119.0 65.2 28.9

Table 5. LTOA/STOA ratio of RM values.

Fr (Hz)
LTOA/STOA—Control LTOA/STOA—ZnO

10 ◦C 20 ◦C 30 ◦C 10 ◦C 20 ◦C 30 ◦C

2.5 1.191 1.189 1.213 1.050 1.050 1.048
5.0 1.129 1.162 1.237 1.046 1.057 1.041

10.0 1.127 1.180 1.241 1.054 1.040 1.056
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4. Conclusions

This study evaluated the influence of ZnO as a modifier of an asphalt binder and its
effect on the thermo-oxidative resistance of an HMA mixture. Based on the results obtained,
the following is concluded:

• The PDI, SPI, and VAI parameters show that ZnO increased the resistance to thermo-
oxidative aging of the asphalt binder. The best performance was achieved with
ZnO/AC = 5 wt%. Considering the LTOA/STOA ratio calculated from the S/F, ITSD,
ITSC and RM parameters, ZnO (ZnO/AC = 5 wt%) contributes to increasing the
resistance to thermo-oxidative aging of the HMA mixture.

• The stiffness and viscosity of the binder increase with increasing ZnO content. This
is mainly when the ZnO/AC ratio ≥ 3 wt%. Additionally, the resistance under
monotonic loading in the Marshall test (S/F) and the resilient modulus at 20 ◦C and
30 ◦C of the HMA increase when ZnO (ZnO/AC = 5 wt%) is used as a binder modifier.
That is, ZnO could help to increase the rutting resistance.

• The ITSD, ITSC, and TSR parameters increase when the HMA uses the ZnO/AC = 5 wt%
modified binder. This is an indicator of increased indirect tensile strength and moisture
damage resistance.

• ZnO is shown to be a promising nano-material for improving the performance of
binders and asphalt mixtures in pavements. Some recommendations for future studies
are as follows: (i) evaluate the effect of ZnO on other properties such as fatigue resis-
tance and low service temperatures; (ii) perform direct rutting resistance tests; (iii) use
different types of binders, aggregates, and asphalt mixtures; (iv) perform environmen-
tal assessment, Life Cycle Cost Analysis (LCCA), and Life Cycle Assessment (LCA);
(v) perform storage stability tests on the modified asphalt binder; and (vi) evaluate ag-
ing indices obtained from parameters measured at low and intermediate temperatures
on asphalt binders (e.g., rheological characterization) and HMAs modified with ZnO.
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