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Abstract: Precise morphology acquisition for the variable wing leading edge is essential for its bio-
inspired adaptive control. Therefore, this study proposes a morphological reconstruction method for the
variable wing leading edge, utilizing the node curvature vectors-based curvature propagation method
(NCV-CPM). By establishing a strain–arc curvature function, the method fundamentally mitigates the
impact of surface curvature angle on curvature computation accuracy at sensing points. We introduce
a technique that uses high-order curvature fitting functions to determine the curvature vectors of arc
segment nodes. This method reduces cumulative errors in curvature computation linked to the linear
interpolation-based curvature propagation method (LI-CPM) at unattached sensor positions. Integrating
curvature–strain functions aids in wing leading-edge strain field reconstruction, supporting structural
health monitoring. Additionally, a particle swarm algorithm optimizes the sensing point distribu-
tion, reducing network complexity. This study demonstrates significantly enhanced morphological
reconstruction accuracy compared to those obtained with conventional LI-CPM.

Keywords: morphological reconstruction; variable wing leading edge; node curvature vectors;
curvature propagation method; strain–curvature function

1. Introduction

The design inspiration for morphing airfoils is derived from the wing structures of
birds and other flying animals. It aims to achieve morphing capabilities in aircraft to
optimize flight performance and fuel efficiency in different flight phases or conditions [1,2].
Concurrently, researchers are also dedicated to investigating adaptive control methods
for variable wing structures to achieve enhanced maneuverability, stability, and energy
efficiency. Chen et al. developed and successfully implemented control laws on a tensegrity
morphing airfoil based on reduced order Class-k tensegrity dynamics [3]. Shen et al.
proposed an optimal control method based on Markov parameters to achieve wing shape
control for tensegrity morphing airfoils [4].

To achieve the “propagation-shifting” functionality of aircraft, ensuring their optimal
aerodynamic profile, aerodynamic performance, and stealth characteristics in response
to complex flight environments and mission requirements, it is essential to synchronize
and close the loop control of the wing leading-edge propagation perception and airfoil
adjustment [5,6].

Currently, conventional structural propagation perception technologies mainly include
two types: non-contact and contact. Non-contact shape measurement technologies mainly
include methods such as visual measurement and laser scanning [7,8]. Although this
method has high measurement accuracy, it has visual blind spots and presents certain
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limitations in terms of volume size, installation calibration, vibration resistance, and real-
time response characteristics.

Compared to non-contact measurement modes, deformation monitoring methods
based on flexible, contact-type strain information perception are more suitable for the
real-time shape identification of in-service aircraft structures. For example, the modal
superposition method requires the prior acquisition of accurate load or material property
information, that is, identifying the strain mode and displacement mode matrices of
the target structure through a large number of experiments or finite element modeling.
However, due to the complexity of the wing leading-edge structure and material properties,
the engineering applicability of this method is limited [9]. For example, the global linear
regression prediction or segmented continuous interpolation fitting method, despite having
a simple reconstruction process, requires a large number of sensors to ensure the accuracy
of structural shape reconstruction, limiting its practical application in the field of variable
curvature wing leading-edge propagation perception [10].

To address the above problems, researchers have proposed a linear interpolation-based
curvature propagation method (LI-CPM), which reconstructs structural displacement field
information by establishing the mathematical relationship between strain, curvature, and
displacement without requiring any prior knowledge of material properties or load size,
and only using a finite number of discrete strain data [11,12].

Palma et al. obtained the curvature distribution characteristics along the thickness
direction of a structure after loading and the position of the neutral layer of the strain
by implanting multiple optical fiber sensors into a 3D composite material plate [13]. Li
et al. achieved structural propagation perception by constructing a function relationship
model between measured strain sensor data and beam structure curvature [14]. Cheng et al.
studied a morphing reconstruction method for thin plates supported by multiple elastic
supports based on the curvature–displacement function and the Runge–Kutta solving
principle [15]. Liu et al. achieved the displacement field reconstruction of the bed of a gantry
boring and milling machine under random loads using a continuous curvature function
constructed using the cubic spline interpolation method [16]. Roesthuis et al. studied
a method for calculating the curvature of a driving beam based on the measured axial
strain of optical fiber sensors, achieving the shape perception of a medical robotic arm [17].
Dogu et al. studied a continuous equation-solving method based on the relationship model
between strain–curvature–displacement and reconstructed the displacement field of beam
structures according to the curvature value [18].

It is worth noting that the conventional curvature propagation method described
above, which establishes the strain–curvature function relationship, is primarily applicable
to flat-plate structures. However, the variable curvature of the wing leading edge, being
a curved surface structure, results in changes in the arc angle during deformation. This
variation leads to significant discrepancies between the curvature information calculated
based on this function at measured points and the actual curvature. To address this issue, a
strain–arc curvature function suitable for dynamically changing surface curvature angles
of the wing leading edge is proposed based on the curvature radius of the leading-edge
surface and measured strain, aiming to improve the accuracy of the curvature information
for sensing points [19].

Conventional curvature propagation methods require linear interpolation to obtain
curvature information for unattached sensor positions. However, the linear interpolation
function, being a first-order linear function, accumulates errors between the interpolated
curvature features and the actual curvature distribution, thereby affecting the accuracy of
propagation reconstruction. Therefore, this study proposes a curvature propagation method
based on node curvature vectors (NCV-CPM). By adding nodes within the segmented
leading-edge arc sections, the aim is to enhance the order of curvature fitting functions.
By constructing a least squares error function between theoretical curvature and actual
curvature, node curvature vectors are solved to address the cumulative error problem.
Additionally, by establishing a curvature–strain mapping function relationship, it is possible
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to achieve the inverse reconstruction of the leading-edge strain field based on the curvature
distribution [20].

The higher the accuracy requirement for the morphing of the variable wing leading-
edge morphological reconstruction, the greater the number of sensors needed, leading
to a significant increase in the complexity of the monitoring system. To address this,
researchers utilize optimization algorithms to obtain the optimal sensor layout, such as
genetic algorithms [21], simulated annealing [22], and particle swarm optimization [23].
Genetic algorithms require determining suitable crossover and mutation rate parameters
based on the size of the established sample library, while simulated annealing exhibits slow
convergence and is influenced by multiple parameters to be optimized. In contrast, particle
swarm optimization requires fewer optimization parameters and does not necessitate
constructing a sample library. Therefore, this study proposes the adoption of particle
swarm optimization to iteratively determine the optimal number of virtual sensing points,
thereby simplifying the complexity of the sensor network.

The remainder of this study is organized as follows. Section 2 outlines the principles of
the wing leading-edge morphological reconstruction method based on NCV-CPM. Section 3
describes the simulation model of the variable wing leading-edge structure and presents
the simulation verification results of the NCV-CPM. Section 4 discusses the strain moni-
toring system for the variable wing leading-edge structure and presents the experimental
verification results of the NCV-CPM. Section 5 concludes by summarizing the innovations
and implementation outcomes of the NCV-CPM.

2. NCV-CPM Methodology
2.1. Construction of Strain–Arc Curvature Function for Sensing Points

Since the variable wing leading edge only undergoes bending deformation [24], and
the morphological changes along the Y-direction remain consistent throughout the de-
formation process, it is sufficient to select a section along the circumferential direction of
the wing leading edge as the research object, as illustrated in Figure 1a. In the selected
circumferential section of the leading edge, any arbitrary arc segment can be chosen for
analysis, as depicted in Figure 1b.
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being φ-dθ, while the skin thickness remains unchanged at h. 

Figure 1. (a) Section selected in the leading edge of the variable wing; (b) comparison of the selected
section before and after deformation.

When the wing leading edge is undeformed, the curvature radius of the neutral layer
within the selected arc segment is denoted as R1, and its corresponding arc angle is φ,
with a skin thickness of h. With the internal actuation mechanism driving the bending
deformation of the wing leading edge, the curvature radius of the neutral layer within the
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selected arc segment after deformation is defined as R2, with the corresponding arc angle
being φ−dθ, while the skin thickness remains unchanged at h.

ε =

(
R2 +

h
2

)
(φ − dθ)−

(
R1 +

h
2

)
φ(

R1 +
h
2

)
φ

(1)

Assuming that the arc length of the neutral surface within the selected arc segment
remains constant during the deformation process [25]

R2(ϕ − dθ) = R1ϕ (2)

Substituting Equation (2) into Equation (1), the curvature radius R2 of the neutral layer
after deformation for the selected arc segment can be derived:

R2 =
hR1

2R1ε + hε + h
(3)

Therefore, the surface curvature q of the selected arc segment after deformation can be
expressed in terms of the measured strain ε at the measurement point, the skin thickness
h, and the radius R1 of the neutral layer before deformation at the wing leading edge, as
shown in Equation (4).

q = (R2 +
h
2
)
−1

=
h + 2εR1

(1 + ε)hR1
(4)

Defining Equation (4) as the “Strain–Arc Curvature Function,” in subsequent valida-
tions of leading-edge morphing, the strain data from the surface-sensing measurement
points on the leading-edge skin, along with the corresponding curvilinear angles of each arc
segment on the wing leading edge, are inputted into this function model. This enables the
precise calculation of curvature information at the discrete locations of the sensing points.

2.2. Reconstruction of Wing Leading-Edge Curvature and Strain Field Based on Node
Curvature Vectors

Based on the curvature calculation method using discrete actual sensing points as
described in Section 2.1, curvature information and strain information at positions where
strain sensors are not attached cannot be obtained. Therefore, this section proposes a
method for reconstructing the curvature field and strain field of the wing leading edge
based on solving the curvature node vector of arc segments. This method can obtain
curvature and strain distributions, corresponding to virtual sensing points on the wing’s
leading edge—positions where actual sensors are not deployed—thereby achieving an
equivalent expansion of curvature/strain sensing data. Based on this, it is possible to
increase the density of segment partition without increasing the number of actual sensor
measurement points, thereby improving the accuracy of morphological reconstruction, as
shown in Figure 2.
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The core idea of the method is as follows: Firstly, according to the discrete layout
scheme of actual measurement points, the wing leading-edge section is divided into a finite
number of arc segments, as illustrated in Figure 2. To enhance the order of the curvature
fitting function within each segment, an internal node r is added within each arc segment,
except at the two ends [26], as depicted in Figure 3.
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Figure 3. Arc segment node definition.

Next, the construction of the curvature node vector for each arc segment is under-
taken. Taking the mth arc segment as an example, the curvature information from the two
endpoints and one internal node of this segment is utilized to construct a curvature node
vector, denoted as qNode, as shown in Equation (5).

qNode =
[
q1 q2 qr

]T (5)

The theoretical curvature information at any point within the segment can be obtained
by computing the curvature vector and curvature functions (N1, N2, Nr), as illustrated in
Equation (6). By substituting the arc length information s of the discrete measurement
points into this equation, the theoretical curvature of the discrete measurement points can
be calculated.

q(s) = ∑
i=1,2,r

NiqNode,


N1 = 2ξ2 − 3ξ + 1
N2 = 2ξ2 − ξ
Nr = 4ξ − 4ξ2

(ξ = s/Le ∈ [0, 1]) (6)

where s represents the arc length parameter, and Le denotes the arc length of the segment.
Furthermore, Equation (6) is transformed into a matrix form that incorporates the

curvature node vector qNode of the arc segment:

q(qNode) = CqNode, C = [N1 N2 Nr] (7)

Based on the curvature qm calculated from Section 2.1 for the mth discrete actual
measurement point, combined with the theoretical curvature of this point derived from
the above analysis, a least squares error function model between the two is established,
yielding the following [27]:

Φe(qNode) = ∥q(qNode)− qm∥2 (8)

By taking the derivative of the error function model concerning the curvature vector
and setting it to zero, the curvature stiffness equation is obtained, as shown in Equation (9).

∂Φe(qNode)

qNode
= keqNode − fe = 0 (9)
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where ke represents the curvature stiffness matrix, and fe denotes the curvature load matrix,
as illustrated in Equation (10).

ke =
n
∑

i=1

∫ iLe
n

(i−1)Le
n

(
CTC

)
dX

fe =
n
∑

i=1

∫ iLe
n

(i−1)Le
n

(
CTqm

)
dX

(10)

Subsequently, based on the segmentation scheme of the arc segments, the curvature
stiffness equations for each segment are assembled into the overall curvature stiffness
equation. The solution of this equation provides the curvature vector at each node for
every arc segment [28]. Combining Equation (6), further computations yield the curvature
distribution information at locations on the wing’s leading-edge surface where sensors are
not deployed (referred to as virtual sensing points).

It is noteworthy that, in conjunction with the curvature–strain mapping function
relationship depicted in Equation (11), a reverse process can be employed to reconstruct
the strain field at the leading edge. This, in turn, offers data support for structural health
monitoring and condition assessment of the wing’s leading edge, as depicted in Figure 4.

ε =
(qR1 − 1)h
(2 − qh)R1

(11)
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Figure 4. Curvature and strain field reconstruction process based on node curvature vectors.

2.3. Morphological Reconstruction Based on Curvature Propagation Method

The core idea of the wing leading-edge morphological reconstruction method based
on the curvature propagation method is as follows. Firstly, following the segmentation
scheme for the arc segments and leveraging principles of differential geometry, calculate
the coordinate increments between the endpoints and starting points of all the arc segments.
Secondly, starting from the initial segment, cumulatively add the coordinate increments of
all arc segments. This process yields the coordinate positions after the deformation of the
wing leading edge [29].

Assuming the existence of the arc segment AB, as depicted in Figure 5, the principal
coordinate system XY is established at the location of the arc segment, and the tangent line
at starting point A is defined as the X’ coordinate axis to establish the auxiliary coordinate
system X’Y’. The projections of point B on the principal coordinate system XY are denoted
as xBA and yBA, while the projections of point B on the auxiliary coordinate system X’Y’ are
denoted as xB1 and yB1. Furthermore, xBC and yBC represent the projection of xB1 onto the
principal coordinate system XY.
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According to geometric relationships, xBA and yBA can be expressed as follows:

{
xBA = xB1 × cos β − yB1 × sin β
yBA = xB1 × sin β + yB1 × cos β

, β =

s∫
0

q(s)ds (12)

where β represents the angle between the tangent line at point A and the horizontal axis.
In the auxiliary coordinate system X’Y’, the expressions for xB1 and yB1 are given

as follows: {
xB1 = rAB × sin a
yB1 = rAB × (1 − cos a)

, a = S
rAB

rAB = qA+qB
2qAqB

(13)

where α represents the angle between the radii of points A and B, rAB denotes the average
radius of the arc segment AB, S represents the size of the arc segment length, and qA and
qB, respectively, represent the curvature at points A and B.

By combining Equations (12) and (13), the coordinate increments xBA and yBA relative
to point A can be computed for point B on the arc segment. Cumulatively adding the
coordinate increments of all arc segments allows for the reconstruction of the cross-sectional
propagation of the wing leading edge after deformation.

2.4. Optimization of Virtual Sensing Point Quantity Based on Particle Swarm Algorithm

According to the particle swarm optimization algorithm, the sum of the virtual per-
ception points and the actual measurement points in Section 2.2 is defined as the number
of particles. By iteratively adjusting the number of particles, the optimal number of vir-
tual perception points is sought, aiming to improve the accuracy of wing leading-edge
propagation reconstruction without increasing the number of actual sensors. Considering
the symmetry of the variable curvature wing leading-edge structure and the randomness
of deformation, both actual and virtual perception points are arranged in an equidistant
layout. The optimization process is as follows.

Firstly, based on the sensor layout initialization scheme, several actual strain sensors
are uniformly distributed on the wing leading-edge surface. Combined with the method
described in Section 2.2, approximate global measurements of the leading-edge surface
curvature and strain distribution characteristics are obtained.

Secondly, utilizing the particle swarm optimization algorithm, along with Equa-
tion (14), the number of particles n is updated [30,31], yielding the following:{

n(t + 1) = n(t) + v(t + 1)
v(t + 1) = w(t)v(t) + C1r1

(
pg(t)− n(t)

) (14)

where t represents the iteration count of particles, ni(t) denotes the number of measurement
points at the tth iteration of particles, ni(t+1) represents the number of measurement points
at the t+1th iteration of particles, vi(t+1) signifies the updating velocity at the t+1th iteration
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of particles, and pg(t) stands for the optimal number of measurement points obtained in
the previous t iterations of particles. C1 is the weighting coefficient for particles tracking
their own historical best value, typically set to 2, and r1 is a uniformly distributed random
number within the interval [0, 1]. w(t) represents the updating velocity coefficient at the tth
iteration of particles, as shown in Equation (15).

w(t) = wmax − iter × wmax − wmin

itermax
(15)

where itermax represents the maximum iteration count for the algorithm, and iter denotes
the current iteration count. Typically, wmax is set to 0.9, and wmin is set to 0.4.

Furthermore, following the method described in Section 2.2, curvature and strain
information corresponding to different particle positions is obtained after each iteration.
Building upon this information and combining it with the wing leading-edge propagation
reconstruction method outlined in Section 2.3, the curvature accuracy is computed and
compared for each iteration of particle positions. This process facilitates the determination
of the optimal number of virtual perception points aimed at wing leading-edge propagation
reconstruction, as depicted in Figure 6.
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Figure 6. Number optimization of virtual sensing points based on particle swarm optimization
algorithm.

To evaluate the effectiveness of the proposed method for wing leading-edge propaga-
tion reconstruction, the Euclidean distance d(i) between each validation point on the wing
leading edge and the coordinate origin is defined, as shown in Equation (16).

d(i) =
√

x(i)2 + y(i)2 (16)

where d(i) denotes the Euclidean distance between the ith validation point and the coordi-
nate origin, x(i) represents the deformed X-coordinate of the ith validation point, and y(i)
denotes the deformed Y-coordinate of the ith validation point.

Based on this, the absolute error, relative error, root mean square error, and mean
relative error of the reconstruction for each validation point on the wing leading edge can
be represented as follows:

AE(i) =
∣∣∣dMethod(i)− dRe f (i)

∣∣∣, RE(i) = 100% ×
∣∣∣∣ dRe f (i)−d

Method
(i)

dRe f (i)

∣∣∣∣
RMSE = 2

√
1
m

m
∑

i=1

(
d Method(i)− dRe f (i)

)2
, MRE = 1

n

n
∑

i=1
RE(i)

(17)

where AE(i) represents the absolute error of the morphological reconstruction for the
ith validation point, RMSE stands for the root mean square error of the morphological
reconstruction results for m validation points, RE(i) denotes the relative error of the mor-
phological reconstruction for the ith validation point, MRE is the average of the relative
errors of morphological reconstruction for m validation points, dMethod(i) represents the
reconstructed displacement for the ith validation point, and dRef(i) is the true displacement
for the ith validation point.
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3. Simulation Verifications
3.1. Construction of Variable Wing Leading-Edge Model

The swept-wing leading-edge structure was composed of skin, a spar, and an internally
embedded leading-edge deformation drive mechanism [32], as illustrated in Figure 7. The
chordwise direction of the leading-edge structure was defined as the X-direction, the
vertical height direction of the structure was defined as the Z-direction, and the lateral
direction of the skin was defined as the Y-direction. In the simulation model of the wing
leading edge, the unfolded length of the leading-edge skin was 957.6 mm, with a width of
350 mm and a thickness of 3 mm.
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The internal driving mechanism of the variable leading edge comprised a rocker arm
and four connecting rods. The leftmost endpoint of the rocker’s arm was hinged at the
loading point O. One end of each of the four connecting rods was connected to the rocker’s
arm through hinge points 1, 2, 3, and 4, respectively, while the other end was connected to
the four spars through brackets. In the finite element simulation analysis, the root of the
leading edge was set as a fixed support. By applying a bending moment MY at the loading
point O, the rocker’s arm drove the four connecting rods to deflect, thereby achieving
control over the deformation of the wing’s leading edge.

Under the action of the leading-edge deformation drive mechanism, the wing leading
edge can rotate clockwise around the fixed point O. During the rotation process, the aero-
dynamic performance of the aircraft, including lift, drag, and stability, will correspondingly
change. This design facilitates maintaining stable flight performance to the maximum
extent possible during different mission modes.

A simulation validation of the morphological reconstruction method for the skin
structure of the variable wing leading edge was conducted for four different leading-edge
deformation states, with deflection angles of 2◦, 4◦, 8◦, and 10◦, respectively.

3.2. Results and Discussion

Due to the predominant bending deformation of the leading-edge structure, the strain
and displacement distributions on the skin surface remained relatively constant along the
Y-direction. In subsequent simulation validations, we found that it was only necessary to
extract the strain data along the surface Path1 of the skin. Path1, located on the leading-edge
circumferential section, was divided into 26 equally spaced arc segments. At the center of
each segment, one strain-sensing point was positioned, and the nodes at both ends of each
segment served as validation points for assessing the reconstruction effectiveness of the
strain field, curvature field, and displacement field, as illustrated in Figure 8.



Biomimetics 2024, 9, 250 10 of 18

Biomimetics 2024, 9, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 8. Arc segment division scheme. 

3.2.1. Comparison of Curvature and Strain Reconstruction Errors between LI-CPM and 
NCV-CPM 

Taking the example of a leading-edge deflection angle of 10°, simulation data corre-
sponding to 26 strain-sensing points along Path1 were extracted according to the method 
described in Section 2.2. The reconstructed surface curvature field and strain field infor-
mation of the variable wing leading edge is depicted in Figure 9. 

 

 

 

  
(a) (b) 

Figure 9. Comparison of reconstruction results in Path1: (a) curvature result; (b) strain result. 

According to Figure 9a, along the circumferential direction of the wing leading edge, 
the curvature angles decreased and then increased, with the minimum curvature angle 
being observed in the central region. Therefore, after the deformation of the variable wing 
leading edge, the reconstructed curvature extremum was located in the middle region of 
the leading edge. Additionally, as indicated in Figure 9b, due to the predominant control 
of the wing leading edge by the main spar, the reconstructed strain field exhibited a sud-
den change at the main spar location. 

The curvature and strain reconstruction results for various validation points along 
Path1 are illustrated in Figure 9. For the conventional curvature propagation algorithm 
based on linear interpolation (LI-CPM), the relative error average of the curvature recon-
struction was 20.24%, and the root mean square error was 2.61 µm−1. In contrast, the cur-
vature propagation algorithm based on segment curvature nodal vectors (NCV-CPM) 
achieved a reduced relative error average of 5.98% and a decreased root mean square error 
of 0.42 µm−1, while the relative error average for the strain reconstruction was 4.66%. 

There are two main reasons for this phenomenon: Firstly, the curvature calculation 
accuracy of the sensing points is improved due to the strain–curvature function model 
proposed in Section 2.1. Secondly, the adoption of higher-order curvature functions to 

0 200 400 600 800 1000
-5

0

5

10

15

20

25

30

Cu
rv

at
ur

e[
μm

-1
]

Arc length[mm]

 Simulation result
 LI-CPM
 NCV-CPM

0 200 400 600 800 1000
-1.0x104

-5.0x103

0.0

5.0x103

1.0x104

1.5x104

St
ra

in
[μ

ε]

Arc length[mm]

 Simulation result
 NCV-CPM

Figure 8. Arc segment division scheme.

3.2.1. Comparison of Curvature and Strain Reconstruction Errors between LI-CPM and
NCV-CPM

Taking the example of a leading-edge deflection angle of 10◦, simulation data corre-
sponding to 26 strain-sensing points along Path1 were extracted according to the method
described in Section 2.2. The reconstructed surface curvature field and strain field informa-
tion of the variable wing leading edge is depicted in Figure 9.
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Figure 9. Comparison of reconstruction results in Path1: (a) curvature result; (b) strain result.

According to Figure 9a, along the circumferential direction of the wing leading edge,
the curvature angles decreased and then increased, with the minimum curvature angle
being observed in the central region. Therefore, after the deformation of the variable wing
leading edge, the reconstructed curvature extremum was located in the middle region of
the leading edge. Additionally, as indicated in Figure 9b, due to the predominant control of
the wing leading edge by the main spar, the reconstructed strain field exhibited a sudden
change at the main spar location.

The curvature and strain reconstruction results for various validation points along
Path1 are illustrated in Figure 9. For the conventional curvature propagation algorithm
based on linear interpolation (LI-CPM), the relative error average of the curvature recon-
struction was 20.24%, and the root mean square error was 2.61 µm−1. In contrast, the
curvature propagation algorithm based on segment curvature nodal vectors (NCV-CPM)
achieved a reduced relative error average of 5.98% and a decreased root mean square error
of 0.42 µm−1, while the relative error average for the strain reconstruction was 4.66%.
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There are two main reasons for this phenomenon: Firstly, the curvature calculation
accuracy of the sensing points is improved due to the strain–curvature function model
proposed in Section 2.1. Secondly, the adoption of higher-order curvature functions to solve
the curvature vector at element nodes enhances the accuracy of curvature calculation at
locations where actual sensors are not deployed.

Therefore, this method, utilizing a small number of discrete strain-sensing points,
not only significantly improved the curvature reconstruction accuracy at the positions of
unattached sensors (virtual sensing points) but also allowed for the reverse reconstruction
of the leading-edge strain distribution information.

3.2.2. Optimization of Virtual Sensing Node Quantities Based on Particle Swarm
Algorithms

Taking the example of a leading-edge deflection angle of 10◦, the entire surface
strain/curvature distribution data for the leading edge were reconstructed based on the
simulated data from 26 strain-sensing points, as described in Section 3.2. Furthermore, uti-
lizing the particle swarm optimization algorithm outlined in Section 2.4, the reconstruction
accuracy of the leading-edge morphology was calculated after each iteration of particle
quantity. This was carried out to determine the optimal number of virtual sensing points
required for the morphological reconstruction of the wing leading edge, as illustrated
in Figure 10.
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During the particle quantity iteration process, the root mean square error of the
morphological reconstruction of the variable wing leading edge, starting from the initial
26 actual sensing points, decreased from 28.84 mm to 7.06 mm.

As depicted in Figure 10, with the continuous increase in the number of virtual sensing
points, the reconstruction error of the variable wing leading-edge morphology steadily
decreased. When the sum of the virtual and actual sensing points exceeded 51, the average
relative error of the leading-edge morphology reconstruction converged and no longer
decreased. Therefore, uniformly distributing 51 sensing points along the circumferential
direction of the wing leading edge could be considered the optimal sensor layout scheme.
In this scheme, 26 strain data points were acquired from actual sensors, while the additional
25 strain data points from virtual sensing points could be calculated using the reconstruction
method described in Section 2.2.

3.2.3. Comparison of Morphology Reconstruction Errors between LI-CPM and NCV-CPM

To assess the feasibility of the aforementioned reconstruction method, simulations
were conducted to verify the effectiveness of enhancing the accuracy of the morphological
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reconstruction of the variable wing leading edge based on the curvature nodal vector
solution and point optimization results.

At a leading-edge deflection angle of 10◦, the reconstructed morphology curve of the
wing leading edge along Path1 closely aligned with the simulated displacement curve, as
illustrated in Figure 11.
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Figure 11. Morphological reconstruction results of NCV-CPM for wing leading edge of deflection
angle 10◦: (a) Euclidean distance cloud map; (b) reconstruction effect comparison.

The conventional curvature propagation method (LI-CPM) based on linear interpo-
lation yielded an average relative error and root mean square error of morphological
reconstruction of 10.85% and 28.84 mm, respectively. In contrast, the proposed morphologi-
cal reconstruction method (NCV-CPM) in this study achieved an average relative error and
root mean square error of 3.34% and 7.06 mm, respectively, as depicted in Figure 12a.
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Figure 12. Propagation reconstruction effect comparison of LI-CPM and NCV-CPM: (a) relative error
under 10◦ deflection angle of leading edge; (b) root mean square error under four leading edge
deflection angles.
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A comparison of the morphological reconstruction accuracy between the conventional
curvature propagation method and the algorithm proposed in this study is presented in
Figure 12b for leading-edge deflection angles of 2◦, 4◦, 8◦, and 10◦.

From Figure 12, it is evident that, compared to the conventional curvature propagation
method based on linear interpolation, the method proposed in this study significantly im-
proved the morphological reconstruction accuracy at four different deflection angles. This
improvement stemmed from the fact that the conventional curvature propagation method
utilized a first-order linear interpolation function to obtain curvature information, which
failed to meet the requirements for fitting the leading-edge curvature field, thereby affecting
the accuracy of the morphological reconstruction. In contrast, the method proposed in this
study enhanced the reconstruction effectiveness of the curvature fitting function by intro-
ducing additional nodes within the segments, thereby avoiding the influence of calculation
errors in curvature information due to unattached sensor positions on the accuracy of the
wing leading-edge morphology reconstruction.

Furthermore, this study employed a particle swarm algorithm to determine the optimal
number of virtual sensing points required for the morphological reconstruction of the wing
leading edge, thereby reducing the complexity of the sensor network.

4. Experimental Validations
4.1. Construction of Monitoring System for Variable Wing Leading-Edge Morphology

The variable wing leading-edge monitoring experimental system primarily consisted
of a dynamic strain acquisition instrument, resistance strain gauges, a fixed platform, laser
displacement sensors, the variable wing leading edge, and its actuating mechanism, as
depicted in Figure 13a.
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Figure 13. (a) Experimental system of wing leading-edge deformation reconstruction; (b) integration
between strain sensor and leading edge.

The skin of the variable wing leading edge in the monitoring system is fabricated
using an epoxy resin matrix reinforced with SW100A/6511 woven glass-fiber prepreg. The
specific material parameters are detailed in Table 1.

Table 1. Material parameters of the glass-fiber prepreg.

E1 (GPa) E1 (GPa) Nu12 G12 (GPa) εt (µ) εc (µ)

47.7 13.3 0.12 47.5 33,166 13,538

The root of the wing’s leading edge was mounted on a fixed support platform, and
when the rocker’s arm rotated around loading point P, four connecting rods drove the main
spar to achieve precise control of the leading-edge deformation.

Experimental validation of the variable wing leading-edge morphological reconstruc-
tion method was conducted for four leading-edge deformation states with deflection angles
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of 3◦, 6◦, 9◦, and 12◦, respectively. The strain responses measured by strain gauges at-
tached to the leading-edge skin surface were utilized as inputs for the morphological
reconstruction method, as shown in Figure 13b.

To enhance the density of strain response information collection caused by the defor-
mation of the wing leading edge, three complementary and staggered layouts of sensing
points were designed along the chordwise direction of the wing. Combining the optimiza-
tion results of the sensing point quantity in Section 3.2.2, three strain-sensing paths, namely,
Path A, Path B, and Path C, were established on the surface of the wing leading-edge skin.
Each path was equipped with 17 strain-sensing points arranged at equal intervals, with a
spacing of 57.5 mm between adjacent points.

Among these 51 sensing points, 26 points (highlighted in yellow) were selected to
gather data as inputs for the morphological reconstruction method proposed in this study,
while the remaining 25 points (highlighted in blue) were used for evaluating the curva-
ture/strain reconstruction effectiveness, as illustrated in Figure 14.
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4.2. Results and Discussion
4.2.1. Comparison of Curvature and Strain Reconstruction Errors between LI-CPM and
NCV-CPM

Taking the leading-edge deflection angle of 12◦ as an example, based on the method
presented in Section 2.2, the reconstructed skin curvature field and strain field after un-
folding the variable wing leading edge were obtained. These distributions are depicted in
Figure 15a,b. The extremum of the reconstructed curvature distribution was located at an
arc length of 500 mm, while the reconstructed strain field exhibited a sudden change in the
position of the main spar. Both phenomena were consistent with the results obtained from
numerical simulations.

Compared to the conventional curvature recursion method (LI-CPM), the average
relative error of the curvature reconstruction for the validation points on Path B of the wing
leading edge decreased from 25.09% to 6.32%, and the root mean square error decreased
from 2.15 µm−1 to 0.81 µm−1, as shown in Figure 15a.

The experimental results demonstrated that the conventional curvature recursion
method, due to neglecting the initial curvature and sole reliance on linear interpolation
to obtain curvature information for unattached sensor positions, resulted in accumulated
errors between the calculated curvature field distribution and the actual curvature dis-
tribution. In contrast, the proposed method in this study, by sequentially constructing a
strain–curvature function that could characterize the dynamic variation in the curvature
of the variable leading edge and solving the curvature node vectors of the arc segments,
effectively mitigated the impact of the aforementioned cumulative errors on the accuracy
of the curvature field reconstruction.

As depicted in Figure 15b, this method, based on the curvature–strain mapping
function and the characteristics of the reconstructed curvature field distribution, could
also achieve the inverse reconstruction of the strain field of the wing leading edge. This
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provided data support for the structural health monitoring and fatigue prediction of the
wing leading edge.
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Figure 15. Comparison of reconstruction results in Path B: (a) curvature results; (b) strain results.

4.2.2. Comparison of Morphology Reconstruction Errors between LI-CPM and NCV-CPM

The actual form of the leading edge was evaluated using measurements from laser
displacement sensors to assess the effectiveness of the method proposed in this study for
morphological reconstruction. Taking a leading-edge deflection angle of 12◦ as an example,
the reconstructed variable wing leading-edge cross-sectional form closely matched the
actual form curve, as illustrated in Figure 16.

As depicted in Figure 17a, when the leading-edge deflection angle was 12◦, the mor-
phological reconstruction error of the wing leading edge using NCV-CPM was significantly
lower than that of the conventional LI-CPM, with the average relative error of morpho-
logical reconstruction decreasing from 17.05% to 4.92%. For deformation states with
leading-edge deflection angles of 3◦, 6◦, and 10◦, the morphological reconstruction accu-
racy of the method proposed in this study was notably superior to that of the conventional
curvature recursion method, as shown in Figure 17b.

The experimental results demonstrate that the proposed method achieves an improve-
ment in morphological reconstruction accuracy by reducing both the curvature calculation
error at sensing points and the cumulative error in curvature reconstruction.
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Figure 16. Morphological reconstruction results of NCV-CPM for wing leading edge of deflection at
angle of 12◦: (a) leading-edge deflection diagram; (b) reconstruction effect comparison.
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Figure 17. Propagation reconstruction effect comparison of LI-CPM and NCV-CPM: (a) relative error
under 12◦ deflection angle of leading edge; (b) root mean square error under four leading-edge
deflection angles.

5. Conclusions

To meet the self-perception requirements of the variable wing leading-edge morphol-
ogy based on biomimetic principles, a morphological reconstruction method for the variable
wing leading edge was proposed in this study, based on the relationship model between the
strain and surface curvature function and the solution of segment node curvature vectors.
The main work carried out is summarized as follows:

(1) The surface angle was introduced into the relationship model between strain and
surface curvature to improve the accuracy of the curvature calculation for sensing
points on the wing leading edge.

(2) A method for solving node curvature vectors based on high-order curvature fit-
ting functions was proposed. Compared with the conventional curvature recursion
method based on first-order interpolation functions, the error in curvature field re-
construction could be reduced from 25.09% to 6.32%. Furthermore, after obtaining
the curvature field of the wing leading edge, its application in the strain–surface
curvature function enabled the inverse reconstruction of the strain field of the wing
leading edge.

(3) An optimization method for the number of sensing points based on the particle swarm
algorithm was proposed, determining the optimal number of virtual sensing points.
This not only simplified the complexity of the wing leading-edge sensing network
but also improved the accuracy of morphological reconstruction. The results showed
that, compared with the conventional curvature recursion method, the morphological
reconstruction error of the wing leading edge decreased from 17.05% to 4.92%.

The proposed method was unaffected by modeling accuracy and did not require
consideration of structural material parameters and external load information. It could
reconstruct approximate global measured information of the variable wing leading-edge
curvature field, strain field, and displacement distribution, thereby providing real-time data
support for the adaptive closed-loop control and structural health monitoring of variable
wings based on biomimetic principles.
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