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Metal–Insulator Crossover in Strongly Underdoped Cuprates
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Dipartimento di Fisica e Astronomia, Università di Padova, INFN, I-35131 Padova, Italy;
pieralberto.marchetti@unipd.it

Abstract: We propose that one can explain the coexistence in the same range of doping and tem-
perature of gapless Fermi arcs with the metal–insulator crossover of in-plane resistivity in strongly
underdoped cuprates in terms of the FL* fractionalized Fermi liquid nature of these systems, and that
such coexistence is not due simply to disorder effects in the resistivity. The particle excitations of this
FL* system derived from variants of the t-J model are the gapless holon carrying charge with small
Fermi momentum proportional to the doping, the gapful spinon carrying spin 1/2, and an emergent
gauge field coupling them and the hole as a spinon–holon bound state, or more precisely resonance,
due to gauge binding, with a Fermi surface respecting the topological Luttinger theorem. In our
proposal, Fermi arcs are determined by the hole resonance, whereas the metal–insulator crossover is
dominated by spinon–spinon (with subleading holon–holon) gauge interactions, and this dichotomy
is able to explain their coexistence.

Keywords: cuprates; fractionalized Fermi liquid; t-J model

1. Introduction

In the strong-underdoping low-temperature region of the phase diagram of the cuprates,
the existence of gapless Fermi arcs has been proved by ARPES experiments (see, e.g., [1] and
references therein). According to the Fermi liquid paradigm then one would expect a metallic
resistivity with a temperature dependence Tα, with α at least greater than 1. In the same
region of the phase diagram, however, the experiments show that the in-plane resistivity has a
minimum at finite temperature, i.e., a metal–insulator crossover (see, e.g., [2]). Furthermore, a
suitably normalized resistivity exhibits a universal behavior [3] that seems hardly compatible
with an explanation of that crossover in terms of disorder-induced localization.

We propose that one can explain the coexistence of the two phenomena in terms of
the FL* fractionalized Fermi liquid concept, introduced in [4,5], within an approach to the
low-energy physics of the cuprates in terms of the t-t′-J model.

There have been several proposals of an FL* nature of the above-quoted region of
the phase diagram of the cuprates, named the “pseudogap phase” ([6,7] and references
therein), but to our knowledge not a careful discussion of the consistency between Fermi
arcs and the metal–insulator crossover (MIC).

An FL* is an exotic fractionalized Fermi liquid which has hole-like (in the case relevant
for the cuprates) excitations near a Fermi surface satisfying a generalization of the Luttinger
theorem, together with fractionalized excitations emerging from a topological order, in
particular charged spinless holons (h) and neutral spin 1/2 spinons (s), interacting via a
so-called slave-particle gauge field (a). The hole is a bound state or a resonance arising
from holon–spinon binding induced by the gauge attraction.

The present paper is part of a project aimed at analyzing the consequences of the
proposed FL* nature of the cuprates. The general idea underlying this project is that one
can explain the Fermi liquid (FL) versus non-Fermi liquid (NFL) dichotomies encountered
in the cuprates, in the present case the FL nature of Fermi arcs and the NFL nature of the
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MIC, in the following way: If some physical response is dominated by the hole excitations
(holon–spinon interaction), then its behavior is similar to that of a Fermi liquid; if instead it
is dominated by spinon–spinon (and possibly also holon–holon) interaction, then it clearly
has characteristics of a non-Fermi liquid.

It is known of course that the t-t′-J model is not sufficient to explain some phenomena
exhibited by the cuprates, such as charge density waves (see, e.g., [8]), but apparently
for the issue of the present paper, at strong underdoping at least, these phenomena are
qualitatively irrelevant [9]. More generally, although clearly such a simple model cannot
reproduce real experimental data, we show that even with an approximate treatment many
of their doping and temperature dependencies can be indeed qualitatively understood.
Furthermore, with the introduction of experimentally derived but doping- and temperature-
independent scales also a semi-quantitative agreement is obtained in many cases (e.g., for
the universal curves of normalized resistivity, discussed also here in Section 4, and for the
normalized superfluid density in the underdoping region [10]).

2. General Outline of the Approach

In the description of the low-energy physics of the cuprates in terms of a two-
dimensional (2D) t-t′-J model, the sites of the model correspond to the Cu sites of a
CuO plane in the cuprates and the empty sites of the model to the Zhang–Rice singlets.
The Hamiltonian is given by

H = PG[ ∑
<i,j>n.n.

−tc∗iαcjα + h.c. + JS⃗i · S⃗j + ∑
<i,j>n.n.n.

t′c∗iαcjα]PG, (1)

where < i, j > denotes a link between lattice sites i and j, (n)n.n. denotes the (next-)nearest
neighbor sites, and α is the spin index, which is assumed to be summed up also in the
following if repeated. The Gutzwiller projection is denoted by PG and it implements the no-
double-occupation constraint, describing the Mott physics of the system. It can be tackled
with a spin-charge decomposition [11,12] of the hole field: cα = hs∗α, where the holon h is
a spinless fermion, thus implementing the no double occupation by the Pauli principle,
and the spinon s is a boson, satisfying in each site the constraint s∗αsα = 1 [13]. This
decomposition generates an unphysical degree of freedom, since one can multiply at each
site s and h by arbitrary opposite phase factors leaving c unchanged. The corresponding
local U(1) gauge invariance is implemented by introducing a slave-particle gauge field
aµ that in turn produces an attraction between holon and spinon. To show this effect
of the emerging gauge field beyond perturbation theory we apply in [14], as a rough
approximation, a kind of eikonal resummation (some details are sketched in Appendix A).

However, a comparison with the corresponding one-dimensional (1D) model [15,16]
suggests modifying the statistics of spinons and holons at the lattice level, turning them
into semions, i.e., under equal-time-oriented exchanges their fields acquire a phase ±π/2
(see, e.g., [17]). These phase factors are opposite for spinons and holons, so that c retains
its fermionic nature. This modified statistics is crucial for our discussion (as it was in one
dimension), so let us give some details.

The change in statistics is implemented in the Lagrangian formalism by coupling the
holon to a U(1) gauge field Bµ, related to the charge, with a Chern–Simons action with
coefficient −1/2, and coupling the spinon to an SU(2) gauge field Vµ, related to the spin,
with Chern–Simons action with coefficient 1/2 [13,18]. This procedure corresponds to
dressing the holon with a −1/2 charge flux and the spinon with a 1/2 spin flux. Due to
the topological properties of Chern–Simons theory, if no approximations are made, the
result is an exact rewriting of the original model. However, if suitable approximations
are introduced, this rewriting provides a treatment of the model that with dimensional
reduction was successful in deriving the correct large-scale behavior of the model in 1D [15].
Therefore, we suggested that this provides a good approach also for the 2D model, relevant
for the low-energy physics of the cuprates. The parameter region corresponding to what
we call in this paper the pseudogap (PG) “phase” of the cuprates has an upper boundary
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in the (in-plane) doping (δ)-temperature (T) phase diagram identified with the inflection
point of in-plane resistivity [2]. Therefore, the PG “phase” appears at low δ and T.

In PG, the holon dressing by the charge gauge field Bµ induces a “uniform” (staggered)
charge-flux ±π per plaquette [13]. Through the Hofstadter mechanism [19] it converts
the spinless fermionic holons h into lattice Dirac fermions, with dispersion defined in the
magnetic Brillouin zone (MBZ). More precisely, the results of [20] prove that for elementary
circuits, triangles and squares, in the t-t′ model the optimal flux at half-filling is π/2
for triangles and π for squares. Therefore, we assume at sufficiently small doping and
temperature the following structure for the “uniform” component of B, denoted as in [21]
by Bm

µ , µ = 1, 2: Let i denote a site in the even Néel sublattice and i ± α̂, α = 1, 2 its
nearest-neighbor sites in the 1 and 2 directions, respectively, and i + β̂, β = ±1 ± 2 its
next-nearest-neighbor sites. Then,∫

<i,i±α̂>
Bm

µ dxµ = (−1)α(±1)
π

4
,

∫
<i,i±β̂>

Bm
µ dxµ = π (2)

The fluctuations of Bµ around its “uniform” component turn the holons into semions.
Since semionic spinless excitations have the same Fermi surface (FS) of spin 1/2 fermions [22,23],
the above π flux converts the fermionic holon with tight-binding dispersion

ωh ∼ 2t[(cos kx + cos ky)− δ] + 4t′ cos kx cos ky (3)

into a pair of lattice “Dirac fields”, ψa, with pseudospin index a related to the two Néel
sublattices and with dispersion

ωh ∼ 2t[
√

cos2 kx + cos2 ky − δ]− 4t′ cos kx cos ky (4)

restricted to the magnetic Brillouin zone. This produces small holon Fermi surfaces near
(±π/2,±π/2) with Fermi momenta kF

h of O(δ) in the MBZ, if identified with the union
of two square regions, denoted as R(ight) and L(eft) centered at QR = (π/2, π/2) and
QL = (−π/2, π/2), respectively. In the hole spinon–holon resonance, the Dirac structure
of such holons induces [14] a momentum-dependent factor in the wave-function renormal-
ization constant,

Z(⃗k) =
1
2
[1 −

cos kx + cos ky
√

2
√

cos kx
2 + cos ky

2
] (5)

which reduces the spectral weight in the outer boundary of the MBZ, one key ingredient
for a phenomenology of Fermi arcs at strong underdoping.

Let us turn to the gauge field associated with spin. The leading SU(2) component
of the Vµ field is along the magnetization axis of the undoped model. It introduces an
interaction with the spinons, whose dynamics without Vµ at large scales is described by a
CP1 model, leading to an additional term,

J′(Vµ)2s∗αsα, (6)

where, as a result of a mean-field approximation, J′ ≈ J(1 − 2δ). Neglecting a staggered
“uniform” term with mean zero, the field Vµ describes quantum vortices centered on the
positions of lattice holons, with opposite chirality for the two Néel sublattices, so that we
call them “antiferromagnetic (AF) spin” vortices. In a quenched treatment of such vortices,
we derive the mean-field expectation value < (Vµ)2 >= m2

s , with m2
s ≈ 0.5δ| log δ|. This

opens a mass gap J′ms for the spinon that turns out to be consistent with the AF correlation
length at small δ extracted from the neutron experiments [24]. Therefore, the originally
AF gapless spinons of the undoped Heisenberg model propagating in the gas of slowly
moving AF spin vortices acquire a finite gap, giving rise to a short-range AF order.
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This spinon gap is crucial because the spinon contribution to the slave-particle gauge
action is then of Maxwell type, hence subleading with respect to the contribution of
gapless holons. The holon contribution is characterized by the Reizer singularity in the
dominant transverse component, killing the logarithmic confinement induced by the spinon
contribution. Without the spinon gap the CP1 model would be in the broken symmetry
“Higgs” phase and the spinon contribution to the gauge action would be gapped by the
Anderson–Higgs mechanism, thus becoming the dominant one. As shown below, the Reizer
singularity of the slave-particle gauge field is a key factor for the discussion of resistivity and
Fermi arcs. In particular, the gauge interaction turns the spinon mass ms into a “complex

temperature- and frequency-dependent mass” Ms(T, ω) =
√

m2
s + ic ((πT)2+ω2)1/2

χ , where c
is a real constant of O(1) and χ the holon diamagnetic susceptibility, proportional to 1/δ.
Furthermore, the spinon gap modifies the chemical potential of the holes with respect to
that of the holons so that the Fermi momentum is of O(δ1/2). The binding with the spinons
produces a hole FS given by four small components centered at (±π/2,±π/2). The π-
flux introduces a topological order and the relevant version of the topological Luttinger
theorem with the relation “fraction of the area of the BZ enclosed by the hole FS” = δ/2
is satisfied. This is possible due to the modification of the holon chemical potential and
actually, somewhat surprisingly, even a simple doping-independent combination of the
holon Fermi momenta and the spinon momenta corresponding to the spinon gap produces
an area of the hole FS quite well compatible with that of the Luttinger theorem, for all the
dopings in the physical range.

The above results show that the system behaves like an FL* liquid. Furthermore, with
the choice of Bm made above, the FS of the hole near the diagonals of the BZ, where most
of the spectral weight is concentrated, almost overlaps with the large tight-binding FS; see
Figure 1. This is necessary for consistency with the ARPES data, although admittedly, the
overlap obtained is not enough.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

kx

k
y

α

(a)

-0.4 -0.2 0.0 0.2 0.4

0.0

0.1

0.2

0.3

0.4

0.5

α

In
te
ns
ity

(a
rb
.u
ni
ts
)

(b)

Figure 1. (a) Exterior of the MBZ (green), interior of the tight-binding FS for the hole (blue), and
interior of the small FS in PG derived as discussed in the text (orange) in the first quadrant of the
BZ for t′/t = 0.25 and δ = 0.07. The angle along the small FS in PG is denoted by α as in the text.
(b) Intensity of the symmetrized spectral weight of the hole along the small FS in PG shown in (a) at
T = 20 K. The intensity inside the MBZ is in blue, that outside in yellow. α is measured in units of π

and the origin is shifted by −1 outside of the MBZ.

The last ingredient crucial in our discussion is a long-range attraction between the AF
spin vortices centered on holons in two different Néel sublattices. If we treat in mean-field
the spinons (< s∗αsα >) in Equation (6) we see that the interaction mediated by AF spin
vortices on holons is of a 2D Coulomb type. According to the behavior of planar Coulomb
systems below a crossover temperature Tph ∼ J′/2π, a finite density of incoherent holon
pairs appears. As previously remarked, the low-energy holon modes in PG have two small
FSs in the MBZ; the 2D Coulomb interaction acts on these modes coupling opposites sites
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of each FS with an attractive potential whose range is given by the screening length of
the Coulomb gas. If such an attraction is treated in the BCS approximation it provides a
p-wave pairing on the two FSs that, glued in the entire BZ for the hole resonance, produce
a d-wave-order parameter, as first suggested in a different approach in [25]. However,
such holon pairs do not condense because the fluctuations of the phase of the pairing field
are actually too strong [26], so that the slave-particle gauge symmetry broken by the BCS
approximation is restored.

3. FL* Approach to Fermi Arcs

Let us summarize in precise terms the output of the above considerations on the self-
energy of the hole resonance (see Appendix A for some details). The binding induced by
the gauge fluctuations dominated by the Reizer singularity computed with the above-cited
eikonal approximation produces an imaginary part of the self-energy of the form

Γ(ω, T) = ℑΣg(ω, T)] = −ℑ[J(1 − 2δ)

√
m2

s + ic
((πT)2 + ω2)1/2

χ
=

−J(1 − 2δ)(m4
s + (c2 (πT)2 + ω2

χ2 ))1/4 sin[
1
2

arctan(c
((πT)2 + ω2)1/2

m2
s χ

)]. (7)

Notice that ℑΣg(ω, 0) is linear in |ω| for sufficiently small frequencies; therefore, the
hole-resonances in PG behave like a marginal Fermi liquid [27]. Indeed, such behavior was
found first in optimally [28] and then also in underdoped [29] cuprates.

The contribution to the real part of the self-energy, ℜΣg(ω, T), corresponding to
Equation (7), is estimated using a Kramers–Kroenig procedure, with a UV cutoff at the
charge-transfer gap ≈ 4J, as suggested by experimental data.

An additional T2 term can arise due to standard Landau hole–hole interactions.
Let us turn to the effect of the attraction induced by the AF spin vortices.
In our approximation, we keep constant (up to its d-structure) the modulus of the

holon-pairing parameter ∆h (⃗k), obtained as the solution of a BCS-like equation [26], near
the Fermi surface. However, since the charge pairs are not condensed its phase is strongly
fluctuating. Therefore, the field describing these phase fluctuations, exp iϕ, has a doping-
and temperature-dependent gap, denoted by mϕ, decreasing with T and modifying the
standard BCS form of the self-energy near the hole Fermi surface. For mϕ(T, δ) we adopt a
form suggested in [30]:

mϕ(T, δ) ≈ Tph(δ)e
−
√

Tph(δ)−T

T−Tpc(δ) , (8)

where Tpc(δ) is (an estimate of) the temperature of condensation of holon pairs, which, how-
ever, never occur in the parameter range considered (in [31] it was set to 0). A reasonable
approximation for the contribution to the self-energy turns out to be [32]

Σv(ω, k⃗, T) ≈
|∆h (⃗k, T)|2

ω − ωh (⃗k, ω, T) + iΓ(ω, T)
[1 −

mϕ(T)√
−(ω + iΓ(ω, T))2 + ωh (⃗k, ω, T)2 + mϕ(T)2

] (9)

where ωh is the hole dispersion modified by ℜΣg(ω, T) (subleading modifications are not
taken into account in [32]) and Γ is the scattering rate of the hole without charge pairing.
To understand its implications, let us consider its behavior in two regions of energy: For
ω << mϕ, expanding the self-energy up to the second order in terms of ω/mϕ we obtain

Σv(ω, k⃗, T) ≈ |∆h (⃗k, T)|2
2mϕ(T)

(ω − ωh (⃗k, ω, T) + iΓ(ω, T))) (10)
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We see that for low frequencies the effect of the holon pairing appears through a
contribution to the wave-function renormalization constant, not modifying the marginal
FL nature but with a strong dependence on the direction of k⃗ that, together with the Dirac
structure, heavily suppresses the spectral weight along the hole FS as we move towards the
MBZ boundary from a point in the diagonal inside the MBZ; see Figure 1. The “shadow
band” outside of the MBZ may then be invisible because it disappears in the background
incoherent continuum.

For ω >> mϕ, we expand the self-energy in powers of mϕ/ω and we obtain

Σv(ω, k⃗, T) ≈ |∆h (⃗k, T)|2

ω − ωh (⃗k, ω, T) + iΓ(ω, T)
(11)

which is the self-energy of a d-wave superconductor. The spectral weight is symmetric
in frequencies and non-vanishing on the FS, but it exhibits two symmetric supercon-

ducting (SC)-like peaks, approximately at ±
√
|∆h (⃗k, T)|2 + mϕ(T)2. It turns out that for

|∆h (⃗k, T)| ≳ mϕ(T)2/Γ(ω, T), such SC-like peaks cover the FL peak in the spectral weight.
Due to the k-dependence of ∆h (⃗k, T) near the nodal region, the spectral weight behaves in
an FL-like manner, with an effective FS; while as we move towards the antinodal direc-
tions, most of the spectral weight is concentrated on the SC-like modes. Then, although
there is an FS, it has negligible effects. We identify the Fermi arcs as the region of the FS
where the FL peak is the dominant one; see Figure 2. As a consequence of the temperature
dependence of mϕ, the Fermi arcs shrink as we lower T (see Figure 3), in agreement with
experiments [33,34].
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Figure 2. Symmetrized spectral weight of the hole along the small FS in Figure 1 at T = 20 K for
α = n · 0.05π, n = 0 (top line, blue), 2, . . . , 5 (bottom line, brown). The increase at high energy is due
to an approximate estimate of the incoherent holon–spinon contribution discussed in the text.
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Figure 3. (a) Detail of the low-energy symmetrized spectral weight of the hole along the small FS as
in Figure 2 at T = 30 K and (b) at T = 40 K.
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The above computations clearly show that the effect of the gauge fluctuations on the
hole resonance in PG is to produce an isotropic marginal FL behavior at low energy. Instead,
the effect of the vortex attraction is an anisotropic d-wave-like contribution on the Fermi
arcs and an effective gap outside of them. This suppression of the spectral weight away
from the diagonals of the BZ induced by AF vortices, combined with the suppression of
the wave-function renormalization constant due to the Dirac structure (see Equation (5)),
produces a strong suppression of the spectral weight outside of the MBZ. Perhaps in this
region the corresponding ARPES signal disappears in the thermal continuum background
so that the Fermi arc might appear as consistent with the tight-binding Fermi surface. Small
deviations near the boundary of the MBZ are however expected, as in [35].

Actually [32], above the continuum background, in addition to the coherent hole
peak there is an additional contribution to the hole spectral weight of the incoherent
part describing the high-energy momentum contribution of the unbinded spinon holon
system; see Figure 2. Its leading contribution on the FS of the hole at energy ω can be
approximately estimated as DOSh(ω − ms)/(2ms) if ω > ms, where we denote by DOSh
the density of states of the holon. Due to the linear dispersion of the holon in the PG, DOSh
is approximately linear in its argument. Hence, the incoherent component of the hole gives
a contribution to the spectral weight at positive ω that grows approximately linearly in
ω starting from ms. This additional linear contribution agrees with the ARPES data in
strongly underdoped cuprates (see, e.g., [36]).

4. FL* Approach to Metal–Insulator Crossover

In strongly underdoped cuprates, or more precisely in PG, the in-plane resistivity ρ ex-
hibits a quite peculiar behavior: it increases more than linearly at intermediate temperatures,
with a T2 behavior in the same range, but at lower temperatures, unless it drops to zero at the
critical temperature, it acquires an insulating behavior. For sufficiently underdoped samples,
therefore, one can identify a minimum in resistivity at a given temperature, denoted by
TMIC, marking a metal–insulator crossover. As previously mentioned, at higher tempera-
tures, above the T2 behavior, there is an inflection point in the resistivity as a function of
temperature that is frequently used in defining the lower pseudogap temperature T∗.

Often, the MIC is attributed to disorder-induced localization. However, this interpre-
tation is at odds at least with the following facts: (i) The role of true disorder has been
analyzed carefully in [37] and although it can induce a MIC, the slope of the metallic
behavior in this case is independent of the degree of disorder, whereas such a slope in the
standard situation depends on the doping concentration. Perhaps instead the disorder is re-
sponsible for the logarithmic behavior found below the MIC. (ii) If the resistivity is suitably
normalized it exhibits a universal behavior [3], being both doping- and even essentially
material-independent in terms of T/T∗. Due to this universality, one can see a relation
between TMIC and T∗; the last one has been shown to be independent of disorder [37],
reinforcing the idea that the MIC is not caused by disorder.

If the MIC is intrinsic it would be incompatible with the FL nature of Fermi arcs. In fact,
following the analysis of the previous section, on the basis of the existence of gapless Fermi
arcs with marginal FL behavior, using the Drude formula one would expect the in-plane
resistivity to exhibit a metallic, linear-in-T behavior in PG. However, in an FL* theory, since
spinons and holons interact via the slave-particle gauge field, one should see whether the
contribution of the hole–hole interaction, due to spinon–holon coupling, is predominant,
or is it the contribution due to spinon–spinon and holon–holon interactions. It turns out
that the second alternative gives the leading effect for in-plane resistivity. To estimate the
spinon–spinon interaction we employ the Kubo formula for the spinon current and adopt
the above-mentioned eikonal approximation. For the holons, since the minimal coupling to
Chern–Simons gauge fields does not change local gauge-invariant quantities, we can use
the Drude formula. Then, the spinon and holon contributions are summed up following
the Ioffe–Larkin rule [38], i.e., the resistivity of the two subsystems are added: ρ = ρs + ρh.
Due to the slave-particle gauge interaction, the holon contribution is given by the standard
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expression [39,40] ρh ∼ (T/ϵh)
4/3, where ϵh = tδ is the holon Fermi energy. As discussed

in detail in [14], the Reizer singularity of the slave-particle gauge field modifies the spinon
current correlator, giving rise to a contribution to the in-plane resistivity given by

ρs ≈
√

ms

δ

[
1 +

(
1

msλT

)4
] 1

8

sin
[

1
4 arctan

(
1

msλT

)2
] (12)

where λT = (χ/πTc)
1
2 ∼ (δT)−

1
2 is a kind of “thermal de Broglie wavelength”. Notice that

the constant c here is the same used in the discussion of the Fermi arc and T∗ ≈ 2χm2
s . For

T ≳ 100 K up to almost T∗ one finds a metallic behavior, ∼ T2 , but in the limit λT ≥ m−1
s

the ρs exhibits an insulating behavior, ∼ 1
T for low T. Such a spinon contribution is

dominating with respect to the metallic holon contribution, so that the resistivity emerging
from the Ioffe–Larkin rule at low T is still insulating and the overall behavior is semi-
quantitatively consistent with the experimental data (except at lower T where, as remarked
above, perhaps standard localization occurs); see Figure 4. This metal–insulator crossover
is determined by the competition between the insulating behavior due to the AF correlation
length m−1

s and dissipation behavior due to the thermal de Broglie wave length λT . In
particular, in the limit λT ≥ m−1

s one finds a kind of localization effect on the spinon
contribution generated by the short-range AF order. Due to the gauge interaction this gives
rise to an insulating behavior of the resistivity in the same range of parameters where Fermi
arcs exist. Since the current considered in this computation is the same considered in the
computation made with the hole resonances, the spinon behavior of the resistivity is the
dominating one, thus providing a solution to the puzzle of the FL arcs vs. NFL resistivity
dichotomy. Furthermore, the spinon dominance explains the universality noticed in [3]. In
fact, ref. [10] lets us normalize the resistivity as follows:

ρn(T/T∗) =
ρ(T/T∗)− ρ(TMIC/T∗)

ρ(1)− ρ(TMIC/T∗)
. (13)
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Figure 4. Normalized in-plane resistivity ρn as a function of T/T∗ calculated for various dopings.
Red squares are data for ρn in LSCO taken from Ref. [2] for the non-superconducting samples at
δ = 0.04, 0.05; blue circles are data taken from the same reference for the superconducting samples at
δ = 0.06, 0.07 assuming TMIC = 0.3T∗, as suggested by the data in the presence of a magnetic field
or Zn-doping [41], in which an MIC also emerges for these dopings from the suppression of the
superconductivity.
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Then, as follows from Equation (12), neglecting the holon contribution ρn would be a
universal function of the normalized temperature T/T∗ and the characteristic temperature
T∗ itself is essentially determined by spinons. In the Ioffe–Larkin rule, a relative coefficient
between the holon and the spinon contribution appears as a free parameter, independent of
both T and δ, due to the use of a scale renormalization in the continuum limit adopted in
the computation of the spinon contribution. An optimized coefficient, while adding a slight
degree of non-universality, allows for a reasonably correct fit to experimental data, over a
wide range of temperatures and dopings from TMIC to T∗; see Figure 4.

Let us note as a marginal note [42] that the peculiar dependence on T of the “complex

mass” Ms =
√

m2
s + ic πT

χ has produced for many decades of K the linear-in-T2 behavior
found in [43,44], without attributing it to the quasi-particle structure advocated there. A
final remark: the inflection point in temperature of the in-plane resistivity identifying T∗

in our formalism depends on a delicate cancellation between the doping dependence of
the spinon gap ms and the Fermi momenta of the holons, kF

h : T∗ ∼ m2
s /kh

F ∼ δ| log δ|/δ,
and the result compares well with the experimental data. For this cancellation to occur it is
crucial that kF

h ∼ δ; it would not occur for the hole Fermi momenta kF ∼
√

δ.

5. Discussion

In this paper, we have presented evidence that the peculiar coexistence of Fermi arcs
and metal–insulator crossover of in-plane resistivity in strongly underdoped cuprates
can be attributed to the FL* nature of hole-doped cuprates. A qualitative agreement
with experimental data is also exhibited for the hole-spectral weight and for the in-plane
resistivity, including its universal property when suitably normalized. Following the
strategy advocated here, a solution of the dichotomy of the spin susceptibility in the FL*
approach was presented in [31]. Another phenomenon exhibiting coexistence of FL and
non-FL features appears in the superconducting state of underdoped cuprates, where the
superfluid density exhibit a non-BCS critical exponent and universality, whereas ARPES
shows a standard BCS behavior near the nodes of the superconducting order parameter.
Computations about this issue within the FL* framework are in progress, with positive
preliminary results.
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Appendix A

Since the self-energy of the hole is a key ingredient in the derivation of the Fermi arcs,
in this appendix we sketch its derivation, referring the interested reader to [14,21,32] for
further details.

Let us first consider the contribution due to the gauge interaction, Σg. Since the
holon has a Fermi surface, to use our eikonal approximation involving first-quantization
Feynman paths we first use a tomographic decomposition near the holon Fermi surface.
This procedure is a kind of angle-dependent dimensional reduction, allowing us to rewrite
the holon correlator as a sum of contributions from 1 + 1 massless Dirac fields along each
direction along the FS, following a strategy developed in [45–47]. The paths appearing
for a direction are straight lines directed along the Fermi momenta of that direction (up to
small transversal Gaussian fluctuations). We now multiply this path representation for the
holon by that for the spinon, which is given by first-quantization Feynman(–Schwinger–
Fradkin) paths of a massive particle [48]. The eikonal resummation is then obtained by
first treating the slave-particle gauge field as an external field coupled to the holon paths,
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using the Gorkov approximation, and to the spinon paths. One then integrates out the
gauge field to obtain an interaction between these paths which is then treated in the eikonal
approximation. In the scaling limit, only the magnetic components of the gauge field are
relevant and the corresponding correlator at finite T is given by

⟨ fij(x) frs(0)⟩ = (δirδjs − δisδjr)
∫ dk0

2π

∫ d⃗k
(2π)2

|⃗k|2e−ik0x0+i⃗k·⃗x

i k0

|⃗k|
κ − χ|⃗k|2

coth(
k0

2T
). (A1)

with x = (x0, x⃗). In the presence of a probe in linear response theory given by an external
field with frequency ω, the integration over k0 should be cut off approximately by the
maximum between T and ω. As an interpolation between the formulas with ω ≫ and
≪ T we use the standard expression

√
(πT)2 + ω2. The physics of Equation (A1) has as

a typical scale the Reizer momentum Q(T, ω) = (κ
√
(πT)2 + ω2/(πχ))1/3. The leading

effect of the gauge interaction on the spinon propagator can be described by a modification
of the mass term in the exponent of exp imsx0 given in the limit x0 ≫ |⃗x| by

msx0 →

√
m2

s −
T
χ

g1(|⃗x|Q)x0 − T
2χ

Q2g2(|⃗x|Q)
(x0)2

m2
s

(A2)

where g1 and g2 are regular functions [14]. Finally, a Fourier transform is performed to
obtain the retarded correlation function. In the evaluation of the spatial Fourier transform
of the hole correlator, the shift (A2) generates a complex saddle point, αsp for α ≡ |⃗x|Q
and at the saddle point g1(αsp) = ic, with c ≈ 1, g2(αsp) ≈ 0. As a result, ms is shifted to
the complex mass Ms discussed in the text. The real part of the exponential exp[iMsx0] is
monotonically decreasing in x0; therefore, we estimate the x0 integral by principal-part
evaluation and scale renormalization to deal with the UV component. As a result, the
frequency of the holon is shifted by Ms. The frequency- and temperature-independent
part of ℜMs just renormalizes the holon chemical potential, shifting the FS of the holon to
that of the hole. The imaginary part provides the gauge contribution to the self-energy Γ
discussed in the text.

In the presence of the attraction generated by the AF spin vortices, the self-energy
of the hole acquires another contribution, Σv. To estimate it, we calculate perturbatively
at the leading order the effect of the phase of the holon pairs, ϕ, on the self-energy of the
hole. Up to the square of the d-wave-order parameter, this is given by the convolution
in momentum–frequency of the correlator of the fluctuations, exp iϕ, with the previously
derived hole correlator near the hole FS, where it is well defined. Due to the complication
arising from the temperature dependence of Γ we proceed heuristically as follows: we
estimate such a convolution in the Euclidean framework at 0 temperature and on the final
result we perform the substitution iω → ω + iΓ. We first remark that the presence of the
Maxwell gauge interaction due to the massive spinons suppresses the power correction
|⃗x|−1 in the Euclidean propagator of exp iϕ that would occur for a free massive field, leaving
a purely exponential decay in x with inverse correlation length mϕ (see, e.g., [49]). In the
Euclidean momentum q = (q0, q⃗) space this can be reproduced by a propagator of the form
d[4π(q2 + m2

ϕ)
−1]/dmϕ. If we denote by E(⃗q) the hole energy, the convolution that we need

to evaluate is

d
dmϕ

∫ d3q
(2π)3

4π

q2 + m2
ϕ

1

−i(q0 − ω) + E(⃗q − k⃗)
. (A3)

Since the dominant q are small we can expand E in (A3) linearly in q: let k̂ denote the
unit vector in the direction of k⃗, then

E(⃗q − k⃗) ≈ −q⃗ · k̂ + E(⃗k). (A4)
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It is now convenient to fix a coordinate system for each direction k̂ denoting by x
the direction along k̂ and by y the orthogonal one. One can then easily integrate out qy,
obtaining for the integral in (A3).

1
2

∫ dq0dqx

(2π)2
4π√

q2
0 + q2

x + m2
ϕ

1

−i(q0 − ω) + E(⃗k)− qx
. (A5)

Switching from (qx, q0) to the corresponding polar coordinates (r, θ) the above integral
becomes

2π
∫ ∞

0

dr
(2π)

∫ 2π

0

dθ

(2π)

r√
r2 + m2

ϕ

1

iω + E(⃗k)− r exp iθ
=

∫ ∞

0
drH(

√
E(⃗k)2 + ω2 − r)

r√
r2 + m2

ϕ

r
iω + E(⃗k)− r exp iθ

=

√
E(⃗k)2 + ω2 + m2

ϕ − mϕ

E(⃗k) + iω
, (A6)

where H denotes the Heaviside step function. Differentiating by mϕ, then one obtains the
self-energy Σv given in the text.
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