
Citation: Leiva, D.; Ramos-Tapia, B.;

Crawford, B.; Soto, R.;

Cisternas-Caneo, F. A Novel

Approach to Combinatorial Problems:

Binary Growth Optimizer Algorithm.

Biomimetics 2024, 9, 283. https://

doi.org/10.3390/biomimetics9050283

Academic Editor: Ameer

Hamza Khan

Received: 11 April 2024

Revised: 30 April 2024

Accepted: 2 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomimetics

Article

A Novel Approach to Combinatorial Problems: Binary Growth
Optimizer Algorithm
Dante Leiva, Benjamín Ramos-Tapia , Broderick Crawford * , Ricardo Soto and Felipe Cisternas-Caneo

Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241,
Valparaíso 2362807, Chile; leivadante14@gmail.com (D.L.); benjamin.alejandro.ramos.tapia@gmail.com (B.R.-T.);
ricardo.soto@pucv.cl (R.S.); felipe.cisternas.c@mail.pucv.cl (F.C.-C.)
* Correspondence: broderick.crawford@pucv.cl

Abstract: The set-covering problem aims to find the smallest possible set of subsets that cover all the
elements of a larger set. The difficulty of solving the set-covering problem increases as the number of
elements and sets grows, making it a complex problem for which traditional integer programming
solutions may become inefficient in real-life instances. Given this complexity, various metaheuristics
have been successfully applied to solve the set-covering problem and related issues. This study
introduces, implements, and analyzes a novel metaheuristic inspired by the well-established Growth
Optimizer algorithm. Drawing insights from human behavioral patterns, this approach has shown
promise in optimizing complex problems in continuous domains, where experimental results demon-
strate the effectiveness and competitiveness of the metaheuristic compared to other strategies. The
Growth Optimizer algorithm is modified and adapted to the realm of binary optimization for solving
the set-covering problem, resulting in the creation of the Binary Growth Optimizer algorithm. Upon
the implementation and analysis of its outcomes, the findings illustrate its capability to achieve
competitive and efficient solutions in terms of resolution time and result quality.

Keywords: set-covering problem; metaheuristics; optimization; combinatorial problems

1. Introduction

There are a series of real-world problems that exhibit high complexity [1–5]. These
are characterized by the presence of multiple local optima and a global optimum that,
due to the high number of variables and current computing capabilities, would take
unimaginable amounts of time to solve the mathematical functions that model these
problems. Therefore, techniques have been studied and developed to efficiently obtain
optimal solutions, with metaheuristic algorithms being among the most popular. These
algorithms stand out mainly because of their flexibility, their ease of implementation,
and the lack of a need for gradients when solving a problem.

The set-covering problem is an optimization challenge in the fields of computer theory
and operations research. In this problem, the goal is to find the most efficient way to cover
a set of elements using a smaller set of subsets, where each subset has an associated cost.
The objective is to minimize the total cost by selecting an appropriate set of subsets so that
all elements are covered at least once. The set-covering problem has applications in various
fields, such as route planning, resource allocation, and general decision-making. Solving
this problem involves striking a balance between the number of selected subsets and the
total cost required to achieve complete coverage [6].

One of the most relevant characteristics that a metaheuristic should have is the ability
to possess operators that allow both exploration and exploitation of the search space.
Exploitation refers to the algorithm’s ability to perform a local search, while exploration
refers to its ability to perform global searches, thus enabling the heuristic to find optima
throughout the entire search space.

The main aims of our work are the following:

Biomimetics 2024, 9, 283. https://doi.org/10.3390/biomimetics9050283 https://www.mdpi.com/journal/biomimetics

https://doi.org/10.3390/biomimetics9050283
https://doi.org/10.3390/biomimetics9050283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com
https://orcid.org/0009-0009-9228-1818
https://orcid.org/0000-0001-5500-0188
https://orcid.org/0000-0002-5755-6929
https://orcid.org/0000-0001-7723-7012
https://doi.org/10.3390/biomimetics9050283
https://www.mdpi.com/journal/biomimetics
https://www.mdpi.com/article/10.3390/biomimetics9050283?type=check_update&version=1

Biomimetics 2024, 9, 283 2 of 33

• Implement a binary version for Growth Optimizer.
• Solve the set-covering problem with our proposal.
• Carry out a deep analysis of the behavior of our proposal. We will analyze the

convergence, execution times, best results obtained, distribution of fitness in the
independent runs executed, and balance of exploration and exploitation.

The present work is organized as follows. Section 2 defines the combinatorial optimiza-
tion problems. Section 3 describes the concept of metaheuristics. Section 4 describes the
theoretical background and the set-covering problem along with its mathematical model.
Section 5 defines the Growth Optimizer algorithm and the mathematical model, and the
used operators are presented. Section 6 presents our proposal: a Binary Growth Optimizer
for solving the SCP. In Section 7, an analysis and a discussion of the obtained results are
carried out. Finally, Section 8 provides the conclusions and future work.

2. Combinatorial Optimization Problems

Optimization problems are a type of problem in mathematics and computer science
that involve finding the best solution from a set of possible solutions, according to certain
criteria or constraints. In these problems, the objective is to maximize or minimize an
objective function, which usually represents a measure of quality or efficiency [7].

One of the major challenges in combinatorial optimization is the current computing
capacity, which often cannot deliver optimal solutions efficiently. Among the most famous
problems is the Traveling Salesman Problem [5], where individuals must decide the shortest
route to visit n cities to optimize their fuel costs. The number of possibilities to calculate to solve
this problem is equal to “n” factorial, meaning that the number of possible solutions grows
factorially with the number of cities. Using the most powerful computer available today to
solve a problem like this for 20 cities would require approximately 15,000 years to provide the
optimal solution. In 1954, techniques such as linear programming, heuristics, and branch and
bound were first used to solve instances of the Traveling Salesman Problem. These techniques
have been the most successful methods for solving these types of problems to this day.

In order to classify combinatorial optimization problems by complexity, various re-
search efforts have led to four basic categorizations: P-type, NP-type, NP-complete, and NP-
hard. P-type problems are those that can be solved in polynomial time “n” by deterministic
algorithms, where “n” is the problem size. NP-type problems can be solved in polynomial
time of the same degree as the problem size “n” by nondeterministic algorithms. NP-
complete problems are at least as difficult as NP problems but are considered the most
challenging within this classification. They can be solved in polynomial time through a
polynomial reduction. Lastly, NP-hard problems are at least as difficult as NP problems,
but no algorithm is known that can solve them in polynomial time. It is important to note
that all NP-complete problems are within the NP-hard classification, but not all NP-hard
problems fall under the NP-complete category [8].

2.1. Continuous Optimization Problems

Continuous optimization problems are those in which the goal is to minimize an
objective function within a search space defined by continuous boundaries or constraints.
In these problems, solutions are continuous values, and the objective function can be
computationally expensive to evaluate. There is no requirement for discrete data structures,
and the search space is continuous [9].

2.2. Discrete Optimization Problems

Discrete optimization problems are characterized by having solutions represented as
discrete data structures rather than continuous values. These data structures can include
ordinal, categorical, or binary variables, permutations, strings, trees, or other discrete repre-
sentations. In discrete optimization problems, the continuous boundaries or constraints are
often not necessary. These problems involve finding the best combination or configuration
of elements within a discrete set of options [9].

Biomimetics 2024, 9, 283 3 of 33

3. Metaheuristics

Metaheuristics, also known as stochastic search algorithms, are characterized by an
iterative search that uses stochastic procedures to generate the next iterations. The next
iteration may contain a candidate solution to be the best local optimum.

These algorithms are considered robust and easy to implement because they do not
rely on structural information from an objective function, such as gradient information
or convexity. This feature has contributed to their popularity in the field of combinatorial
optimization. However, many of these algorithms require specifying various configuration
parameters, such as population sizes, variation operators, or distribution functions, making
it necessary to fine-tune them to solve different problems.

The most basic metaheuristics are instance-based. These algorithms maintain a sin-
gle solution or a population of candidate solutions. The construction of new candidate
solutions depends explicitly on the solutions generated previously. Prominent examples of
representatives in this category include simulated annealing [10], evolutionary algorithms
(EAs) [11], and tabu search [12]. To delve deeper into metaheuristics, the book by El-Ghazali
Talbi is recommended [13].

4. The Set-Covering Problem (SCP)

The SCP is a classical optimization problem defined by a binary matrix, denoted as A.
In this matrix, each cell is represented as a binary value, where aij ∈ [0, 1] , and i and j are
the size of m-rows and n-columns, respectively:

a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn


Let i ∈ 1, 2, . . . , m and j ∈ 1, 2, . . . , n represent the sets of rows and columns, respec-

tively. The primary objective of the problem is to minimize the cost associated with the
subset S ⊆ J, subject to the constraint that all rows i ∈ I must be covered by at least one
column j ∈ J. It is important to note that the inclusion of column j in the subset of solution
S is represented as 1, and 0 otherwise. The problem at hand can be formally defined as the
set-covering problem (SCP), which seeks to

Minimize Z = ∑
j∈J

cj · xj (1)

Subject to Equations (2) and (3),

∑
j∈J

aij · xj ≥ 1 ∀i ∈ I (each row must be covered) (2)

xj ∈ {0, 1} ∀j ∈ J (binary variables) (3)

4.1. Applications

The SCP has a variety of real-world applications, making it highly relevant in the opti-
mization field. These real-world problems often pose a significant computational burden
on teams, necessitating the development of techniques to obtain feasible solutions within a
reasonable timeframe. Examples of these real-world applications include the following.

4.1.1. Organization of the Serbian Postal Network

Efficiently organizing a postal network that ensures global service coverage is a chal-
lenging task. It involves the strategic placement of physical stations or access points
where local residents can send parcels or deposit items. This problem is subject to ad-
ditional constraints related to population density, access point placement costs, and city

Biomimetics 2024, 9, 283 4 of 33

size. The primary objective is to minimize the number of permanent postal units within
the postal network. This optimization process reduces the operational costs for the postal
operator and minimizes the total number of employees involved in the service [14].

4.1.2. Sibling Relationship Reconstruction

In the field of genetics, there is a challenge in modeling and reconstructing sibling
relationships among individuals of a single generation when parental genetic informa-
tion is unavailable. This problem holds significant importance, as knowledge of familial
relationships is crucial in biological applications, such as studies of mating systems, the
population management of endangered species, or the estimation of hereditary traits [15].

4.1.3. Periodic Vehicle Routing Problem

In this context, the problem involves determining the minimum-cost routes for each
day within a given planning horizon. These routes come with constraints that require
each customer to be visited a specified number of times (chosen from a set of valid day
combinations) and ensure that the required quantity of products is delivered during each
visit. Another critical constraint is that the number of daily routes (each respecting the
vehicle’s capacity) should not exceed the total number of available vehicles [16].

4.2. Solving Set-Covering Problem Review

The set-covering problem seeks a subset of decision variables that satisfy a minimum
cost, and Crawford et al. proposed an improved binary monkey search algorithm (MSA)
to handle the SCP [6]. The algorithm employs a novel climbing process to enhance ex-
ploration capability and a new cooperative evolution to reduce the number of infeasible
solutions. Jaszkiewicz compared the computational efficiency of three state-of-the-art
multi-objective metaheuristic algorithms in the SCP [17], and computational effort was
compared in achieving the same solution quality by calculating average of scalarizing
functions in representative samples. Kılıç and Yüzgeç proposed an antlion optimization
(ALO) algorithm for the quadratic assignment problem based on contest selection [18].
In the random walking process of ALO, a tournament selection strategy is introduced to
replace the roulette method, and several equations in ALO are modified.

The minimum labeling spanning tree (MLST) is an NP-hard problem commonly applied
in communication networks and data compression. To address this problem, Lin et al. intro-
duced a binary FA that repairs infeasible solutions and eliminates redundant tags [19], and
the algorithm is more suitable for discrete optimization. Vehicular ad hoc networks (VANETs)
require robust paths connecting all nodes to achieve reliable and efficient information trans-
mission, but classic graph theory only yields a minimum spanning tree (MST). Zhang and
Zhang proposed a binary-coded ABC algorithm to solve the construction of spanning trees
and applied the algorithm to roadside-vehicle communication [20]. Da et al. proposed an
improved maximum vertex cover algorithm to meet the strict time complexity constraint of
mixed-integer linear programs (MILP), and multi-start local search handles it by combining
the proposed algorithm with local search [21], more state-of-the-art is shown in the Table 1.

Table 1. Examples of metaheuristics used for set-covering problem resolutions and their application.

Ref. Optimization Algorithm Application Convergence Complexity

[22] GA Parameter calibration Low Low
[23] Binary PSO Input variable selection in ELM Medium High
[24] Binary PSO Parameter optimization in ELM Medium High
[25] GA Variable selection in hot metal desulfurization kinetics Low Low
[26] Binary GWO ESN Low High
[27] Binary CSO Parameter optimization in MRE isolator Low High
[28] CSO and salp swarm algorithm CNN Medium High
[29] Binary CSA CNN Low High
[30] DE and binary DE NN Medium High

Biomimetics 2024, 9, 283 5 of 33

Table 1. Cont.

Ref. Optimization Algorithm Application Convergence Complexity

[31] Binary PSO and BBO Set ret reduction Fast High
[32] Binary PSO Parameter optimization in Electric Vehicles Medium Low

5. The Growth Optimizer Algorithm
5.1. Inspiration

Growth Optimization (GO) is a metaheuristic inspired by human behavior and how
individuals develop in their surroundings [33]. In this metaheuristic, each potential solution
is associated with an individual within a population. These individuals are ranked based on
their Growth Resistance GR, which corresponds to the value of the objective function when
evaluating the solution. This ranking divides the population into three groups based on a
parameter P1: the upper level (positions 1 to P1, with the first being the leader), the middle
level (positions P1 + 1 to N − P1), and the lower rank (positions N − P1 to N).

5.2. Mathematical Modeling

The GO algorithm consists of two main phases for generating solutions: the learning
phase and the reflection phase, as shown in Algorithm 1.

Algorithm 1 The pseudocode of the GO algorithm

Input: N(populationsize), D(populationdimension), ub, lb, P1 = 5, P2 = 0.001, P3 = 0.3,
FEs = 0
Output: Global optimal solution:

−−−→
gbestx

1. Initialize the population using −→x = lb + (ub − lb) · rand(N, D) and evaluate
(i = 1, . . . , N)
while FEs ≤ MaxFEs do

[∼, ind] = sort(GR)
−−→
xbest = −→x (ind(1), :)
%Learning phase:
for i = 1 to N do

−−−→xbetter =
−→x (ind(randi([2, 1 + P1], 1)), :)

−−−→xworse =
−→x (ind(randi([N − P1, N], 1)), :)

Find two random individuals that are different from −→x i:
−→xL1 and −→xL2

Compute Gapk, k = 1, 2, 3, 4 by Equation (4)
Compute LFk, k = 1, 2, 3, 4 according to Equation (5)
Compute SFi according to Equation (6)
Compute

−→
KAk, k = 1, 2, 3, 4 according to Equation (8)

Complete the learning process for the i-th individual once according to
Equation (7)

Complete the update of the i-th individual according to Equation (9)
Real-time update

−−−→
gbestx

FEs = FEs + 1
end for
%Reflection phase:
for i = 1 to N do

Complete the reflection process for the i-th individual once according to
Equations (10) and (11)

Complete the update of the i-th individual according to Equation (9)
Real-time update

−−−→
gbestx

FEs = FEs + 1
end for

end while
Output:

−−−→
gbestx

Biomimetics 2024, 9, 283 6 of 33

5.2.1. Learning Phase

In this phase, the algorithm generates movements by using the differences between
individuals to reflect how much an individual should learn based on their knowledge gap
compared to others, described in Equation (4)

G⃗ap1 = x⃗best − x⃗better

G⃗ap2 = x⃗best − x⃗worse

G⃗ap3 = x⃗better − x⃗worse

G⃗ap4 = x⃗L1 − x⃗L2

(4)

where x⃗best represents the best solution, while x⃗better represents one of the next P1 − 1 best
individuals. x⃗worse is one of the P1 lowest ranked individuals in the population. Both x⃗L1
and x⃗L2 are random individuals different from the ith individual.

Metrics like learning factor LFk in Equation (5) and SFi in Equation (6) are used
to control how much an individual should learn based on the knowledge gap and their
resistance to change. LFk measures the influence of gap k on individual i, while SFi evaluates
an individual’s resistance to change compared to the rest of the population.

LFk =
∥G⃗apk∥

∑4
k=1 ∥G⃗apk}

, (k = 1, 2, 3, 4) (5)

SFi =
GRi

GRmax
(6)

To represent the acquired knowledge and generate a new candidate solution in
Equation (7), the knowledge acquisition KA formula is used, allowing each individual
i to absorb knowledge from various gaps using Equation (8)

x⃗It+1
i = x⃗It

i + K⃗A1 + K⃗A2 + K⃗A3 + K⃗A4 (7)

K⃗Ak = SFi · LFk · G⃗apk, (k = 1, 2, 3, 4) (8)

where It is the number of current iterations, and x⃗i is the ith individual who absorbs the
knowledge acquired.

Subsequently, an adjustment phase is carried out, where an evaluation is carried out
of whether the solutions in the next iteration are better than the previous ones, modeled
here as a minimization problem. If not, these solutions can be retained with a small
retention probability, controlled by the parameters P2 and r1, a uniformly distributed
random number in the range [0, 1], preventing the loss of an individual’s effort, modeled as
follows Equation (9):

x⃗It+1
i =


x⃗It+1

i if f (x⃗It+1
i) < f (x⃗It

i){
x⃗It+1

i if r1 < P2

x⃗It
i else

else
(9)

5.2.2. Reflection Phase

In this phase, individuals seek to compensate for or overcome their deficiencies. ub and
lb are the upper and lower bounds of the search domain, P3 is the parameter that controls
the probability of reflection, and r2, r3, r4, and r5 are uniformly distributed random numbers

Biomimetics 2024, 9, 283 7 of 33

in the range [0, 1] used to determine how individuals adjust their solutions, modeled in
Equations (10) and (11).

xt+1
ij =


{

lb + r4 · (ub − lb) if r3 < AF
xIt

ij + r5 · (Rj − xIt
ij) else

if r2 < P3

xIt
ij else

(10)

AF = 0.01 + 0.99 ×
(

1 − FEs
MaxFEs

)
(11)

The algorithm also incorporates an Attenuation Factor AF that depends on the current
number of evaluations FE and the maximum number of evaluations maxFE’s. As the
algorithm progresses, the AF value tends to converge to 0.001, indicating that individuals
avoid frequent reinitialization and make the most of their progress. R⃗ denotes an individual
at the high level, and it serves as a reflective learning guide for the current individual i. Rj

is the knowledge of the jth aspect of R⃗.

6. A New Binary Growth Optimizer

The binarization techniques used in continuous MHs involve transferring continuous
domain values to binary domains, with the aim of maintaining the quality of moves and
generating high-quality binary solutions. While some MHs operate on binary domains
without a binary scheme, studies have demonstrated that continuous MHs supported
by a binary scheme perform exceptionally well on multiple NP-hard combinatorial prob-
lems [34]. Examples of such MHs include the binary bat algorithm [35,36], binary particle
swarm optimization [37], binary sine–cosine algorithm [38,39], binary salp swarm algo-
rithm [40], binary grey wolf optimizer [39,41], binary dragonfly algorithm [42,43], binary
whale optimization algorithm [39], and binary magnetic optimization algorithm [44]. In the
scientific literature, two main groups of binary schemes used to solve combinatorial prob-
lems can be identified [45]. The first group refers to operators that do not cause alterations
in the operations related to different elements of the MH. Within this group, two-step
techniques stand out as the most widely used in recent years, as they are considered to be
the most efficient in terms of convergence and their ability to find optimal solutions. These
techniques are based on modifying the solution in the first step and discretizing it into a 0 or
a 1 in the second step [34]. In addition, the angle modulation technique is also used in this
group as it has been shown to be effective in solving combinatorial problems [46]. On the
other hand, the second group of binary schemes includes methods that alter the normal
operation of an MH. For example, the quantum binary approach, which is based on the
application of quantum mechanisms to solve combinatorial problems [47]. In addition, also
included in this group are set-based approaches, which focus on the selection of solution
sets to improve the efficiency of the MH. Finally, clustering-based techniques, such as the
k-means approach [48,49], are also considered in this second group, as they modify the
normal operation of the MH to improve its ability to find optimal solutions.

Unlike the original approach of GO, where candidate solutions are found in the
continuous domain, the proposed Binary Growth Optimizer (BWO) uses binary strings to
represent solutions, where each decision variable corresponds to either 0 or 1, as shown in
Figure 1.

This new proposal, detailed in pseudocode Algorithm 2, features the same moves
as GO, with the addition of three key steps for obtaining binary solutions. First, the ini-
tialization of the initial population is generated in a binary manner, and binarization in
two steps is carried out after the learning and reflection phases. These moves involve new
parameters and functions in the algorithm that need to be adjusted as well.

Biomimetics 2024, 9, 283 8 of 33

Figure 1. Solution representation.

Algorithm 2 The pseudocode of the BGO algorithm.

Input: N(populationsize), D(populationdimension), ub, lb, P1 = 5, P2 = 0.001, P3 = 0.3,
FEs = 0
Output: Global optimal solution:

−−−→
gbestx

1. Initialize the population using −→x = randint(N, D) and evaluate (i = 1, . . . , N)
while FEs ≤ MaxFEs do

[∼, ind] = sort(GR)
−−→
xbest = −→x (ind(1), :)
%Learning phase:
for i = 1 to N do

−−−→xbetter =
−→x (ind(randi([2, 1 + P1], 1)), :)

−−−→xworse =
−→x (ind(randi([N − P1, N], 1)), :)

Find two random individuals that are different from −→x i:
−→xL1 and −→xL2

Compute Gapk, k = 1, 2, 3, 4 by Equation (4)
Compute LFk, k = 1, 2, 3, 4 according to Equation (5)
Compute SFi according to Equation (6)
Compute

−→
KAk, k = 1, 2, 3, 4 according to Equation (8)

Complete the learning process for the i-th individual once according to
Equation (7)

Complete the update of the i-th individual according to Equation (9)
Real-time update

−−−→
gbestx

FEs = FEs + 1
end for
%Reflection phase:
for i = 1 to N do

Complete the reflection process for the i-th individual once according to
Equations (10) and (11)

Complete the update of the i-th individual according to Equation (9)
Real-time update

−−−→
gbestx

FEs = FEs + 1
end for
%Two-Step Binarization:
for i = 1 to N do

Compute the transfer function of the i-th individual
Complete the binarization of the i-th individual based on the binarization function

selected
end for

end while
Output:

−−−→
gbestx

Biomimetics 2024, 9, 283 9 of 33

6.1. Two-Step Binarization

In the scientific community, two-step binarization schemes are very relevant [50].
They have been widely used to solve a variety of combinatorial problems [51]. As the
name suggests, this binarization scheme consists of two stages. The first stage involves
the application of a transfer function [52], which transfers the values generated by the
continuous MH to a continuous interval between 0 and 1. The second stage consists of
the application of a binarization rule, which discretizes the numbers within that interval
into binary values. This technique has been shown to be effective in solving combinatorial
problems, since it allows the quality moves of the continuous MH to be preserved while
generating high-quality binary solutions.

6.1.1. Transfer Function

In 1997, Kennedy and his team [53] introduced the concept of transfer functions in the
field of optimization. The significant advantage of these functions lies in their ability to
provide probability values in a low computational cost range of 0 to 1. There are several
types of transfer functions, with “S” and “V” forms being among the most popular [52,54].
Their utility is derived from their capacity to transform values generated by continuous
metaheuristics into a continuous interval from 0 to 1.

It is important to note that there is no one-size-fits-all transfer function. This is due
to the well-known “no free lunch” theorem [55], which states that there is no universal
optimization algorithm that excels in all situations. Consequently, this theorem allows for
experimentation and the development of new optimization algorithms.

6.1.2. Binarization Rules

In the binarization stage, the conversion of discrete values into binary values, specif-
ically 0 or 1, is obtained. Binarization rules are applied to the probabilities obtained
through the transfer function to yield binary values. The choice of which binarization
rule to use is crucial as it directly influences the effectiveness of the solutions in the binary
metaheuristic context.

7. Results and Discussion
7.1. Experimental Setup

For the experiments, BWO was compared with three widely known metaheuristics, the
grey wolf optimizer (GWO) [56], Pendulum Search Algorithm (PSA) [57], and sine–cosine
algorithm (SCA) [58], and a selection of 49 different SCP instances was made. Each instance
underwent a total of 31 experiments with V-type transfer function, the main features are
shown in the Table 2, where the density corresponds to the percentage of non-zero in
the matrix.

Table 2. Description of instances.

Instance Set Number of Instances m n Cost Range Density (%) Optimal Solution

4 10 200 1000 [1, 100] 2 Known
5 10 200 2000 [1, 100] 2 Known
6 5 200 1000 [1, 100] 5 Known
A 5 300 3000 [1, 100] 2 Known
B 5 300 3000 [1, 100] 5 Known
C 5 400 4000 [1, 100] 2 Known
D 5 400 4000 [1, 100] 5 Known

NRE 5 500 5000 [1, 100] 10 Unknown
NRF 5 500 5000 [1, 100] 20 Unknown
NRG 5 1000 10,000 [1, 100] 2 Unknown
NRH 5 1000 10,000 [1, 100] 5 Unknown

Biomimetics 2024, 9, 283 10 of 33

Regarding the configuration of the metaheuristics, we used the following strategies:

• Solution initialization: As a solution initialization strategy, we used the generation of
random solutions. Since we were solving a binary problem, each decision variable
was randomly assigned a value of 1 or 0.

• Termination conditions: In the literature, we found different term criteria, such as
calls to the objective function [59] or the total number of iterations [60–62] that the
metaheuristic will perform. We considered the total number of iterations as the
completion criterion in our work. After previous experiments, it was determined to
use 30 as the total number of iterations.

• Population size: As we worked with population metaheuristics, defining the number
of individuals to use in the experimentation was key. After previous experiments, it
was determined that 40 individuals would be used as the population size.

The hardware used in the experiments included an Intel Core i5-9400F processor
operating at 2.90 GHz, 16.00 GB of RAM, and a 64-bit operating system with an x64
processor. Since we were experimenting with stochastic algorithms, we ran each experiment
31 times independently. All the code used for our experimentation can be found in [63].

These experiments were subjected to an analysis that delivered comparative conver-
gence graphs, boxplots, time graphs, and exploration vs. exploitation charts. Additionally,
a statistical analysis was conducted to assess the behavior of the Binary Growth Optimizer
and enable a comparison with other implemented metaheuristics, thereby establishing a
common framework for comparison with typical techniques.

7.2. Experimental Results

Table 3 shows the results obtained in the experimentation. Table 3 has the following
format: The first column refers to the resolved SCP instance. The second column refers to
the optimum of the instance. If the instance has no known optimum, it is marked with “-”.
The third, fourth, and fifth columns repeat each metaheuristic used. The first of these three
columns refers to the best result obtained in the 31 independent executions. The second of
these three columns refers to the fitness average obtained in the 31 independent executions.
The third of these three columns refers to the Relative Percentage Distance (RPD) calculated
based on Equation (12),

RPD =
100 · (Best − Opt)

Opt
. (12)

where Opt corresponds to the optimum of the instance and Best corresponds to the best
value obtained for the experiment.

By reviewing Table 3, we can see that the BGO obtains competitive results compared
to the other algorithms. We can even highlight that the BGO reaches the optimum in
six instances.

Biomimetics 2024, 9, 283 11 of 33

Table 3. Results obtained.

SCA PSA GWO BGO
Inst. Opt. Min Avg RPD Min Avg RPD Min Avg RPD Min Avg RPD

41 429 431.0 433.75 0.466 431.0 433.7812 0.4662 433.0 434.0 0.9324 433.0 433.03125 0.9324
42 512 523 527 2.1484 517 528.2903 0.9766 525 526.2258 2.5391 518 525.7097 1.1719
43 516 520 521.0625 0.7752 520 521.4688 0.7752 520 520.8750 0.7752 520 520.4063 0.7752
44 494 496 504.4516 0.4049 500 506.5806 1.2146 499 505.4194 1.0121 499 504.4839 1.0121
45 512 514 518.2903 0.3906 518 519.6774 1.1719 518 518.1290 1.1719 518 518 1.1719
46 560 564 567.8065 0.7143 565 569 0.8929 564 567.7742 0.7143 567 567.8710 1.2500
47 430 432 434.2903 0.4651 433 434.2581 0.6977 432 434 0.4651 433 433.9677 0.6977
48 492 493 494.0645 0.2033 493 494.3871 0.2033 493 493.8387 0.2033 493 493.2903 0.2033
49 641 655 663.7742 2.1841 656 667.5161 2.3401 654 662.7742 2.0281 653 662.0968 1.8721

410 514 517 522.6774 0.5837 518 523.6129 0.7782 519 523.4194 0.9728 517 524.0645 0.5837
51 253 267 267.8387 5.5336 267 267.7742 5.5336 257 267.0323 1.5810 267 267.4839 5.5336
52 302 315 318.6563 4.3046 315 319.5 4.3046 313 319.125 3.6424 315 319.0938 4.3046
53 226 229 231.9032 1.3274 230 232.0323 1.7699 229 231.8387 1.3274 232 232 2.6549
54 242 244 247.8387 0.8264 244 248.3226 0.8264 244 247.9032 0.8264 244 248.0968 0.8264
55 211 212 213.5161 0.4739 212 214.4516 0.4739 212 213.4194 0.4739 212 213.0645 0.4739
56 213 216 223.1613 1.4085 216 223.3548 1.4085 216 223.3548 1.4085 216 221.9032 1.4085
57 293 299 301.6774 2.0478 296 302.1935 1.0239 297 301.8065 1.3652 299 301.2903 2.0478
58 288 290 295.7097 0.6944 290 297.5161 0.6944 290 297.6129 0.6944 290 297.3871 0.6944
59 279 284 287.5161 1.7921 284 288.1290 1.7921 284 288.2581 1.7921 284 286.2258 1.7921

510 265 272 274.1935 2.6415 272 274.4194 2.6415 272 273.8710 2.6415 273 274.0323 3.0189
61 138 141 143.3871 2.1739 141 144.0968 2.1739 141 143.0323 2.1739 141 142.2258 2.1739
62 146 148 150.4839 1.3699 148 151.0645 1.3699 148 150.0968 1.3699 148 150.4194 1.3699
63 145 148 149.2258 2.0690 148 150.0323 2.0690 147 149.2258 1.3793 148 148.6129 2.0690
64 131 134 135.3871 2.2901 135 135.3871 3.0534 135 135.1290 3.0534 134 135.2258 2.2901
65 161 172 174.8710 6.8323 165 174.8065 2.4845 172 174.5161 6.8323 171 174.4839 6.2112
a1 253 257 257.5484 1.5810 257 257.6774 1.5810 257 257 1.5810 257 257.0645 1.5810
a2 252 258 262.2581 2.3810 258 263.1290 2.3810 258 261.3871 2.3810 258 261.1290 2.3810
a3 232 235 241 1.2931 236 241.7742 1.7241 237 240.8387 2.1552 235 240.3226 1.2931
a4 234 236 237.4839 0.8547 236 237.0645 0.8547 236 236.7419 0.8547 236 236.6129 0.8547
a5 236 237 239.3226 0.4237 237 238.6774 0.4237 237 238.7742 0.4237 237 238.4516 0.4237
b1 69 69 70.4839 0 69 70.6452 0 69 70.2581 0 69 70.2258 0
b2 76 76 76.5806 0 76 77.1613 0 76 76.3548 0 76 76.1935 0
b3 80 80 81.2258 0 80 81.2581 0 80 81.1290 0 81 81.1613 1.2500
b4 79 79 81.0968 0 79 81.8065 0 79 80.5806 0 79 80.5161 0
b5 72 72 72.3871 0 72 72.5484 0 72 72.2903 0 72 72.5484 0

Biomimetics 2024, 9, 283 12 of 33

Table 3. Cont.

SCA PSA GWO BGO
Inst. Opt. Min Avg RPD Min Avg RPD Min Avg RPD Min Avg RPD

c1 227 232 234.0968 2.2026 231 234.3548 1.7621 232 233.5161 2.2026 232 233.4194 2.2026
c2 219 221 224.5161 0.9132 221 225 0.9132 221 224.1613 0.9132 221 223.7419 0.9132
c3 243 245 249.7742 0.8230 247 252.2581 1.6461 245 248.0323 0.8230 245 247.7742 0.8230
c4 219 224 226.9677 2.2831 224 228.8387 2.2831 221 226.5806 0.9132 222 225.5161 1.3699
c5 215 217 219.6129 0.9302 216 219.5161 0.4651 216 218.8387 0.4651 216 219.0645 0.4651
d1 60 60 61.9355 0 60 61.8065 0 60 62.1290 0 61 62.1613 1.6667
d2 66 67 68.2258 1.5152 67 68.0968 1.5152 67 68.1290 1.5152 67 67.7742 1.5152
d3 72 73 75.8065 1.3889 73 76.2903 1.3889 74 75.6774 2.7778 74 75.8387 2.7778
d4 62 62 63.0968 0 62 63.6774 0 62 63.2581 0 62 62.8387 0
d5 61 63 63.1613 3.2787 62 63.2903 1.6393 63 63.1613 3.2787 63 63.0323 3.2787

nre5 - 28 28.2813 - 28 28.5313 - 28 28.3125 - 28 28.1563 -
nrg5 - 171 175.3125 - 168 176.3125 - 170 175.0313 - 172 175.0625 -
nrh2 - 64 65.7419 - 64 66.0323 - 64 65.3226 - 64 65.2581 -
nrh4 - 59 60.9355 - 60 61.1935 - 59 60.4516 - 59 60.3548 -
nrh5 - 55 57.1613 - 55 57.5161 - 55 57 - 55 56.5484 -

Biomimetics 2024, 9, 283 13 of 33

7.3. Convergence vs. Iterations

One crucial aspect when evaluating the performance of metaheuristics is the speed at
which they converge towards an optimal or near-optimal solution. In Figure 2, a consistent
trend is observed: the Binary Growth Optimizer demonstrates a remarkable ability to
converge more rapidly compared to the other three metaheuristics. Therefore, it can be
highlighted for each of these:

• Binary Growth Optimizer: In all cases, the Binary Growth Optimizer exhibited faster
convergence in fewer iterations. This suggests that this metaheuristic can find high-
quality solutions in fewer iterations, which could be beneficial in practical applications
where efficiency is crucial.

• Grey wolf optimizer: While the grey wolf optimizer did not reach the convergence
speed of the Growth Optimizer, it still stood out as the second-best option in terms
of convergence speed. This indicates its ability to find reasonable solutions within a
reasonable time frame.

• sine–cosine algorithm: This algorithm showed a moderate convergence speed com-
pared to the two aforementioned metaheuristics. Although it may not be the fastest
choice, it remains an effective metaheuristic for addressing SCP instances.

• Pendulum Search Algorithm: In the graphs, the PSA exhibited slower convergence
compared to the other three metaheuristics. This suggests that it may require more
iterations to reach comparable solutions.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp41

GWO
SCA
PSA
BGO

(a) convergence scp41.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp42

GWO
SCA
PSA
BGO

(b) convergence scp42.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp43

GWO
SCA
PSA
BGO

(c) convergence scp43.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp44

GWO
SCA
PSA
BGO

(d) convergence scp44.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp45

GWO
SCA
PSA
BGO

(e) convergence scp45.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp46

GWO
SCA
PSA
BGO

(f) convergence scp46.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp47

GWO
SCA
PSA
BGO

(g) convergence scp47.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

25000

Fit
ne

ss

Coverage
 scp48

GWO
SCA
PSA
BGO

(h) convergence scp48.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

25000

Fit
ne

ss

Coverage
 scp49

GWO
SCA
PSA
BGO

(i) convergence scp49.

Figure 2. Cont.

Biomimetics 2024, 9, 283 14 of 33

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp410

GWO
SCA
PSA
BGO

(j) convergence scp410.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

Fit
ne

ss

Coverage
 scp51

GWO
SCA
PSA
BGO

(k) convergence scp51.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

Fit
ne

ss

Coverage
 scp52

GWO
SCA
PSA
BGO

(l) convergence scp52.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

Fit
ne

ss

Coverage
 scp53

GWO
SCA
PSA
BGO

(m) convergence scp53.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

Fit
ne

ss

Coverage
 scp54

GWO
SCA
PSA
BGO

(n) convergence scp54.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

Fit
ne

ss

Coverage
 scp55

GWO
SCA
PSA
BGO

(o) convergence scp55.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

Fit
ne

ss

Coverage
 scp56

GWO
SCA
PSA
BGO

(p) convergence scp56.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

Fit
ne

ss

Coverage
 scp57

GWO
SCA
PSA
BGO

(q) convergence scp57.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

Fit
ne

ss

Coverage
 scp58

GWO
SCA
PSA
BGO

(r) convergence scp58.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

Fit
ne

ss

Coverage
 scp59

GWO
SCA
PSA
BGO

(s) convergence scp59.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

Fit
ne

ss

Coverage
 scp510

GWO
SCA
PSA
BGO

(t) convergence scp510.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp61

GWO
SCA
PSA
BGO

(u) convergence scp61.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp62

GWO
SCA
PSA
BGO

(v) convergence scp62.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp63

GWO
SCA
PSA
BGO

(w) convergence scp63.

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp64

GWO
SCA
PSA
BGO

(x) convergence scp64.

Figure 2. Cont.

Biomimetics 2024, 9, 283 15 of 33

0 5 10 15 20 25 30
Iteration

0

5000

10000

15000

20000

Fit
ne

ss

Coverage
 scp65

GWO
SCA
PSA
BGO

(y) convergence scp65.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpa1

GWO
SCA
PSA
BGO

(z) convergence scpa1.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpa2

GWO
SCA
PSA
BGO

(aa) convergence scpa2.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpa3

GWO
SCA
PSA
BGO

(ab) convergence scpa3.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpa4

GWO
SCA
PSA
BGO

(ac) convergence scpa4.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpa5

GWO
SCA
PSA
BGO

(ad) convergence scpa5.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpb1

GWO
SCA
PSA
BGO

(ae) convergence scpb1.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpb2

GWO
SCA
PSA
BGO

(af) convergence scpb2.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpb3

GWO
SCA
PSA
BGO

(ag) convergence scpb3.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpb4

GWO
SCA
PSA
GO

(ah) convergence scpb4.

0 5 10 15 20 25 30
Iteration

0

10000

20000

30000

40000

50000

60000

70000

Fit
ne

ss

Coverage
 scpb5

GWO
SCA
PSA
GO

(ai) convergence scpb5. (aj) convergence scpc1.

(ak) convergence scpc2. (al) convergence scpc3. (am) convergence scpc4.

Figure 2. Cont.

Biomimetics 2024, 9, 283 16 of 33

(an) convergence scpc5. (ao) convergence scpd1. (ap) convergence scpd2.

(aq) convergence scpd3. (ar) convergence scpd4. (as) convergence scpd5.

(at) convergence scpnre5. (au) convergence scpnrg5. (av) convergence scpnrh2.

(aw) convergence scpnrh4. (ax) convergence scpnrh5.

Figure 2. Fitness convergence curves.

7.4. Fitness Distribution

For the instance scp43 in Figure 3c, significant differences in the results are observed
among the various metaheuristics. The BGO displays a boxplot that is close to a line,
indicating rapid convergence towards low fitness values. On the other hand, the other
metaheuristics maintain more uniform boxplots, suggesting more consistent performance
in this particular instance.

For the instance scp52 in Figure 3l, all the metaheuristics exhibit fairly similar per-
formance, with minimal differences in the maximum and minimum values obtained.
Particularly, the PSA presents higher maximum values compared to the others, while
the GWO shows the lowest minimum values. This suggests that all the metaheuristics
converge within a range of similar solutions in this instance, although the PSA tends to
explore solutions with a higher maximum fitness value, indicating a broader search for
high-quality solutions.

For the instance scpb4 in Figure 3ah, the results are mostly similar among the different
metaheuristics, although it is observed that the PSA displays a slightly higher boxplot

Biomimetics 2024, 9, 283 17 of 33

compared to the others. This suggests that in this particular instance, the PSA may have a
tendency to explore solutions with a moderately higher level of fitness compared to the
other metaheuristics.

For the instance scpb5 in Figure 3ai, an interesting pattern is observed in the results
of the metaheuristics. All the metaheuristics show a distribution of fitness values that
remains within a relatively narrow range. However, it is important to note that the PSA and
GWO exhibit higher maximum fitness values compared to the other metaheuristics in this
particular instance. This suggests that both the PSA and GWO have the capability to explore
solutions with a higher maximum fitness value in this specific problem configuration.

This variation in the results emphasizes the importance of considering the character-
istics and conditions of each individual instance when selecting the most suitable meta-
heuristic to address optimization problems.

For the instance scpnrg5 in Figure 3au, it is observed that all the metaheuristics
maintain boxplots with high performance values. However, it is noteworthy that the BGO
displays the lowest minimum values in this instance.

For the instance scpnrh2 in Figure 3av, it is observed that the SCA and BGO maintain
similars boxplots, while the GWO suggests a tendency to converge towards lower fitness
solutions while retaining the capability to reach higher values.

For the instance scpnrh4 in Figure 3aw, all the metaheuristics exhibit fairly similar
performance, with minimal differences in the maximum and minimum values obtained.

For the instance scpnrh5 in Figure 3ax, interesting patterns are observed in the results
of the different metaheuristics. In particular, the following are true:

• The SCA exhibits a complete range of maximum and minimum fitness values, sug-
gesting a broad exploration of solutions.

• The PSA stands out for having higher maximum values than the other metaheuristics,
although it also presents exceptionally low whiskers. This indicates its ability to reach
high-quality solutions but also a tendency towards less optimal solutions.

• The GWO closely follows the SCA, covering a similar fitness range but with more
lower solutions, indicating effective exploration of the search space.

• The BGO has values slightly lower than the average and shows whiskers at the upper
end, suggesting a tendency to converge towards better optimal fitness solutions in
this specific instance.

These results highlight how each metaheuristic has its own way of approaching the
problem based on its specific characteristics and parameters, which can lead to varied
results in different problem configurations.

SCA PSA GWO BGO
Metaheuristics

433.0

433.5

434.0

434.5

435.0

435.5

436.0

436.5

437.0

Fit
ne

ss

Fitness
 scp41

(a) Instance scp41.

SCA PSA GWO BGO
Metaheuristics

522

523

524

525

526

527

528

529

530

Fit
ne

ss

Fitness
 scp42

(b) boxplot scp42.

SCA PSA GWO GO
Metaheuristics

520

521

522

523

524

525

Fit
ne

ss

Fitness
 scp43

(c) boxplot scp43.

Figure 3. Cont.

Biomimetics 2024, 9, 283 18 of 33

SCA PSA GWO BGO
Metaheuristics

495

500

505

510

515

520

Fit
ne

ss

Fitness
 scp44

(d) boxplot scp44. (e) boxplot scp45. (f) boxplot scp46.

(g) boxplot scp47.

SCA PSA GWO BGO
Metaheuristics

470

480

490

500

510

520

Fit
ne

ss

Fitness
 scp48

(h) boxplot scp48.

SCA PSA GWO BGO
Metaheuristics

655

660

665

670

675

Fit
ne

ss

Fitness
 scp49

(i) boxplot scp49.

SCA PSA GWO BGO
Metaheuristics

518

520

522

524

526

Fit
ne

ss

Fitness
 scp410

(j) boxplot scp410.

SCA PSA GWO BGO
Metaheuristics

266.0

266.5

267.0

267.5

268.0

268.5

269.0

Fit
ne

ss

Fitness
 scp51

(k) boxplot scp51.

SCA PSA GWO GO
Metaheuristics

314

316

318

320

322

324

326

Fit
ne

ss

Fitness
 scp52

(l) boxplot scp52.

SCA PSA GWO BGO
Metaheuristics

220

225

230

235

240

Fit
ne

ss

Fitness
 scp53

(m) boxplot scp53.

SCA PSA GWO BGO
Metaheuristics

247.0

247.5

248.0

248.5

249.0

249.5

250.0

Fit
ne

ss

Fitness
 scp54

(n) boxplot scp54.

SCA PSA GWO BGO
Metaheuristics

212.0

212.5

213.0

213.5

214.0

214.5

215.0

215.5

216.0

Fit
ne

ss

Fitness
 scp55

(o) boxplot scp55.

SCA PSA GWO BGO
Metaheuristics

216

218

220

222

224

226

228

Fit
ne

ss

Fitness
 scp56

(p) boxplot scp56.

SCA PSA GWO BGO
Metaheuristics

300.0

300.5

301.0

301.5

302.0

302.5

303.0

Fit
ne

ss

Fitness
 scp57

(q) boxplot scp57.

SCA PSA GWO BGO
Metaheuristics

290

292

294

296

298

300

302

Fit
ne

ss

Fitness
 scp58

(r) boxplot scp58.

Figure 3. Cont.

Biomimetics 2024, 9, 283 19 of 33

SCA PSA GWO BGO
Metaheuristics

284

286

288

290

292

294

296

Fit
ne

ss

Fitness
 scp59

(s) boxplot scp59.

SCA PSA GWO BGO
Metaheuristics

260

265

270

275

280

285

Fit
ne

ss

Fitness
 scp510

(t) boxplot scp510.

SCA PSA GWO BGO
Metaheuristics

141

142

143

144

145

146

147

Fit
ne

ss

Fitness
 scp61

(u) boxplot scp61.

SCA PSA GWO BGO
Metaheuristics

148

149

150

151

152

153

154

Fit
ne

ss

Fitness
 scp62

(v) boxplot scp62.

SCA PSA GWO BGO
Metaheuristics

147

148

149

150

151

152

153

154

155

Fit
ne

ss

Fitness
 scp63

(w) boxplot scp63.

SCA PSA GWO BGO
Metaheuristics

135.0

135.2

135.4

135.6

135.8

136.0

Fit
ne

ss

Fitness
 scp64

(x) boxplot scp64.

SCA PSA GWO BGO
Metaheuristics

170

172

174

176

178

180

Fit
ne

ss

Fitness
 scp65

(y) boxplot scp65. (z) boxplot scpa1.

SCA PSA GWO BGO
Metaheuristics

258

260

262

264

266

268

Fit
ne

ss

Fitness
 scpa2

(aa) boxplot scpa2.

SCA PSA GWO BGO
Metaheuristics

237

238

239

240

241

242

243

244

245

Fit
ne

ss

Fitness
 scpa3

(ab) boxplot scpa3.

SCA PSA GWO BGO
Metaheuristics

236

237

238

239

240

241

Fit
ne

ss

Fitness
 scpa4

(ac) boxplot scpa4.

SCA PSA GWO BGO
Metaheuristics

237.0

237.5

238.0

238.5

239.0

239.5

240.0

240.5

241.0

Fit
ne

ss

Fitness
 scpa5

(ad) boxplot scpa5.

SCA PSA GWO BGO
Metaheuristics

69

70

71

72

73

74

Fit
ne

ss

Fitness
 scpb1

(ae) boxplot scpb1.

SCA PSA GWO BGO
Metaheuristics

76.00

76.25

76.50

76.75

77.00

77.25

77.50

77.75

78.00

Fit
ne

ss

Fitness
 scpb2

(af) boxplot scpb2.

SCA PSA GWO BGO
Metaheuristics

81.0

81.2

81.4

81.6

81.8

82.0

Fit
ne

ss

Fitness
 scpb3

(ag) boxplot scpb3.

Figure 3. Cont.

Biomimetics 2024, 9, 283 20 of 33

SCA PSA GWO GO
Metaheuristics

79

80

81

82

83

84

85

Fit
ne

ss

Fitness
 scpb4

(ah) boxplot scpb4.

SCA PSA GWO GO
Metaheuristics

72.00

72.25

72.50

72.75

73.00

73.25

73.50

73.75

74.00

Fit
ne

ss

Fitness
 scpb5

(ai) boxplot scpb5.

SCA PSA GWO BGO
Metaheuristics

232

233

234

235

236

237

Fit
ne

ss

Fitness
 scpc1

(aj) boxplot scpc1.

SCA PSA GWO BGO
Metaheuristics

222

224

226

228

230

Fit
ne

ss

Fitness
 scpc2

(ak) boxplot scpc2.

SCA PSA GWO BGO
Metaheuristics

246

248

250

252

254

256

258

Fit
ne

ss

Fitness
 scpc3

(al) boxplot scpc3.

SCA PSA GWO BGO
Metaheuristics

222

224

226

228

230

232

234

Fit
ne

ss

Fitness
 scpc4

(am) boxplot scpc4.

SCA PSA GWO BGO
Metaheuristics

216

217

218

219

220

221

222

223

Fit
ne

ss

Fitness
 scpc5

(an) boxplot scpc5.

SCA PSA GWO BGO
Metaheuristics

60.0

60.5

61.0

61.5

62.0

62.5

63.0

Fit
ne

ss

Fitness
 scpd1

(ao) boxplot scpd1.

SCA PSA GWO BGO
Metaheuristics

67.0

67.5

68.0

68.5

69.0

69.5

70.0

Fit
ne

ss

Fitness
 scpd2

(ap) boxplot scpd2.

SCA PSA GWO BGO
Metaheuristics

74.0

74.5

75.0

75.5

76.0

76.5

77.0

77.5

78.0

Fit
ne

ss

Fitness
 scpd3

(aq) boxplot scpd3.

SCA PSA GWO BGO
Metaheuristics

62.0

62.5

63.0

63.5

64.0

64.5

65.0

Fit
ne

ss

Fitness
 scpd4

(ar) boxplot scpd4.

SCA PSA GWO BGO
Metaheuristics

60

61

62

63

64

65

66

Fit
ne

ss
Fitness
 scpd5

(as) boxplot scpd5.

SCA PSA GWO BGO
Metaheuristics

28.0

28.2

28.4

28.6

28.8

29.0

Fit
ne

ss

Fitness
 scpnre5

(at) Instance scpnre5.

SCA PSA GWO GO
Metaheuristics

170

172

174

176

178

180

Fit
ne

ss

Fitness
 scpnrg5

(au) Instance scpnrg5.

SCA PSA GWO BGO
Metaheuristics

64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

68.0

Fit
ne

ss

Fitness
 scpnrh2

(av) Instance scpnrh2.

Figure 3. Cont.

Biomimetics 2024, 9, 283 21 of 33

SCA PSA GWO BGO
Metaheuristics

59.0

59.5

60.0

60.5

61.0

61.5

62.0

62.5

63.0

Fit
ne

ss

Fitness
 scpnrh4

(aw) Instance scpnrh4.

SCA PSA GWO GO
Metaheuristics

55.0

55.5

56.0

56.5

57.0

57.5

58.0

58.5

59.0

Fit
ne

ss

Fitness
scpnrh5

(ax) Instance scpnrh5.

Figure 3. Boxplots.

7.5. Exploration vs. Exploitation

Next, Figure 4 presents the exploration and exploitation of the BGO algorithm when
solving the scp43 instance. This allows us to analyze the movements made by the meta-
heuristic and how it finds new solutions.

In the graph, quick convergence to 93 percent for exploitation and 7 percent for
exploration is shown. This early convergence indicates that the metaheuristic is capable of
finding a neighborhood of solutions close to the optimum in a few iterations.

Figure 4. “Exploration vs. Exploitation” graph of the BGO metaheuristic when solving the
scp43 instance.

7.6. Time vs. Iterations

In Figure 5 are graphs that display time as a function of iterations for different meta-
heuristics in problem resolution. One notable finding is that the BGO requires more time in
the initial iterations compared to the other metaheuristics.

This suggests that the BGO makes more time-consuming initial moves. However, this
initial time investment has a significant benefit because the BGO tends to converge more
rapidly towards high-quality solutions compared to the other metaheuristics. In other
words, the BGO achieves early convergence towards an optimum in fewer iterations
compared to the other MH.

Biomimetics 2024, 9, 283 22 of 33

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

Ti
m

e
(s

)

Time (s)
 scp41

GWO
SCA
PSA
BGO

(a) time scp41.

0 5 10 15 20 25 30
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

Time (s)
 scp42

GWO
SCA
PSA
BGO

(b) time scp42.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Time (s)
 scp43

GWO
SCA
PSA
GO

(c) time scp43.

0 5 10 15 20 25 30
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

Time (s)
 scp44

GWO
SCA
PSA
BGO

(d) time scp44.

0 5 10 15 20 25 30
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

Time (s)
 scp45

GWO
SCA
PSA
BGO

(e) time scp45.

0 5 10 15 20 25 30
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

Time (s)
 scp46

GWO
SCA
PSA
BGO

(f) time scp46.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
(s

)

Time (s)
 scp47

GWO
SCA
PSA
BGO

(g) time scp47.

0 5 10 15 20 25 30
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e
(s

)

Time (s)
 scp48

GWO
SCA
PSA
BGO

(h) time scp48.

0 5 10 15 20 25 30
Iteration

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e
(s

)

Time (s)
 scp49

GWO
SCA
PSA
BGO

(i) time scp49.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
(s

)

Time (s)
 scp410

GWO
SCA
PSA
BGO

(j) time scp410.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

Time (s)
 scp51

GWO
SCA
PSA
BGO

(k) time scp51.

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

6

Ti
m

e
(s

)
Time (s)
 scp52

GWO
SCA
PSA
GO

(l) time scp52.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

Time (s)
 scp53

GWO
SCA
PSA
BGO

(m) time scp53.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Time (s)
 scp54

GWO
SCA
PSA
BGO

(n) time scp54.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Time (s)
 scp55

GWO
SCA
PSA
BGO

(o) time scp55.

Figure 5. Cont.

Biomimetics 2024, 9, 283 23 of 33

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Time (s)
 scp56

GWO
SCA
PSA
BGO

(p) time scp56.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

Time (s)
 scp57

GWO
SCA
PSA
BGO

(q) time scp57.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

Time (s)
 scp58

GWO
SCA
PSA
BGO

(r) time scp58.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

)

Time (s)
 scp59

GWO
SCA
PSA
BGO

(s) time scp59.

0 5 10 15 20 25 30
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

)

Time (s)
 scp510

GWO
SCA
PSA
BGO

(t) time scp510.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

Time (s)
 scp61

GWO
SCA
PSA
BGO

(u) time scp61.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

Time (s)
 scp62

GWO
SCA
PSA
BGO

(v) time scp62.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(s

)

Time (s)
 scp63

GWO
SCA
PSA
BGO

(w) time scp63.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

Time (s)
 scp64

GWO
SCA
PSA
BGO

(x) time scp64.

0 5 10 15 20 25 30
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

)

Time (s)
 scp65

GWO
SCA
PSA
BGO

(y) time scp65.

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

Time (s)
 scpa1

GWO
SCA
PSA
BGO

(z) time scpa1.

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)
Time (s)
 scpa2

GWO
SCA
PSA
BGO

(aa) time scpa2.

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

6

7

Ti
m

e
(s

)

Time (s)
 scpa3

GWO
SCA
PSA
BGO

(ab) time scpa3.

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

6

7

Ti
m

e
(s

)

Time (s)
 scpa4

GWO
SCA
PSA
BGO

(ac) time scpa4.

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

6

7

Ti
m

e
(s

)

Time (s)
 scpa5

GWO
SCA
PSA
BGO

(ad) time scpa5.

Figure 5. Cont.

Biomimetics 2024, 9, 283 24 of 33

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

Ti
m

e
(s

)

Time (s)
 scpb1

GWO
SCA
PSA
BGO

(ae) time scpb1.

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

Ti
m

e
(s

)

Time (s)
 scpb2

GWO
SCA
PSA
BGO

(af) time scpb2.

0 5 10 15 20 25 30
Iteration

0

1

2

3

4

5

Ti
m

e
(s

)

Time (s)
 scpb3

GWO
SCA
PSA
BGO

(ag) time scpb3.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

Ti
m

e
(s

)

Time (s)
 scpb4

GWO
SCA
PSA
GO

(ah) time scpb4.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

Ti
m

e
(s

)

Time (s)
 scpb5

GWO
SCA
PSA
GO

(ai) time scpb5.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

Time (s)
 scpc1

GWO
SCA
PSA
BGO

(aj) time scpc1.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

Time (s)
 scpc2

GWO
SCA
PSA
BGO

(ak) time scpc2.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

12

14

16

Ti
m

e
(s

)

Time (s)
 scpc3

GWO
SCA
PSA
BGO

(al) time scpc3.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

Time (s)
 scpc4

GWO
SCA
PSA
BGO

(am) time scpc4.

0 5 10 15 20 25 30
Iteration

0

5

10

15

20

Ti
m

e
(s

)

Time (s)
 scpc5

GWO
SCA
PSA
BGO

(an) time scpc5.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

Ti
m

e
(s

)

Time (s)
 scpd1

GWO
SCA
PSA
BGO

(ao) time scpd1.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

Ti
m

e
(s

)
Time (s)
 scpd2

GWO
SCA
PSA
BGO

(ap) time scpd2.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

Ti
m

e
(s

)

Time (s)
 scpd3

GWO
SCA
PSA
BGO

(aq) time scpd3.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

Ti
m

e
(s

)

Time (s)
 scpd4

GWO
SCA
PSA
BGO

(ar) time scpd4.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

Time (s)
 scpd5

GWO
SCA
PSA
BGO

(as) time scpd5.

Figure 5. Cont.

Biomimetics 2024, 9, 283 25 of 33

0 5 10 15 20 25 30
Iteration

0

50

100

150

200

250

Ti
m

e
(s

)

Time (s)
 scpnrg5

GWO
SCA
PSA
GO

(at) time scpnrg5.

0 5 10 15 20 25 30
Iteration

0

2

4

6

8

10

Ti
m

e
(s

)

Time (s)
 scpnre5

GWO
SCA
PSA
BGO

(au) time scpnre5.

0 5 10 15 20 25 30
Iteration

0

50

100

150

200

250

Ti
m

e
(s

)

Time (s)
 scpnrg5

GWO
SCA
PSA
GO

(av) time scpnrg5.

0 5 10 15 20 25 30
Iteration

0

20

40

60

80

100

Ti
m

e
(s

)

Time (s)
 scpnrh2

GWO
SCA
PSA
BGO

(aw) time scpnrh2.

0 5 10 15 20 25 30
Iteration

0

20

40

60

80

100

Ti
m

e
(s

)

Time (s)
 scpnrh4

GWO
SCA
PSA
BGO

(ax) time scpnrh4.

0 5 10 15 20 25 30
Iteration

0

20

40

60

80

100

Ti
m

e
(s

)

Time (s)
 scpnrh5

GWO
SCA
PSA
GO

(ay) time scpnrh5.

Figure 5. “Time vs. Iterations” graphs for the metaheuristics.

7.7. Statistical Tests

Before conducting the statistical test, it was essential to determine the appropriate type
of test to be employed, distinguishing between a parametric and a non-parametric test.

A non-parametric statistical test was deemed suitable for our analysis as the data
originated from machines rather than exhibiting a normal distribution inherent in natural
occurrences. Given the independence of our sample sets, the Wilcoxon–Mann–Whitney
test [64,65] was selected for the statistical analysis. This test allows for the identification
of algorithms that are significantly better than others. It offers detailed information about
pairs of algorithms with significant differences in terms of performance.

Utilizing the scipy Python library, the chosen statistical test could be applied using
the function scipy.stats.mannwhitneyu. Within this function, the “alternative” parameter
was specified as “less”. The evaluation involved contrasting two distinct metaheuris-
tics. The resulting p-value, less than 0.05, indicated that sample MhA was statistically
smaller than sample MhB. Consequently, the following hypotheses were formulated in
Equations (13) and (14):

H0 = MhA ≥ MhB (13)

H1 = MhA < MhB (14)

In the event that the obtained p-value from the statistical test was less than 0.05, it
could not be asserted that MhA exhibited inferior performance to MhB, leading to the
rejection of H0. This comparison was made in consideration of the problem being a
minimization problem. To verify the findings presented, a Wilcoxon–Mann–Whitney test
for each instance was conducted.

In Table 4, we can see the statistical test result when we compare BGO against the
other three metaheuristics in each solved instance. When BGO is statistically better than
another metaheuristic, we will indicate the p-value obtained in green and bold. When BGO
is statistically worse than another metaheuristic, we will indicate the p-value obtained in
red and in bold. In another case, there is no statistical difference between BGO and the
other metaheuristic.

Based on the findings presented in Table 4, the summary in Table 5 illustrates the
total occurrences where the BGO exhibits statistically lesser results (win) and statisti-
cally greater results (loss), and where there is no significant difference compared to the
other metaheuristics.

Biomimetics 2024, 9, 283 26 of 33

Table 4. Matrix of p-values from the Wilcoxon–Mann–Whitney test for the BGO against the SCA,
PSA, and GWO in different instances. In green the p-values lower than 0.05 where BGO exhibits
statistically lesser results, and in red the p-values greater than 0.95 where BGO exhibits statistically
greater results compared to other metaheuristics.

SCA PSA GWO

41 0.032526 0.017652 0.00505
42 0.083416 0.008453 0.178185
43 0.142326 0.017925 0.040147
44 0.673895 0.358608 0.17129
45 0.000777 0.000075 0.020949
46 0.777121 0.101089 0.947336
47 0.026426 0.027054 0.221067
48 0.049813 0.015255 0.092276
49 0.231335 0.000373 0.457734

410 0.971242 0.800105 0.837222
51 0.08422 0.204932 0.769852
52 0.656474 0.235486 0.368845
53 0.849024 0.509173 0.926297
54 0.378881 0.037574 0.588779
55 0.020766 0.000228 0.174886
56 0.194771 0.069321 0.212655
57 0.008287 0.006762 0.049149
58 0.990298 0.424729 0.538867
59 0.025665 0.003579 0.027499

510 0.379496 0.110218 0.883339
61 0.013689 0.00103 0.052988
62 0.396878 0.125416 0.666065
63 0.115385 0.09021 0.154446
64 0.297105 0.034655 0.552952
65 0.185046 0.147401 0.482672
a1 0.000253 0.008388 0.926324
a2 0.124053 0.002265 0.431456
a3 0.016308 0.000256 0.100149
a4 0.003371 0.012922 0.550884
a5 0.000524 0.082315 0.023963
b1 0.213058 0.151325 0.43297
b2 0.146666 0.038143 0.375167
b3 0.345372 0.245959 0.612847
b4 0.090897 0.002352 0.33707
b5 0.887149 0.548425 0.975947
c1 0.002907 0.001879 0.385972
c2 0.114905 0.028943 0.175642
c3 0.000398 0.0 0.539888
c4 0.002055 0.000006 0.039399
c5 0.026575 0.320787 0.991447
d1 0.892595 0.950455 0.506028
d2 0.010529 0.06074 0.033358
d3 0.31389 0.004401 0.887789
d4 0.039419 0.000385 0.025442
d5 0.504675 0.097037 0.250647

nre5 0.1169 0.000888 0.072876
nrg5 0.202966 0.009097 0.41873
nrh2 0.013674 0.003689 0.440986
nrh4 0.004821 0.000504 0.335568
nrh5 0.011639 0.000306 0.052988

Biomimetics 2024, 9, 283 27 of 33

Table 5. Matrix of ocurrences from Wilcoxon–Mann–Whitney tests.

Instance Win No Significant Difference Loss

41 3 0 0
42 1 2 0
43 2 1 0
44 0 3 0
45 3 0 0
46 0 3 0
47 2 1 0
48 2 1 0
49 1 2 0

410 0 2 1
51 0 3 0
52 0 3 0
53 0 3 0
54 1 2 0
55 2 1 0
56 0 3 0
57 3 0 0
58 0 2 1
59 3 0 0

510 0 3 0
61 2 1 0
62 0 3 0
63 0 3 0
64 1 2 0
65 0 3 0
a1 2 1 0
a2 1 2 0
a3 2 1 0
a4 2 1 0
a5 2 1 0
b1 0 3 0
b2 1 2 0
b3 0 3 0
b4 1 2 0
b5 0 2 1
c1 2 1 0
c2 1 2 0
c3 2 1 0
c4 3 0 0
c5 1 1 1
d1 0 3 0
d2 2 1 0
d3 1 2 0
d4 3 0 0
d5 1 2 0

nre5 1 2 0
nrg5 1 2 0
nrh2 2 1 0
nrh4 2 1 0
nrh5 2 1 0

Total 61 85 4

Based on Table 5, the instances where the null hypothesis of the statistical test can
be rejected (which states that there is no significant difference between the compared
results) are are more clearly observable. It can be noted that in 61 instances, the BGO
was statistically superior to its competitors, and in 85 instances, there was no statistically
significant difference. Only in four instances did the obtained results favor the compared

Biomimetics 2024, 9, 283 28 of 33

metaheuristic. These findings underscore the robust performance of the BGO, achieving
strongly competitive and even superior outcomes.

The analysis of results across the twelve instances of the SCP reveals some interest-
ing trends.

1. Rapid Convergence of the Binary Growth Optimizer (BGO): The BGO demonstrated
swift convergence towards solutions with low fitness compared to the other metaheuris-
tics. This suggests that the BGO can find high-quality solutions in fewer iterations.

2. High Competitiveness of BGO: Comparing the results obtained from Table 5, there
is statistical evidence of the BGO’s performance compared to well-recognized meta-
heuristics, achieving very good and often superior results.

3. Behaviors across Different Instances: As expected, similar to its competitors, the BGO
showcases varying behaviors across different studied instances, sometimes displaying
highly precise fitness and sometimes not. It is crucial to consider this factor when
implementing the BGO for problem-solving in real-world scenarios beyond controlled
laboratory settings.

4. Success of Implementing Growth Optimizer with Binary Growth Optimizer: A Growth
Optimizer is a high-performing metaheuristic in continuous optimization spaces,
where various parameter configurations were tested to find the best-performing one.
In this work, a Binary Growth Optimizer was employed using recommended pa-
rameters. However, altering these parameters might produce different, potentially
superior outcomes.

5. Binarization Strategies: The use of binarization strategies is crucial for solving SCPs;
utilizing the V-type transfer function yielded excellent results. Other transfer function
types remain to be explored to observe the BGO’s behavior comprehensively.

In summary, each metaheuristic displayed its unique characteristics and strategies
based on the specific instances of the SCP. The BGO stood out significantly for its rapid
convergence in few iterations, high competitiveness, and excellent results.

7.8. Underlying Mechanisms

Next, the unique features of the BGO that facilitate such performance are shown,
setting it apart from other metaheuristic methods.

• Integration of Learning and Reflection: The BGO distinguishes itself by its dual
approach that combines two fundamental phases: the learning phase and the reflection
phase. In the learning phase, the algorithm explores the search space by selecting
“better” and “worse” solutions for each individual, fostering diversity and global
exploration. On the other hand, in the reflection phase, the BGO employs reflection on
decision variables to generate new random positions, promoting local exploitation
and convergence towards optimal solutions.

• Adaptive Dynamics and Escape from Local Minima: The BGO introduces adaptive
dynamics that dynamically adjust the probability of accepting worse solutions during
the search. This feature allows the algorithm to adapt to the changing nature of the
search landscape, increasing exploration in early stages and focusing on exploitation
in later stages, thus enhancing the algorithm’s ability to find high-quality solutions in
different types of optimization problems. To address the challenge of local minima, the
BGO incorporates diversification mechanisms that enable the occasional acceptance
of worse solutions with a small probability. This strategy helps the algorithm avoid
getting stuck in suboptimal local minima and explore new regions of the search space,
increasing the chances of finding globally optimal solutions.

• Well-defined Exploration and Exploitation Stages: The BGO is characterized by well-
defined exploration and exploitation stages, allowing it to conduct extensive sampling
of the search space in the early iterations and then focus on promising regions to refine
solutions. This alternation between exploration and exploitation contributes to an
efficient search and rapid convergence towards optimal solutions.

Biomimetics 2024, 9, 283 29 of 33

• Initialization with Longer Time and Rapid Convergence Compared to other meta-
heuristics: The BGO may require more time in initialization due to its dual approach
and adaptive dynamics. However, once the search is underway, the BGO demonstrates
faster convergence towards optimal solutions thanks to its ability to effectively explore
and exploit the search space.

8. Conclusions

This analysis of twelve instances of the set-covering problem (SCP) revealed distinct
trends among various metaheuristics. The Binary Growth Optimizer (BGO) emerged as
a standout performer, showcasing rapid convergence towards solutions with low fitness
in comparison to its counterparts. This rapid convergence suggests the BGO’s ability to
attain high-quality solutions within a reduced number of iterations, signifying its efficiency
in problem-solving.

The BGO’s success can be attributed to its unique mechanisms, including the inte-
gration of learning and reflection, adaptive dynamics, and well-defined exploration and
exploitation stages. These mechanisms enable the BGO to adapt dynamically to changing
landscapes, effectively explore diverse regions of the search space, and converge towards
high-quality solutions in a reduced number of iterations. The BGO consistently achieved
excellent and often superior results compared to established metaheuristics, showcasing its
high competitiveness.

Moreover, statistical comparisons against well-established metaheuristics demon-
strated the BGO’s high competitiveness, consistently achieving excellent and often superior
results. However, it is essential to note that the BGO displayed diverse behaviors across
different instances, implying variability in its performance. Understanding these vari-
ances is crucial when implementing the BGO for real-world problem-solving outside
controlled environments.

The successful adaptation from the Growth Optimizer to the Binary Growth Optimizer
highlights the potential for parameter optimization, indicating that fine-tuning parameters
could potentially enhance the BGO’s performance further.

Additionally, the importance of binarization strategies in solving SCPs was under-
scored, particularly the success observed with the V-type transfer function. However,
further exploration of alternative transfer function types remains an area for potential
investigation to comprehensively understand the BGO’s behavior.

In essence, the BGO’s distinguishing traits of rapid convergence, competitiveness,
and consistently excellent outcomes position it as a promising metaheuristic for solving
SCPs while acknowledging the need for deeper exploration and parameter optimization for
its maximal utilization. The unique approach of the BGO makes it suitable for a wide range
of multidimensional optimization problems across various domains, including engineering,
logistics, planning, and bioinformatics, given its ability to find high-quality solutions
in complex search spaces. This versatility renders it a valuable tool for researchers and
professionals facing optimization challenges in their respective fields.

Author Contributions: Conceptualization, B.C. and F.C.-C.; methodology, B.C., F.C.-C. and R.S.;
software, F.C.-C., D.L. and B.R.-T.; validation, D.L. and B.R.-T.; formal analysis, B.C., F.C.-C. and R.S.;
investigation, D.L., B.R.-T., B.C., F.C.-C. and R.S.; resources, D.L., B.R.-T. and F.C.-C.; writing—original
draft D.L., B.R.-T., B.C., F.C.-C. and R.S.; writing—review and editing, D.L., B.R.-T. and B.C.; supervi-
sion, B.C., F.C.-C. and R.S.; funding acquisition, B.C. and R.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Biomimetics 2024, 9, 283 30 of 33

Data Availability Statement: All the results of this work are available at the GitHub repository
(https://github.com/BenjaminAleRamosT/BGO/tree/main (accessed on 30 April 2024)).

Acknowledgments: The work of Broderick Crawford Labrin was supported by the Spanish Ministry
of Science and Innovation Project PID2019-109891RB-I00, under the European Regional Development
Fund (FEDER). Felipe Cisternas-Caneo was supported by the National Agency for Research and
Development (ANID)/Scholarship Program/DOCTORADO NACIONAL/2023-21230203.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MH Metaheuristic
SCP Set-covering problem
P Polynomial time
NP Nondeterministic polynomial time
EAs Evolutionary algorithms
MSA Binary monkey search algorithm
ALO Antlion optimization
CSA Crow search algorithm
GA Genethic Algorithm
MLST Minimum labeling spanning tree
VANETs Vehicular ad hoc networks
MST Minimum spanning tree
MILP Mixed-integer linear programs
ESN Echo state network
ELM Extreme Learning Machines
MRE Magnetorheological elastomer
CNN Convolutional neural network
NN Neural network
DE Differential evolution
GO Growth optimizer
BGO Binary Growth Optimizer
GR Growth resistance
It Current iteration
LF Learning factor
KA Knowledge acquisition
AF Attenuation factor
FE Current number of evaluations
MaxFE Maximum number of evaluations
ub Domain upper bound
lb Domain lower bound
D Population dimension
GWO Grey wolf optimizer
PSA Pendulum Search Algorithm
SCA Sine–cosine algorithm

References
1. Karp, R.M. On the Computational Complexity of Combinatorial Problems. Networks 1975, 5, 45–68. [CrossRef]
2. Karp, R.M. Reducibility Among Combinatorial Problems. In 50 Years of Integer Programming; Springer: Berlin/Heidelberg,

Germany, 2009; pp. 219–241.
3. Cook, S.C. The Complexity of Theorem Proving Procedures. In Proceedings of the 3rd Annual ACM Symposium on Theory of

Computing, Shaker Heights, OH, USA, 3–5 May 1971; pp. 151–158.
4. Cook, S.C. Characterizations of Pushdown Machines in Terms of Time-Bounded Computers. J. ACM 1971, 18 , 4–18. [CrossRef]
5. Jünger, M.; Reinelt, G.; Rinaldi, G. Chapter 4: The Traveling Salesman Problem. In Handbooks in Operations Research and

Management Science; Elsevier: Amsterdam, The Netherlands, 1995; pp. 225–330.
6. Crawford, B.; Soto, R.; Olivares, R.; Embry, G.; Flores, D.; Palma, W.; Castro, C.; Paredes, F.; Rubio, J.M. A Binary Monkey Search

Algorithm Variation for Solving the Set Covering Problem. Nat. Comput. 2019, 19, 825–841. [CrossRef]

https://github.com/BenjaminAleRamosT/BGO/tree/main
http://doi.org/10.1002/net.1975.5.1.45
http://dx.doi.org/10.1145/321623.321625
http://dx.doi.org/10.1007/s11047-019-09752-8

Biomimetics 2024, 9, 283 31 of 33

7. Xia, T.; Zhang, M.; Wang, S. Dynamic System Stability Modeling Approach with Sparrow-Inspired Meta-Heuristic Optimization
Algorithm. Biomimetics 2023, 8, 424. [CrossRef] [PubMed]

8. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman and Company:
New York, NY, USA, 1979; pp. 13–45+190–194.

9. Bartz-Beielstein, T.; Zaefferer, M. Model-based Methods for Continuous and Discrete Global Optimization. Appl. Soft Comput.
2017, 55, 154–167. [CrossRef]

10. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef]
11. Sloss, A.N.; Gustafson, S. 2019 Evolutionary Algorithms Review. arXiv 2019, arXiv:1906.08870.
12. Glover, F.; Laguna, M.; Marti, R. Tabu Search; Springer: New York, NY, USA, 1997; Volume 16. [CrossRef]
13. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
14. Šarac, D.; Kopić, M.; Mostarac, K.; Kujačić, M.; Jovanović, B. Application of Set Covering Location Problem for Organizing the

Public Postal Network. Promet-Traffic Transp. 2016, 28, 403–413. [CrossRef]
15. Chaovalitwongse, W.; Berger-Wolf, T.; Dasgupta, B.; Ashley, M. Set covering approach for reconstruction of sibling relationships.

Optim. Methods Softw. 2007, 22, 11–24. [CrossRef]
16. Cacchiani, V.; Hemmelmayr, V.; Tricoire, F. A set-covering based heuristic algorithm for the periodic vehicle routing problem.

Discret. Appl. Math. 2014, 163, 53–64. [CrossRef] [PubMed]
17. Jaszkiewicz, A. Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering

problem. IEEE Trans. Evol. Comput. 2003, 7, 133–143. [CrossRef]
18. Kılıç, H.; Yüzgeç, U. Tournament selection based antlion optimization algorithm for solving quadratic assignment problem. Eng.

Sci. Technol. 2019, 22, 673–691. [CrossRef]
19. Lin, M.; Liu, F.; Zhao, H.; Chen, J. A novel binary firefly algorithm for the minimum labeling spanning tree problem. Comput.

Model. Eng. Sci. 2020, 125, 197–214.
20. Zhang, X.; Zhang, X. A binary artificial bee colony algorithm for constructing spanning trees in vehicular ad hoc networks.

Ad Hoc Netw. 2017, 58, 198–204. [CrossRef]
21. Da Silva, T.; Queiroga, E.; Ochi, L.; Cabral, L.A.F.; Gueye, S.; Michelon, P. A hybrid metaheuristic for the minimum labeling

spanning tree problem. Eur. J. Oper. Res. 2019, 274, 22–34. [CrossRef]
22. Jimenez, R.; Jurado-Pina, R. A simple genetic algorithm for calibration of stochastic rock discontinuity networks. Rock Mech. Rock

Eng. 2012, 45, 461–473. [CrossRef]
23. Taormina, R.; Chau, K. Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm

optimization and extreme learning machines. J. Hydrol. 2015, 529, 1617–1632. [CrossRef]
24. Taormina, R.; Chau, K.; Sivakumar, B. Neural network river forecasting through baseflow separation and binary-coded swarm

optimization. J. Hydrol. 2015, 529, 1788–1797. [CrossRef]
25. Vuolio, T.; Visuri, V.; Sorsa, A.; Paananen, T.; Fabritius, T. Genetic algorithm-based variable selection in prediction of hot metal

desulfurization kinetics. Steel Res. Int. 2019, 90, 1900090. [CrossRef]
26. Liu, J.; Sun, T.; Luo, Y.; Yang, S.; Cao, Y.; Zhai, J. Echo state network optimization using binary grey wolf algorithm. Neurocomputing

2020, 385, 310–318. [CrossRef]
27. Yu, Y.; Li, Y.; Li, J.; Gu, X.; Royel, S. Nonlinear characterization of the MRE isolator using binary-coded discrete CSO and ELM.

Int. J. Struct. Stab. Dyn. 2018, 18, 1840007. [CrossRef]
28. Joshi, S.; Kumar, R.; Dwivedi, A. Hybrid DSSCS and convolutional neural network for peripheral blood cell recognition system.

IET Image Process. 2020, 14, 4450–4460. [CrossRef]
29. Ahmad, M.; Abdullah, M.; Moon, H.; Yoo, S.J.; Han, D. Image classification based on automatic neural architecture search using

binary crow search algorithm. IEEE Access 2020, 8, 189891–189912. [CrossRef]
30. Zhang, L.; Li, H.; Kong, X. Evolving feedforward artificial neural networks using a two-stage approach. Neurocomputing 2019,

360, 25–36. [CrossRef]
31. Sadiq, A.; Tahir, M.; Ahmed, A.; Alghushami, A. Normal parameter reduction algorithm in soft set based on hybrid binary

particle swarm and biogeography optimizer. Neural Comput. Appl. 2020, 32, 12221–12239. [CrossRef]
32. Zhang, M.; Yang, F.; Zhang, D.; Tang, P. Research on charging and discharging control strategy for electric vehicles as distributed

energy storage devices. IOP Conf. Ser. Earth Environ. Sci. 2018, 121, 042019. [CrossRef]
33. Zhang, Q.; Gao, H.; Zhan, Z.H.; Li, J.; Zhang, H. Growth Optimizer: A powerful metaheuristic algorithm for solving continuous

and discrete global optimization problems. Knowl.-Based Syst. 2023, 261, 110206. [CrossRef]
34. Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting Continuous Metaheuristics to Work in Binary Search

Spaces. Complexity 2017, 2017, 8404231. [CrossRef]
35. Mirjalili, S.; Mirjalili, S.; Yang, X. Binary Bat Algorithm. Neural Comput. Appl. 2014, 25, 663–681. [CrossRef]
36. Rodrigues, D.; Pereira, L.; Nakamura, R.; Costa, K.; Yang, X.; Souza, A.; Papa, J. A Wrapper Approach for Feature Selection Based

on Bat Algorithm and Optimum-Path Forest. Expert Syst. Appl. 2014, 41, 2250–2258. [CrossRef]
37. Khanesar, M.A.; Teshnehlab, M.; Shoorehdeli, M.A. A novel binary particle swarm optimization. In Proceedings of the 2007

Mediterranean Conference on Control & Automation, Athens, Greece, 27–29 June 2007; pp. 1–6. [CrossRef]

http://dx.doi.org/10.3390/biomimetics8050424
http://www.ncbi.nlm.nih.gov/pubmed/37754175
http://dx.doi.org/10.1016/j.asoc.2017.01.039
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/978-1-4615-6089-0
http://dx.doi.org/10.7307/ptt.v28i4.1962
http://dx.doi.org/10.1080/10556780600881829
http://dx.doi.org/10.1016/j.dam.2012.08.032
http://www.ncbi.nlm.nih.gov/pubmed/24748696
http://dx.doi.org/10.1109/TEVC.2003.810759
http://dx.doi.org/10.1016/j.jestch.2018.11.013
http://dx.doi.org/10.1016/j.adhoc.2016.07.001
http://dx.doi.org/10.1016/j.ejor.2018.09.044
http://dx.doi.org/10.1007/s00603-012-0226-1
http://dx.doi.org/10.1016/j.jhydrol.2015.08.022
http://dx.doi.org/10.1016/j.jhydrol.2015.08.008
http://dx.doi.org/10.1002/srin.201900090
http://dx.doi.org/10.1016/j.neucom.2019.12.069
http://dx.doi.org/10.1142/S0219455418400072
http://dx.doi.org/10.1049/iet-ipr.2020.0370
http://dx.doi.org/10.1109/ACCESS.2020.3031599
http://dx.doi.org/10.1016/j.neucom.2019.03.097
http://dx.doi.org/10.1007/s00521-019-04423-2
http://dx.doi.org/10.1088/1755-1315/121/4/042019
http://dx.doi.org/10.1016/j.knosys.2022.110206
http://dx.doi.org/10.1155/2017/8404231
http://dx.doi.org/10.1007/s00521-014-1700-0
http://dx.doi.org/10.1016/j.eswa.2013.09.044
http://dx.doi.org/10.1109/MED.2007.4433821

Biomimetics 2024, 9, 283 32 of 33

38. Cisternas-Caneo, F.; Crawford, B.; Soto, R.; de la Fuente-Mella, H.; Tapia, D.; Lemus-Romani, J.; Castillo, M.; Becerra-Rozas, M.;
Paredes, F.; Misra, S. A Data-Driven Dynamic Discretization Framework to Solve Combinatorial Problems Using Continuous
Metaheuristics. In Innovations in Bio-Inspired Computing and Applications; Abraham, A., Sasaki, H., Rios, R., Gandhi, N., Singh, U.,
Ma, K., Eds.; Springer: Cham, Switzerland, 2021; pp. 76–85.

39. Lemus-Romani, J.; Becerra-Rozas, M.; Crawford, B.; Soto, R.; Cisternas-Caneo, F.; Vega, E.; Castillo, M.; Tapia, D.; Astorga, G.;
Palma, W.; et al. A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems.
Mathematics 2021, 9, 2887. [CrossRef]

40. Faris, H.; Mafarja, M.; Heidari, A.; Aljarah, I.; Ala’M, A.; Mirjalili, S.; Fujita, H. An Efficient Binary Salp Swarm Algorithm with
Crossover Scheme for Feature Selection Problems. Knowl.-Based Syst. 2018, 154, 43–67. [CrossRef]

41. Sharma, P.; Sundaram, S.; Sharma, M.; Sharma, A.; Gupta, D. Diagnosis of Parkinson’s Disease Using Modified Grey Wolf
Optimization. Cogn. Syst. Res. 2019, 54, 100–115. [CrossRef]

42. Mafarja, M.; Aljarah, I.; Heidari, A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary Dragonfly Optimization for Feature
Selection Using Time-Varying Transfer Functions. Knowl.-Based Syst. 2018, 161, 185–204. [CrossRef]

43. Eluri, R.; Devarakonda, N. Binary Golden Eagle Optimizer with Time-Varying Flight Length for Feature Selection. Knowl.-Based
Syst. 2022, 247, 108771. [CrossRef]

44. Mirjalili, S.; Hashim, S. BMOA: Binary Magnetic Optimization Algorithm. Int. J. Mach. Learn. Comput. 2012, 2, 204. [CrossRef]
45. Lemus-Romani, J.; Crawford, B.; Cisternas-Caneo, F.; Soto, R.; Becerra-Rozas, M. Binarization of Metaheuristics: Is the Transfer

Function Really Important? Biomimetics 2023, 8, 400. [CrossRef] [PubMed]
46. Leonard, B.; Engelbrecht, A.; Cleghorn, C. Critical Considerations on Angle Modulated Particle Swarm Optimisers. Swarm Intell.

2015, 9, 291–314. [CrossRef]
47. Zhang, G. Quantum-Inspired Evolutionary Algorithms: A Survey and Empirical Study. J. Heuristics 2011, 17, 303–351. [CrossRef]
48. García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A K-Means Binarization Framework Applied to Multidimensional

Knapsack Problem. Appl. Intell. 2018, 48, 357–380. [CrossRef]
49. García, J.; Moraga, P.; Valenzuela, M.; Crawford, B.; Soto, R.; Pinto, H.; Peña, A.; Altimiras, F.; Astorga, G. A Db-Scan Binarization

Algorithm Applied to Matrix Covering Problems. Comput. Intell. Neurosci. 2019, 2019, 3238574. [CrossRef]
50. Becerra-Rozas, M.; Lemus-Romani, J.; Cisternas-Caneo, F.; Crawford, B.; Soto, R.; Astorga, G.; Castro, C.; García, J. Continuous

Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review. Mathematics 2022, 11, 129.
[CrossRef]

51. Saremi, S.; Mirjalili, S.; Lewis, A. How Important Is a Transfer Function in Discrete Heuristic Algorithms. Neural Comput. Appl.
2015, 26, 625–640. [CrossRef]

52. Mirjalili, S.; Lewis, A. S-shaped Versus V-shaped Transfer Functions for Binary Particle Swarm Optimization. Swarm Evol. Comput.
2013, 9, 58–68. [CrossRef]

53. Kennedy, J.; Eberhart, R. A Discrete Binary Version of the Particle Swarm Algorithm. In Proceedings of the 1997 IEEE International
Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October1997;
Volume 5, pp. 4104–4108. [CrossRef]

54. Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K. Performance Enhancement of Radial Distributed System with
Distributed Generators by Reconfiguration Using Binary Firefly Algorithm. J. Inst. Eng. Ser. B 2015, 96, 91–99. [CrossRef]

55. Wolpert, D.; Macready, W. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
56. Mirjalili, S.; Mirjalili, S.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
57. Ab. Aziz, N.A.; Ab. Aziz, K. Pendulum search algorithm: An optimization algorithm based on simple harmonic motion and its

application for a vaccine distribution problem. Algorithms 2022, 15, 214. [CrossRef]
58. Taghian, S.; Nadimi-Shahraki, M. Binary Sine Cosine Algorithms for Feature Selection from Medical Data. arXiv 2019,

arXiv:1911.07805.
59. Lanza-Gutierrez, J.M.; Crawford, B.; Soto, R.; Berrios, N.; Gomez-Pulido, J.A.; Paredes, F. Analyzing the effects of binarization

techniques when solving the set covering problem through swarm optimization. Expert Syst. Appl. 2017, 70, 67–82. [CrossRef]
60. Cisternas-Caneo, F.; Crawford, B.; Soto, R.; Giachetti, G.; Paz, Á.; Peña Fritz, A. Chaotic Binarization Schemes for Solving

Combinatorial Optimization Problems Using Continuous Metaheuristics. Mathematics 2024, 12, 262. [CrossRef]
61. Al-Tashi, Q.; Abdul Kadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H. Binary Optimization Using Hybrid Grey Wolf Optimization

for Feature Selection. IEEE Access 2019, 7, 39496–39508. [CrossRef]
62. Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing

2017, 260, 302–312. [CrossRef]
63. Python Code Experimentation. Available online: https://github.com/BenjaminAleRamosT/BGO/tree/main (accessed on

29 April 2024).

http://dx.doi.org/10.3390/math9212887
http://dx.doi.org/10.1016/j.knosys.2018.05.025
http://dx.doi.org/10.1016/j.cogsys.2018.11.007
http://dx.doi.org/10.1016/j.knosys.2018.08.019
http://dx.doi.org/10.1016/j.knosys.2021.108771
http://dx.doi.org/10.7763/ijmlc.2012.v2.104
http://dx.doi.org/10.3390/biomimetics8050400
http://www.ncbi.nlm.nih.gov/pubmed/37754151
http://dx.doi.org/10.1007/s11721-015-0114-2
http://dx.doi.org/10.1007/s10732-010-9142-3
http://dx.doi.org/10.1007/s10489-017-1044-7
http://dx.doi.org/10.1155/2019/3238574
http://dx.doi.org/10.3390/math11020129
http://dx.doi.org/10.1007/s00521-014-1744-5
http://dx.doi.org/10.1016/j.swevo.2012.09.002
http://dx.doi.org/10.1109/ICSMC.1997.637339
http://dx.doi.org/10.1007/s40031-015-0165-5
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.3390/a15060214
http://dx.doi.org/10.1016/j.eswa.2016.10.054
http://dx.doi.org/10.3390/math12020262
http://dx.doi.org/10.1109/ACCESS.2019.2906757
http://dx.doi.org/10.1016/j.neucom.2017.04.053
https://github.com/BenjaminAleRamosT/BGO/tree/main

Biomimetics 2024, 9, 283 33 of 33

64. Mann, H.; Whitney, D. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat.
1947, 18, 50–60. [CrossRef]

65. García, S.; Molina, D.; Lozano, M.; Herrera, F. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’
behaviour: A case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 2009, 15, 617–644. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1007/s10732-008-9080-2

	Introduction
	Combinatorial Optimization Problems
	Continuous Optimization Problems
	Discrete Optimization Problems

	Metaheuristics
	The Set-Covering Problem (SCP)
	Applications
	Organization of the Serbian Postal Network
	Sibling Relationship Reconstruction
	Periodic Vehicle Routing Problem

	Solving Set-Covering Problem Review

	The Growth Optimizer Algorithm
	Inspiration
	Mathematical Modeling
	Learning Phase
	Reflection Phase

	A New Binary Growth Optimizer
	Two-Step Binarization
	Transfer Function
	Binarization Rules

	Results and Discussion
	Experimental Setup
	Experimental Results
	Convergence vs. Iterations
	Fitness Distribution
	Exploration vs. Exploitation
	Time vs. Iterations
	Statistical Tests
	Underlying Mechanisms

	Conclusions
	References

