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Abstract: Caspase-8, a member of the caspase family, is an initiating caspase and plays a crucial
role in apoptosis. In this study, the full-length cDNA of caspase8-like (CASPS-like) was isolated from
Crassostrea hongkongensis (C. hongkongensis) by RACE-PCR. ChCASP8-like contained a 1599-bp open
reading frame (ORF) encoding 533 amino acids with two conserved death effector domains (DEDs)
and a cysteine aspartase cysteine structural domain (CASc). Amino acid sequence comparison showed
that ChCASPS8-like shared the highest identity (85.4%) with CASPS-like of C. angulata. The tissue
expression profile showed that ChCASP8-like was constitutively expressed in gills, hepatopancreas,
mantle, adductor muscle, hemocytes and gonads, and was significantly upregulated in hemocytes,
hepatopancreas and gills under hyper-salinity stress. The apoptosis-related genes, including ATR,
CHK1, BCL-XL, CASP8-like, CASP9 and CASP3, were significantly activated by hyper-salinity stress,
but were remarkably inhibited by ChCASPS8-like silencing. The caspase 8 activity was increased by
1.7-fold after hyper-salinity stress, and was inhibited by 9.4% by ChCASP8-like silencing. Moreover,
ChCASPS8-like silencing clearly alleviated the apoptosis resulting from hyper-salinity stress. These
results collectively demonstrated that ChCASPS-like played a crucial role in inducing apoptosis
against hyper-salinity stress.
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Key Contribution: In this study; a novel CASP8-like gene was characterized from C. hongkongensis.
The tissue expression profile showed that ChCASP8-like had constitutive expression in all tissues,
and was significantly upregulated in gills, hepatopancreas and hemocytes after hyper-salinity stress.
Apoptosis-related gene transcripts and caspase 8 activity were significantly increased under hyper-
salinity stress, and significantly decreased after ChCASP8-like interference. Moreover, exposure to
hyper-salinity stress caused severe apoptosis, which could be alleviated by ChCASP8-like silencing.

1. Introduction

Apoptosis, or programmed cell death, plays an important role in the homeostasis and
function of the immune system [1-3]. Apoptosis is divided into intrinsic and extrinsic
apoptosis pathways based on the nature of initiating signals [4]. The intrinsic apoptosis
pathway is activated to release cytochrome c from the mitochondria to promote cell apop-
tosis when the organism suffers from DNA damage, growth arrest, or virus infection [5].
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The extrinsic apoptosis pathway is activated through interactions between extracellular
ligands and death receptors, and initiates downstream caspase proteins [4].

Caspases (cysteine-dependent aspartyl-specific protease) are essential for the initiation
and execution of apoptosis and inflammatory response [6]. As a member of the caspase
family, caspase 8 (Casp8) has been well characterized as an initiator caspase involved in
extrinsic apoptosis in vertebrates [7]. Caspase 8 associated with Fas-associated protein
with the death domain (FADD) to form the death-inducing signaling complex (DISC) [6]
undergoes self-cleavage and activates downstream caspase proteins to trigger apoptosis.
The Caspase-8-like gene, which is the most similar to caspase 8, is considered to function as
an initiator caspase and plays crucial roles in extrinsic apoptotic pathways in some mollusk
species [4,8]. However, some researchers found that caspase-8-like worked as a caspase
suppressor to inhibit apoptosis and immune signaling in silkworm (Bombyx mori) [9]. The
contradiction in this research implies that functional differences in caspase-8-like exist in
different invertebrates.

Crassostrea hongkongensis (C. hongkongensis), a commercially valuable marine bivalve
in South China, lives in estuaries and exhibits remarkable euryhaline traits with an optimal
salinity range of 10-25 ppt [10]. However, large salinity fluctuations in estuary areas often
pose a significant threat to oysters, especially hyper-salinity stress due to drought and
high temperature. Salinity fluctuation is a crucial environmental factor that affects the
reproduction, growth, development and survival of aquatic animals. Changes in salinity
create osmotic gradients between intra- and extracellular environments of aquatic species.
If not compensated for, these changes might disrupt cell volume, impair protein function
and ultimately lead to death [11]. Therefore, shellfish living in estuaries must adjust their
physiology to maintain homeostasis in the intracellular environment of their organisms
during periods of fluctuating salinity [12,13]. However, prolonged exposure to high salinity
can decrease the immunity of bivalves, resulting in outbreaks of various diseases and mass
mortality [14,15]. Apoptosis is a crucial process in oyster cells that effectively eliminates
damaged, senescent and infected cells without triggering inflammation. The CASP8 gene
of C. hongkongensis has been identified and confirmed to activate the NF-«B and p53
signaling pathways in the immune response against bacterial challenge in a previous report.
However, there was no elaborate description on the function of the CASP8-like gene in the
apoptosis of C. hongkongensis.

In this study, a novel CASP8-like gene was cloned from C. hongkongensis and named
ChCASPS8-like. The expression profiles in different tissues were analyzed before and af-
ter hyper-salinity stress. The function of ChCASP8-like in apoptosis was identified by
RNAIi, TUNEL (Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling)
and caspase activity assays.

2. Materials and Methods
2.1. Experimental Animals

First-aged healthy C. hongkongensis (mean weight of 142.2 + 10.0 g, mean shell length
of 6.1 & 1.0 cm, mean shell width of 4.0 £ 0.5 cm, mean shell height of 9.9 &+ 1.0 cm) were
collected from an aquaculture farm in Zhanjiang, Guangdong Province, China. The oysters
were temporarily raised in 20 £ 0.5%. seawater at 25.0 £ 0.5 °C for 3 days and fed with
Isochrysis zhanjiangensis once a day.

2.2. RNA Isolation and cDNA Synthesis

Total RNA was respectively isolated from 2 g of the gonads, adductor, mantle, gills,
hepatopancreas, and hemocytes using TRIzol Reagent (Sangon Biotech, Shanghai, China)
according to the manufacturer’s protocol. The integrity of the RNA was verified through
1.0% agarose gel electrophoresis. RNA quality was checked by observing the 260/280 and
260/230 absorbance ratios using a NanoDrop 2000 Spectrophotometer (Thermo Fisher,
Waltham, MA, USA). The cDNA was synthesized using 0.1 ug of RNA as a template and
1 uL of 0.1 pg/uL random primer. The first-strand cDNA template was synthesized using
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the EasyScript® One-Step gDNA Removal and cDNA Synthesis SuperMix Kit (TransGen
Biotech, Beijing, China) according to the manufacturer’s instructions.

2.3. cDNA Cloning and Sequence Analysis

Following previous reports [16], the full-length cDNA of CASP8-like was cloned using
the RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher, Waltham, MA, USA),
the 5 RACE system for rapid amplification of cDNA ends (Thermo Fisher, Waltham,
MA, USA) and the SMART RACE cDNA amplification kit (Clontech, CA, USA). Based
on the ChCASP8-like partial sequences in the transcriptome data, specific primers were
designed using Primer Premier 5.0 (https://www.premierbiosoft.com, accessed on 8 April
2023) (Table 1). The ChCASP8-like-outer-F and UMP primers were used to amply the 3’
sequence of 667 bp, and ChCASP8-like-outer-R and UMP primers were used to amply the 5’
sequence of 606 bp. The PCR products were detected using a gel imaging system (Bio-Rad,
Hercules, CA, USA), and the target fragments were collected. Nested-PCR was applied
using ChCASPS-like-inner-F and ChCASPS-like-inner-R to enrich the specific DNA band.
The full-length cDNA sequence of ChCASP8-like was validated by conducting a test-PCR
using primers ChCASP8-like-test-F and ChCASPS8-like-test-R. The primer sequences are

shown in Table 1.

Table 1. Primers used in the study.

Primer Forward Primer/Reverse Primer (5'-3') Application Product (bp)
ChCASP8-outer-F CCAGTGGTCCTATGGCGGAAGTGATG 3'RACE 667
ChCASP8-inner-F TGACAATGGGTCTTTCTTCGTTCAATCC nest-3'RACE 543
ChCASP8-outer-R CAGCAACGGAAACAGT 5'RACE 606
ChCASP8-inner-R GTCCAGACAGTCCCACACG nest-5RACE 561
UPM TAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT RACE

NUP AAGCAGTGGTATCAACGCAGAGT RACE universal primer
ChCASP8-test-F TCGTGTGGGACTGTCTGGA cDNA test

ChCASPS-test-R TGCCTAGACCTCGCTTTCAA cDNA test 1689
ChCASP8-siRNA-F GCGTAATACGACTCACTATAGGGGATTCTGCGTCATCTTCA RNA interference
ChCASP8-siRNA-R GCGTAATACGACTCACTATAGGGACTTCCGTCATCACTTCC RNA interference 469
GFP-siRNA-F GATCACTAATACGACTCACTATAGGGATGGTGAGCAAGGGCGAGGA  RNA interference
GFP-siRNA-R GATCACTAATACGACTCACTATAGGGTTACTTGTACAGCTCGTCCA RNA interference 717
B-actin-F GTGCTACGTTGCCCTGGACTT qRT-PCR 110
B-actin-R TCGCTCGTTGCCAATGGTGAT qRT-PCR

ChCASP8-F AACTGTTTCCGTTGCTGA qRT-PCR 89
ChCASP8-R TACTCGCCGACTTCTTGT qRT-PCR

ChCASP3-F AGGCTGGCTGATTATGGG qRT-PCR 120
ChCASP3-R TCGTTTGTGACGGTTTGC qRT-PCR

ChATR-F CCTTCCCAACAGACCCAA qRT-PCR 130
ChATR-R TCGCTGCCGTTCATCGTG qRT-PCR

CASP9Y-F CGAGGTGGAAAGGAGAAC qRT-PCR 146
CASP9-R CTGGGTCAGACTGGAAAGA qRT-PCR

ChCHKI1-F CACACGAAAGGAGTTACCCACAGAG qRT-PCR 105
ChCHKI1-R TCGAAACACAGTAGCCAGTCCAAAG qRT-PCR

ChBCL-XL-F ACTCGTGGACTCTATCGTGGACTG qRT-PCR 99
ChBCL-XL-R GCAATTCTAAGCGACTCCCATCCC qRT-PCR

Using the blast program (http:/ /www.ncbi.nlm.nih.gov/, accessed on 10 June 2023),
the full-length cDNA of CASP8 was analyzed. The open reading frame (ORF) was identified
with the ORF Finder program (https://www.ncbinlm.nih.gov/orffinder/, accessed on 16
September 2023). The molecular weight and theoretical isoelectric point (pI) were analyzed
using a program online (http://web.expasy.org/cgibin/protparam/protparam, accessed
on 23 December 2023). The TMHMM procedure (https://web.expasy.org/protparam/,
accessed on 25 December 2023) was used to predict the transmembrane domain, and the
SignalP program (http://www.cbs.dtu.dk/services/SignalP/, accessed on 25 December
2023) was used to predict signal peptides. Multiple sequence alignments were created by
the ClustalX program. The phylogenetic tree was constructed through the neighbor-joining
method using MEGA?7.0 software.
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2.4. Salt Stress Experiment and Sampling

Healthy oysters were randomly divided into two groups and cultured in two tanks
with hyper-salinity seawater (40%0) and natural seawater (20%o), respectively. In total,
25 experimental individuals were placed in each tank. The water used for aquaculture
was created by mixing seawater with sea crystals to produce 40%o seawater (Yantong,
Jiangxi, China) [17-19]. After 0 and 48 h of salt stress, the adductor muscle, mantle, gills,
hepatopancreas and gonads of 5 individuals were collected for subsequent gene expression
analysis. The hemolymph was withdrawn from the pericardial cavity of experimental
oysters using a 1 mL sterile syringe. Each hemolymph sample was a mixture of three
individuals, and 5 parallel samples were collected at each time point. The hemolymph was
centrifuged at 3000 rpm at 4.0 °C for 5 min to separate the hemolymph supernatant and
hemocytes. The hemocytes were suspended in Trizol reagent (TransGen Biotech, Beijing,
China) for RNA extraction.

2.5. RNA Interference (RNAi) Experiment

RNAIi was performed to test the function of ChCASPS-like. The specific small in-
terfering RNA (ChCASP8-like-siRNA) was synthesized by ChCASPS-like-siRNA-F and
ChCASPS8-like-siRNA-R (Table 1). The green fluorescent protein (GFP) was cloned from the
pEGFP-N3 plasmid, and GFP-siRNA was generated by GFP-siRNA-F and GFP-siRNA-R
primers as a negative control (NC). The siRNA was synthesized with the T7 High Effi-
ciency Transcription Kit (TransGen, Beijing, China) and purified with the EasyPure RNA
Purification Kit (TransGen, Beijing, China).

In the RNAi experiment, each oyster was intramuscularly injected with 50.0 uL of
1.0 pg/uL siRNA and reinjected with the same dose on the fourth day to enhance the
silencing effect. After the injection, the oysters were subjected to salt stress for 48 h.
The hemocytes from 3 individuals were mixed as a sample, and 5 parallel samples were
collected for TUNEL assay. The gills, hepatopancreas, mantle, adductor muscle and gonads
were collected from each experimental individual for gene expression analysis and caspase
activity analysis. Five parallel samples were collected.

2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis

The qRT-PCR was performed using the LightCycler 96 instrument (Roche, Basel,
Switzerland) following the manufacturer’s protocol for PerfecterStart Green gPCR Super-
Mix (TransGen Biotech, Beijing, China). The reaction was run in a 10 pL volume containing
20 ng of cDNA, 0.3 uM of each primer and 5 uL of Green qPCR SuperMix. The optimal
PCR conditions were established as follows: 95 °C for 2 min followed by 35 cycles of 95 °C
for 55, 60 °C for 20 s and 72 °C for 20 s. Each sample was run in triplicate, along with
the internal control gene (3-actin. The specific primers are listed in Table 1. The relative
expression level of each target gene was calculated by the 2~#4Ct method [20].

2.7. Caspase 8 and Caspase 3 Activity Analysis in Gills of C. hongkongensis

The caspase 8 and 3 activities of C. hongkongensis were determined using the Caspase
8 and Caspase 3 Assay Kit (Nanjing Jiancheng, Jiangsu, China) according to the manufac-
turer’s instructions. Briefly, 50 mg of gills was incubated with 50 uL of pre-cooled lysate
and homogenized on ice for 15 min. Then, the mixture was centrifuged at 12,000 rpm for
10 min at 4 °C to separate the supernatant. A small amount of supernatant was used to de-
termine the protein concentration by the Bradford method. For caspase 3 activity analysis,
50 uL of supernatant containing 200 pg of protein was mixed with 5 uL. of Ac-DEVD-pNA
(acetyl-Asp-Glu-Val-Asp p-nitroaniline) substrate and 50 pL of 2 x buffer in the dark at
37 °C for 4 h. For caspase 8 activity analysis, 50 puL of supernatant containing 200 ug
of protein was mixed with 5 pL. of Ac-IETD-pNA (acetyl-Ile-Glu-Thr-Asp p-nitroaniline)
substrate and 50 uL of 2 buffer. The concentrations of pNA released from the substrate by
caspase 8 and caspase 3 were calculated according to the absorbance values at 405 nm [21].
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The activities of caspase 8 and caspase 3 were assessed by measuring the OD405 values of
the treated tissues in comparison to the control tissues.

2.8. TUNEL Assay

TUNEL assay was designed to detect apoptotic cells that undergo extensive DNA degra-
dation in early and late stages of apoptosis [22]. The TUNEL assay was performed according to
the manufacturer’s instruction of the TUNEL Apoptosis Detection Kit (Alexa Fluor 488). The
hemocytes of experimental oysters were collected by centrifugation at 2000 rpm for 5 min. The
hemocytes were resuspended in PBS (2 x 10”7 /mL) and gently spread on polylysine-coated
slides. Then, the hemocytes on the slide were fixed with 4% paraformaldehyde for 25 min at
4 °C and washed with PBS twice. The slide was incubated with 100 uL of 20 pug/mL protease
K solution for 5 min at room temperature and washed with PBS three times. Samples were
incubated in 5x Equilibration Buffer (Yesen, Shanghai, China) for 20 min and stained with
2 pg/mL of DAPI in the dark for 5 min. The hemocytes were examined under a fluorescence
microscope (Thermo Fisher Scientific, Waltham, MA, USA).

2.9. Statistical Analysis

Data were subjected to statistical analyses using SPSS 22.0 software (IBM, Armonk,
NY, USA). A one-way analysis of variance (ANOVA) was performed to determine the
significant difference in different samples by SPSS (24.0 version, IBM, USA). The significant
differences among samples (N = 5) were presented as * p < 0.05, and highly significant
differences were shown as ** p < 0.01.

3. Results
3.1. Cloning and Sequence Analysis of Caspase8-like from C. hongkongensis

The full-length cDNA sequence of the CASPS-like gene was cloned from C. hongkon-
gensis by RACE-PCR (GenBank accession number: OR066208) and named Chcaspase8-like
(ChCASP8-like). As shown in Figure 1A, the full cDNA sequence of ChCASP8-like was
2015 bp in length, containing a 1599-bp open reading frame (ORF), an 84-bp 5 untranslated
region (UTR) and a 332-bp 3’ UTR with a polyadenylation signal sequence (aataaa) located
upstream of the poly (A) tail. The ORF encoded 533 amino acids. The bioinformatics
analysis of cDNA sequences did not reveal signal peptides or transmembrane domains.
The predicted polypeptide sequence contained a conserved cysteine aspartase cysteine
structural domain (CASc) in the C-terminal and two death effector domains (DEDs) in the
N-terminal (Figures 1B and 2A). The deduced molecular mass of ChCASP8-like protein was
59.17 kDa with a theoretical isoelectric point (pI) of 5.37.

3.2. Multiple Sequence Alignment and Phylogenetic Analysis

The amino acid sequence of ChCASP8-like was compared among different species. The
ChCASPS8-like shared the highest identity (85.4%) with CASP8-like of Crassostrea angulata
(C. angulate), 56.7% with CASP8-like of Crassostrea virginica (C. virginica) and 49.2% with
CASPS8-like of Ostrea edulis (O. edulis). However, the ChCASP8-like shared low identity with
the CASP8 gene of C. hongkongensis, which was only 30.0%. Lower identity was reported
among CASPS8 of C. hongkongensis and vertebrates, ranging from 23.1% to 27.7% (Figure 2A).

The phylogenetic trees were constructed using MEGAY to indicate the evolutionary
relationship of caspase 8§ from different species (Figure 2B). The results showed that all
caspase 8-like genes from the referred mollusks were clustered into one branch, including
C. hongkongnsis, C. angulata, C. virginica and O. edulis. All caspase 8 genes from referred
species were grouped into a big cluster, in which caspase 8 from vertebrates were classified
to a close cluster, including Danio rerio, Mauremys reevesii, Gallus gallus and Homo sapiens.
The caspase 8-like and caspase 8 gene of C. hongkongnsis exhibited farther distance.
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Figure 1. (A) Nucleotide and deduced amino acid sequences of ChCASP8-like. 5’UTR and 3'UTR
sequences are shown in lowercase letters, and ORF sequences are shown in uppercase letters. The
start codon (ATG) and the stop codon (TAA) are marked with boxes. The conserved CASc domain is
underlined, and DEDs are shown with a wavy line. The putative polyadenylation signal (aataaa) is
marked in bold. “*” represents the termination codon. (B) The conserved DEDs and CASc domain
of ChCASP8-like were predicted byConserved Domain Database (CDD).
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Figure 2. Amino acid sequence comparison and phylogenetic analysis. (A) Multiple sequence com-

parison of caspase 8-like and caspase 8 genes from different species, including Crassostrea hongkongn-
sis (CASP8-like, OR066208), Crassostrea hongkongnsis (CASP8, AHB50667.1), Crassostrea angulata
(CASP8-like, XP_052712040.1), Crassostrea virginica (CASP8-like, XP_022294614.1), Danio rerio (casp8,
NP_571585.2), Gallus gallus (Casp8, NP_989923.3), Homo sapiens (CASP8, AAD24962.1), Mauremys
reevesii (CASPS8, XP_039350847.1), Ostrea edulis (CASP8-like, XP_048769780.1), Xenopus laevis (CASPS,
NP_001079034.1) and Bactrocera dorsalis (CASP8, JAC47606.1). Identical residues were shown in black,
highly conserved residues in red, and conserved residues in blue. The CASc and DED structural

domains are shown in black and red boxes, respectively. (B) Phylogenetic tree analysis. The number

on the node indicates the bootstrap value determined by bootstrap analysis for 1000 repetitions.

e represents the caspase 8-like gene of C. hongkongnsis in this research.
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3.3. ChCASP8-like Expression Profile in Different Tissues

The relative expression levels of ChCASPS-like in different tissues were detected by
qRT-PCR before and after salt stress. As shown in Figure 3, ChCASP8-like was constitutively
expressed in all analyzed tissues, including gills, hepatopancreas, mantle, adductor muscle,
hemocytes and gonads. Before salt stress, ChtCASP8-like had the highest expression level in
the adductor muscle, a higher level in the gills and mantle, and lower level in the hepatopan-
creas, gonads and hemocytes. ChCASP8-like transcripts were significantly up-regulated in
immune tissues such as gills, hepatopancreas and hemocytes after 48 h of hyper-salinity stress,
including a 3.2-fold increase in the gills (p < 0.01), a 3.0-fold increase in the hepatopancreas
(p <0.01) and a 3.0-fold increase in hemocytes (p < 0.01), but it was significantly downregu-
lated by 1.7-fold in the adductor muscle (p < 0.05). These data indicated that ChCASP8-like
was involved in the immune response against hyper-salinity stress.

1 Before salt stress

s N After salt stress

10

Relative expression of ChCASPS

Figure 3. The relative expression of ChCASPS-like in different tissues before and after hyper-salinity
stress. Different lowercase letters (abc) indicate significant differences among tissues before hyper-
salinity stress (p < 0.05). Different capital letters (ABC) indicate significant differences among tissues
after hyper-salinity stress (p < 0.05). Expression differences in the same tissue before and after
hyper-salinity stress are indicated using * (p < 0.05) or ** (p < 0.01) (N = 5).

3.4. The Transcriptions of Apoptosis-Related Genes Were Stimulated by Hyper-Salinity Stress, but
Were Inhibited by ChCASPS-like Silence

To analyze the function of ChCASP8-like in the analyzed tissues following hyper-salinity
stress, ATR, the master regulator of the DNA replication stress response [23-25], was signif-
icantly increased by 5.9-fold (p < 0.01). CHK1, an important kinase involved in the S phase
DNA damage checkpoint, was remarkably upregulated by 9.9-fold (p < 0.01). The CASP8-like,
an initiator caspase [26], was significantly upregulated by 5.4-fold (p < 0.01). CASP9, an effi-
cient executor of apoptosis [27], was significantly increased by 8.0-fold (p < 0.01). CASP3 and
BCL-XL transcripts showed no significant difference (p > 0.05). These results indicated that
hyper-salinity stress induced the expression of most apoptosis-related genes.

However, under ChCASPS-like silence and hyper-salinity stress, the transcripts of
ATR, CHK1, BCL-XL, CASP8-like, CASP9 and CASP3 were significantly inhibited compared
to the hyper-salinity stress groups, and recovered close to the control level (NC group)
(Figure 4). These data indicated that the stimulatory effects of hyper-salinity stress on
apoptosis-related genes were blocked by ChCASP8-like silencing.
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Figure 4. Transcriptional levels of ATR, CASP8-like, BCL-XL, CASP9 and CASP3 in C. hongkongnsis
after ChCASP8-like interference and hyper-salinity stress in gill tissue. NC means the negative control
group. 3-actin was used as an internal reference. Data are presented as mean =+ standard deviation
(N =5). *means p < 0.05 and ** means p < 0.01.

3.5. The Caspase 8 Activity Was Increased by Hyper-Salinity Stress, but Was Inhibited by
ChCASPS8-like Silence

Caspase 8 activity is an important indicator of the apoptosis degree. The caspase
8 activity was examined after hyper-salinity stress and ChCASP8-like silencing in gills.
As shown in Figure 5A, compared with the control group, the caspase 8 activity was
significantly increased by 1.7-fold (p < 0.01) after hyper-salinity stress. With ChCASP8-like
knockdown and hyper-salinity stress, the caspase 8 activity was inhibited by 9.4% (p < 0.05)
compared to the hyper-salinity stress group. The data showed that caspase 8 activity was
significantly activated by hyper-salinity stress, but was slightly reduced by ChCASP8-like
silencing, consistent with apoptotic gene expression analysis.

Caspase 3 was a key executor of apoptosis and played a crucial role in the final step of
apoptosis. Therefore, the caspase 3 activity was analyzed here. The caspase 3 activity assay
showed no significant difference after hyper-salinity stress and ChCASP8-like silencing
(Figure 5B).

3.6. ChCASP8-like Silencing Alleviated the Apoptosis Resulted from Hyper-Salinity Stress

To further explore the effect of ChCASP8-like apoptosis resulted from hyper-salinity
stress, the TUNEL assay was performed to detect the DNA damage of hemocytes in
the ChCASP8-like-siRNA and GFP-siRNA groups. As shown in Figure 6, without the
hyper-salinity stress, almost no damaged cells were found in the NC group. After hyper-
salinity stress, approximately 87.5% of the hemocytes showed DNA breaks in the positive
cells. After silencing ChCASP8-like, fewer DNA breaks were observed in hemocytes in
approximately 36.4% of the positive cells. The data indicated that exposure to hyper-salinity
stress caused severe apoptosis, which could be alleviated by ChCASP8-like silence. The
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ChCASPS8-like played a crucial role in activating apoptosis against hyper-salinity stress
in oysters.
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Figure 5. Caspase 8 and caspase 3 activity were analyzed after hyper-salinity stress and ChCASPS-
like silencing in gills. (A) Caspase 8 analysis. (B) Caspase 3 analysis. Data are presented as
mean =+ standard deviation (N = 5). * means p < 0. 05 and ** means p < 0.01.

DAPI TUNEL

Merge
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Figure 6. Fluorescence micrographs of apoptotic hemocytes with and without ChCASP8-like silencing
under hyper-salinity stress. Green fluorescence indicated TUNEL-positive apoptotic nuclei and blue
fluorescence indicated total nuclei.
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4. Discussion

Oysters, a keystone bivalve living in estuarine and intertidal zones, are subject to
frequent environmental disturbances, such as rapid salinity fluctuations [10,28]. C. hongkon-
gensis, the major aquaculture species in South China, is prone to hypersalinity-related mass
mortality. It is essential to investigate the strategy of C. hongkongensis against the threat of
fluctuating salinity. Apoptosis is an important survival pathway of organism response to
salinity stress by orderly caspase events.

The caspase-8-like gene has been characterized in several mollusk species, including
Haliotis discus [29], Mytilus galloprovincialis [30], C. hongkongensis and Crassostrea gigas [4]. In
vertebrates, caspase 8§ had two DED motifs, which were responsible for the self-activation
of the inactive proenzyme [31]. In mammals, DEDs formed intracellular filaments and
transmitted the external death signals to downstream effectors by cleaving caspase-8 [32].
This was critical for caspase 8 activation and the subsequent induction of apoptosis.

Amino acid sequence alignment showed that CASP8-like of C. hongkongensis had the
highest identity (86.5%) with CASP8-like of Crassostrea angulate. The phylogenetic tree
analysis also showed that the ChCASP8-like genes of Crassostrea angulate, Crassostrea virginica
and Ostrea edulis were grouped into an evolutionary branch. Therefore, the novel caspase
gene of C. hongkongensis was named as ChASP8-like. However, it is worth mentioning
that the amino acid sequence of ChCASP§-like shared low identity (30.0%) with CASPS of
C. hongkongensis (AHB50667.1) [8]. We hypothesized that ChCASPS§-like and CASP8 were
different isoforms. Caspase-8 was found to be effective in activating the NF-kB pathway and
p53/p21 pathway in oysters after bacterial infection [8]. In our study, we found that salt
stress activated DNA damage repair-related genes (e.g., ATR and CHK1), apoptosis-related
genes (e.g., caspase 9 and caspase 3) and BCL-XL in the p53 signaling pathway. This implied
that salinity stress and bacterial challenge might stimulate different immune pathways,
which were mediated by CASP8-like and CASPS genes in C. hongkongensis, respectively

The expression profile showed that ChCASPS-like had constitutive expression in several
tissues, with high expression levels in the gonads, gill, hepatopancreas and mantle. The ex-
pression levels were significantly upregulated in all immune tissue by hyper-salinity stress,
especially in gills, hepatopancreas and hemocytes. Similarly, caspase 8 from C. virginica was
widely expressed in various tissues and developmental stages [4]. High levels of CASP8
transcripts were also found in gills, hemocytes and digestive glands of mussels in response
to high-temperature stress in Mytilus coruscus and Mytilus galloprovincialis [30], These data
further indicated the hyper-salinity stress stimulated the immune response by activating of
ChCASP8-like in C. hongkongensis.

Caspase 8, situated at the apex of the apoptotic cascade, is crucial for activating down-
stream executioner caspases by cleaving them and leading to cell death [33,34]. Therefore,
the caspase 8 activity was examined after ChCASP8-like silencing and hyper-salinity stress
in this study. The increased caspase 8 activity after hyper-salinity stress suggested that
apoptosis had been activated. Apoptosis was mainly divided into two pathways, the
intrinsic pathway and extrinsic pathway. The promoter that regulated the intrinsic pathway
of apoptosis was caspase 9, which could bind to the adapter protein apoptosis protease acti-
vator 1 (APAF1) upon exposure of the caspase recruitment domain (CARD domain). When
apoptosis was induced by positive or negative stimuli, the mitochondrial membrane was
altered, allowing apoptotic proteins (such as cytochrome c, Smac/Diablo, and HtrA2/Omi)
to move from the mitochondria and activate apoptosis [35]. The extrinsic pathway was
mediated by the extracellular death ligands of the TNF family (TNF«, tumor necrosis factor
o; FasL, the ligand for Fas and the TNF-associated apoptosis-inducing ligands) and was
triggered by the recruitment of FADD and caspase 8 to the death receptor [36,37]. Caspase
8 was activated and cleaved its substrates caspase 3 and caspase 7, ultimately leading to
apoptosis. In our study, the decreased caspase 8 activity after RNA interference confirmed
the key role of ChCASPS8 in apoptosis. Caspase 3 was the key executor of apoptosis and
was required to cleave the substrate of the apoptotic pathway during the final step [38].
However, there was no significant difference in caspase 3 activity in this research. The
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functions of caspase 3 and caspase 7 were reported to overlap in the regulation of apoptosis.
A plausible explanation was that the increase in caspase 8 activity may also activate caspase
7 activity, not only caspase 3. This hypothesis needs to be further investigated.

Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay
is designed to detect apoptotic cells that undergo extensive DNA degradation in early
and late stages of apoptosis [22]. The TUNEL assay is based on the ability of TdT to
label blunt ends of double-stranded DNA breaks independent of a template, and has
been widely used as a measure of apoptotic cell death [39]. In this study, the number of
TUNEL-positive hemocytes were significantly increased after hyper-salinity stress, while
significantly decreased after silencing caspase8-like. These data confirmed that the hemocytes
suffered severe DNA damage from salt stress, and caspase 8 played an important role in
inducing apoptosis.

5. Conclusions

In conclusion, a novel CASPS8-like gene was characterized from C. hongkongensis. The
tissue expression profile showed that ChCASP8-like had constitutive expression in all tissues,
and was significantly upregulated in hemocytes, hepatopancreas and gills by hyper-salinity
stress. Apoptosis-related gene transcripts and caspase 8 activity were significantly increased
after hyper-salinity stress, and significantly decreased after ChCASPS-like interference.
Moreover, exposure to hyper-salinity stress caused severe apoptosis, which could be
alleviated by ChCASP8-like silence. The results indicated that ChCASPS-like played a crucial
role in activating apoptosis against hyper-salinity stress in oysters.
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