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Abstract: This work presents the research results on the development of an innovative, hydrometal-
lurgical technology for the production of manganese(II) perrhenate dihydrate from recycled waste.
These wastes are scraps of Ni-based superalloys containing Re and scraps of Li–ion batteries contain-
ing Mn—specifically, solutions from the leaching of black mass. This work presents the conditions
for the production of Mn(ReO4)2·2H2O. Thus, to obtain Mn(ReO4)2·2H2O, manganese(II) oxide
was used, precipitated from the solutions obtained after the leaching of black mass from Li–ion
batteries scrap and purified from Cu, Fe and Al (pH = 5.2). MnO2 precipitation was carried out at a
temperature < 50 ◦C for 30 min using a stoichiometric amount of KMnO4 in the presence of H2O2.
MnO2 precipitated in this way was purified using a 20% H2SO4 solution and then H2O. Purified
MnO2 was then added alternately with a 30% H2O2 solution to an aqueous HReO4 solution. The
reaction was conducted at room temperature for 30 min to obtain a pH of 6–7. Mn(ReO4)2·2H2O
precipitated by evaporating the solution to dryness was purified by recrystallization from H2O
with the addition of H2O2 at least twice. Purified Mn(ReO4)2·2H2O was dried at a temperature
of 100–110 ◦C. Using the described procedure, Mn(ReO4)2·2H2O was obtained with a purity of
>99.0%. This technology is an example of the green transformation method, taking into account the
6R principles.

Keywords: batteries; superalloys; rhenium; manganese; metal perrhenates

1. Introduction

Rhenium appears extremely rarely in nature, only in a dispersed state, mainly in
molybdenite, columbite and copper-bearing shales [1]. Manganese, on the other hand,
is the twelfth-most abundant metal in the Earth’s crust, occurring mainly in the form of
oxides, carbonates and silicates. It is the most common heavy metal after iron [2–4].

The chemical properties of rhenium determine its applications, mainly in the pro-
duction of superalloys but also in catalysis [5,6]. Rhenium is a heavy metal with a high
melting point (>3180 ◦C), significant density (21.0 g/cm3), high hardness (Mohs 7), high
strength, thermal and chemical resistance and can also be easily shaped by plastic pro-
cessing. It is characterized by the highest modulus of elasticity of all refractory metals,
−420 GPa [1,3,7].

Manganese, on the other hand, is a hard, silvery and brittle metal with a pink luster.
It is widely used as an additive in steel, lowering its melting point and improving its
mechanical properties. It is pyrophoric when crushed. Manganese is in huge demand
around the world due to its numerous and diverse applications, mainly in the production
of steel and high-capacity batteries [2,8,9].
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The world’s annual production of rhenium is up to 75 tons, the vast majority of which
is recovered from so-called primary raw materials, and only ~8 tons are produced from
recycling [1,10,11]. The main manufacturers of rhenium from recycling are countries such
as the USA, Canada, Germany, Czechia and Poland [1,12]. Rhenium recycling was much
greater in 2014–2015, generating 13 tons/year. Rhenium is manufactured as a side product
during the production of other elements both from primary or secondary resources, for
example, during the recovery of Co and Ni from superalloys scraps. Consequently, the
production of rhenium is influenced by the demand for other metals like cobalt and nickel.
Currently, on the metals market, cobalt is considered a critical material in most of the
world [13–15]. In contrast, nickel is a strategic material and therefore sought after, mainly
due to the development of the battery industry [16,17].

However, the world annual production of manganese is not comparable to rhenium,
as it constitutes ~6.2 million tons. South Africa is the world’s largest manufacturer of
manganese, accounting for 33.5% of its global production. It should also be noted that most
of the mining of manganese is concentrated in the Kalahari Desert, which is believed to
contain over 70% of the world’s resources of this metal. Manganese is recycled mainly from
iron and steel scraps; a small amount of it is recycled from aluminum beverage cans. The
recycling rate is 37%, and the efficiency is estimated at 53% [18–20].

This publication concerns the preparation of manganese(II) perrhenate dihydrate.
Manganese and rhenium share many of the chemical characteristics of transition metals,
including multiple valency, the ability to form stable complex ions, paramagnetism and
catalytic properties. However, in many aspects, rhenium is chemically more similar to
technetium than to manganese [21,22]. For this reason, Mn(ReO4)2·2H2O has potential for
use in the production of alloys, catalysts or in electrical components [23].

There are not many reports in the literature about the combination of rhenium and
manganese and, consequently, about Mn(ReO4)2·2H2O. There are several reports on the
preparation, properties and use of manganese(II) perrhenate and its hydrates.

In 1949, W. T. Smith and G. E. Maxwell described the synthesis of manganese(II)
perrhenate dihydrate, which was obtained as a result of the reaction of manganese(II)
carbonate or manganese(II) hydroxide with perrhenic acid. This publication also specified
the physicochemical properties of the above-mentioned compound, such as solubility,
density and freezing point [24].

In 1969, H. G. Mayfield, Jr. and W. E. Bull described the process of forming the
complexes of manganese(II) perrhenate with pyridine [25].

However, the synthesis of manganese(II) perrhenate from manganese(IV) oxide, metal-
lic manganese and rhenium(VI) oxide has been patented and described in patent no. US
4027004A. It also explains the properties of the obtained manganese(II) perrhenate, which
allows it to be used in electrical components [23].

In 1981, K.V. Ovchinnikov and his team investigated the thermal decomposition of
manganese(II) perrhenate in vacuum [26].

In 1997, Charles Torardi and his team presented the magnetic properties of anhydrous
manganese(II) perrhenate in a publication. This compound was found to have antiferro-
magnetic properties. It was also determined that anhydrous manganese(II) perrhenate has
trigonal symmetry [27].

A. Butz, G. Miehle, H. Paulus, P. Strauss and H. Fuess, in 1998, researched the crystal-
lographic structure of manganese(II) perrhenate in dihydrate and anhydrous forms and
published the results of the dihydrate dehydration process. This compound was obtained
as a result of the reaction of manganese(II) carbonate with perrhenic acid. The process was
carried out in a temperature range of 50–60 ◦C in the presence of carbon dioxide [28].

In Z. Für Krist. -New Cryst. Struct., in the same year, an article was published presenting
the results of research on the crystallographic structure of Mn(ReO4)2(H2O)2. The com-
pound was obtained as a result of the reaction of manganese(II) carbonate with perrhenic
acid [29].
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A work about [Mn(H2O)2](ReO4)2 was also published by J. Hetmańczyk and Ł. Het-
mańczyk These studies were conducted using spectroscopic methods. The authors pre-
sented the dynamics of H2O ligands and a perrhenate anion in the [Mn(H2O)2](ReO4)2
molecule at the moment of phase transition, as well as the crystallographic structure and
thermal properties of the above-mentioned compounds. These compounds were obtained
as a result of the reaction of manganese(II) carbonate with perrhenic acid [30].

In 2021, B.C. Gong, H.C. Yang, J.F. Zhang, K. Liu and Z.Y. Lu conducted research
in which they found that manganese(II) perrhenate, which has a wavy layered structure,
doped with electrons exhibits ferromagnetic properties. They also determined that this
compound can be a so-called van der Walls magnetic material, which means that it can be
used for research on magnetism and in spintronics [31].

In 2020, in OSTI.GOV, a detailed crystallographic analysis of manganese(II) perrhenate
was described. It showed that Mn(ReO4)2 crystallizes in a trigonal space group and its
structure is two-dimensional [32].

The objective of this study was to produce manganese(II) perrhenate dihydrate
exclusively from two waste streams that, to the knowledge of the authors, have not
been previously reported in the literature. Furthermore, the innovative method involves
handling all waste materials, solid and liquid, to eliminate any loss of components and
the need for further processing. This waste-free technology enables the production of
high-purity manganese(II) perrhenate dihydrate, a valuable material for future novel
applications in alloys, catalysts and electrical components. It is also in agreement with
the principles of sustainable development and green transformation, and importantly,
it meets the 6R principles in all six areas (rethink, refuse, reduce, reuse, repair and
recycle) [33].

2. Results and Discussion
2.1. Recovery of Manganese from Post-Leaching Solutions of Li–ion Battery Scrap and Analysis of
the Obtained MnO2

Manganese precipitation tests were carried out using the post-leaching solutions
of Li–ion battery scrap. Before the main precipitation of manganese, the solution was
purified from Cu and then from Al and Fe. Copper was precipitated using 1 mole of
iron in the form of metallic Fe powder for each mole of copper in the solution, which
takes around 45 min with filtration. After filtering the precipitate, 30% H2O2 solution
and then aqueous 20%NaOH solution were added over 30 min until the pH 5.2 was
obtained. Neutralization was carried out at a temperature not exceeding 50 ◦C, and
after obtaining the desired pH, the reaction was conducted for 30 min in the obtained
conditions. After that time, the precipitated aluminum–iron sludge was filtered to obtain
a solution that was sent for the manganese recovery tests. Table 1 lists the compositions
of all the solutions, and Figure 1 shows (a) losses of valuable metals in the purification
processes (Li, Mn, Co and Ni) and (b) efficiency of the precipitation of pollutants (Cu, Fe
and Al).

Table 1. Composition of the solutions obtained in the purification tests.

Type of Solution Volume, dm3
Concentration, g/dm3

Ni Co Al Mn Li Fe Cu

after leaching 10.0 8.20 25.60 2.50 6.54 2.56 1.80 2.50
after Cu precipitation (E) 9.65 8.42 26.32 2.59 6.78 2.65 4.14 <0.01

after Fe and Al
precipitation (F) 10.12 7.91 24.74 <0.01 6.45 2.51 <0.01 <0.01
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Figure 1. Results of the solution purification tests from Cu, Fe and Al.

As can be seen in Figure 1, the losses of valuable metals (Li, Mn, Co and Ni) did not
exceed 2% for each component, while the precipitation efficiencies of impurities, such as
Cu, Fe and Al, were 99.84%, 99.97% and 99.96%, respectively.

In the next stage, the purified solution was sent for the manganese precipitation
tests. Precipitation was carried out using a stoichiometric amount of KMnO4, and the
resulting mixture was intensively stirred for 60 min at room temperature. After this time,
the precipitate was vacuum-filtered, washed (with solutions of sulfuric acid and water)
and analyzed. The solution from the filtration was directed to the recovery of other metals
(Ni, Co and Li).

In this way, manganese(II) oxides were obtained, with the compositions depending
on the purification stage listed in Table 2. No significant losses of Ni, Li and Co were
observed during the process. Cobalt and nickel losses, associated with MnO2 precipitation,
were reduced by proposing a recycling of the solutions resulting from the purification.
For the selected manganese(II) oxide, after all purification steps, XRD analysis was per-
formed (Figure 2). During the research, a waste management method was developed
(Figure 3). SEM analysis was performed for the purified with 20% H2SO4 manganese(II)
oxide—Figure 4.

Table 2. Compositions of the obtained manganese(II) oxides.

Type of
MnO2

Composition, wt%

Mn Co Ni Fe

crude 56.10 4.14 0.90 <0.01
purified with 1% H2SO4 53.30 3.55 0.67 <0.01
purified with 20% H2SO4 55.90 0.20 0.16 <0.01

The purification of MnO2 with 20% H2SO4 solution allowed to reduce the level of
impurities below 0.20 wt% of each metal. Thus, MnO2 was obtained, in which the amount
of individual impurities such as Co, Ni, and Fe was (wt%): 0.20, 0.16 and <0.01, respectively
(Table 2).

As can be seen in Figure 2, XRD analysis confirmed the possibility of producing
MnO2 using the described conditions, as the obtained diffractogram shows only the crys-
talline form of MnO2. The form of the diffractogram indicates a large amount of the
amorphous phase.

The obtained MnO2 precipitate was contaminated with cobalt and nickel but did
not contain iron. After purification with a 20% H2SO4 solution, a product free of the
above-mentioned elements was obtained. It was the substrate for the production of
manganese(II) perrhenate.
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2.2. Precipitation and Characterization of the Obtained Manganese(II)Perrhenate Dihydrate

The production of manganese(II) perrhenate dihydrate was carried out according to
the reaction (1)

MnO2 + H2O2 + 2HReO4 = Mn(ReO4)2 + 2H2O + O2 (1)

Purified MnO2 (weighing 10 g) was added alternately with a 30% H2O2 solution
(50 cm3 of hydrogen peroxide for each 10 g of manganese(II) oxide) to the aqueous
solutions of perrhenic acid with the concentrations of 18.0 or 295.0 g/dm3 of Re. The
tests were carried out at room temperature. In this way, a solution with the pH ranging
from 6 to 7 was obtained. After reaching the pH, the solution was stirred for 90 min and
successively filtered from the unreacted residue. The resulting solutions were directed
to the evaporation to dryness, which was carried out at a temperature < 50 ◦C with an
addition of 30% H2O2 solution using 15 cm3 of hydrogen peroxide for every 50 g of
rhenium. Evaporation tests were also carried out to obtain the first crystals. The crude
wet sludge precipitated in this way was combined and sent to the cyclic purification
stage. A 30 g portion of crude manganese(II) perrhenate dihydrate was used in the
tests. Purification was carried out using recrystallization from water with an addition
of 15 cm3 of 30% aqueous H2O2 solution for every 50 g of Re in the precipitate and
successively evaporated to obtain the first crystals. Four purification cycles were carried
out. The results of the obtained tests are presented in Tables 3 and 4. Figures 5 and 6
illustrate the influence of the used rhenium concentration on the precipitation efficiency
of the obtained manganese(II) perrhenate dihydrate and the influence of purification
cycles on the purification efficiency of the obtained compound.

With the use of perrhenic acid with the rhenium concentrations of 18 and 295 g/dm3

both, similar Mn(ReO4)2·2H2O precipitation efficiencies were obtained using both pre-
cipitation methods. The efficiencies were high, for example, over 92%, while using
the evaporation to dryness method. Therefore, the choice of acid concentration for
the technology in industry will result from the scale of the production, the amount
of waste solutions and the price of energy and will be analyzed at each stage of the
technology implementation.
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Table 3. Results of Mn(ReO4)2·2H2O precipitation.

Concentration of Re
in HReO4, g/dm3

Volume of
HReO4, dm3

Efficiency of Mn(ReO4)2·2H2O
Precipitation, %

Composition in Crude Mn(ReO4)2·2H2O, wt%

Mn Re Co Ni Fe

18.0 2.38
92.51 9.31 62.30 0.55 0.12 0.02

70.56 * 9.22 62.30 0.54 0.08 <0.01

295.0 0.15
96.52 9.54 64.30 0.51 0.13 <0.01

75.25 * 9.58 64.10 0.55 0.13 0.02

* Research conducted to the precipitation of the first crystals.

Table 4. Mn(ReO4)2·2H2O purification results.

Number of the
Cycle

Mass of
Mn(ReO4)2·2H2O, g

Precipitation
Efficiency of Mn(ReO4)2·2H2O *,

%

Composition in Crude Mn(ReO4)2·2H2O,
wt%

Mn Re Co Ni Fe

0 30.0 - 9.41 63.25 0.54 0.16 <0.01
I 24.0 80.0 9.29 62.95 0.15 0.10 <0.01
II 19.6 65.3 9.29 62.95 0.10 0.10 <0.01
III 17.5 58.3 9.29 62.95 0.10 0.10 <0.01
IV 15.2 50.7 9.29 62.95 0.10 0.10 <0.01

* Efficiency calculated in relation to the initial mass of crude Mn(ReO4)2·2H2O.
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Figure 5. Results of the influence of the Re concentration in HReO4 and the evaporation method on
the efficiency of Mn(ReO4)2·2H2O precipitation.
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The use of the second stage of purification allows to obtain Mn(ReO4)2·2H2O of
satisfactory purity, i.e., 9.29% of Mn, 62.9% of Re, 0.10% of Co and Ni and <0.01% of Fe.

In this way, 15.20 g of wet manganese(II) perrhenate dihydrate was obtained, which
was dried at 100–110 ◦C until a constant weight was reached. Thus, manganese(II) per-
rhenate dihydrate weighing 14.54 g with a purity > 99% was obtained. XRD analysis was
performed for this compound—Figure 7.
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As can be seen in the diffractogram (Figure 7), a crystalline form of Mn(ReO4)2·2H2O
was obtained using the described conditions. This diffraction pattern also does not show
any amorphous phases and substances.

For this Mn(ReO4)2·2H2O, its solubility was also determined. The test results are
presented in Table 5.
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Table 5. Mn(ReO4)2·2H2O solubility test results.

Temperature, ◦C
Solubility of

Mn(ReO4)2·2H2O,
%

Standard Deviation

0 31.5 0.09
10 28.2 0.10
20 22.7 0.22
30 20.5 0.16

The determined solubilities of Mn(ReO4)2·2H2O obtained at various temperature
values are consistent with the literature data [24,34]. Each test using the gravimetric
method was repeated three times, giving consistent results on the solubility of man-
ganese(II) perrhenate dihydrate. Standard deviations were calculated and are included
in Table 5.

The analysis of the conducted research on the precipitation of Mn(ReO4)2·2H2O
showed that this compound can be obtained using purified MnO2, adding it alternately
with the 30% H2O2 solution (50 cm3 of hydrogen peroxide for each 10 g of manganese(II)
oxide) to the aqueous solution of perrhenic acid. The reaction should be carried out at
room temperature for 30 min until a pH 6–7 is obtained. Mn(ReO4)2·2H2O, precipitated
by evaporating the solution to dryness, should be purified by recrystallization from water
with the addition of H2O2 at least twice. The purified Mn(ReO4)2·2H2O should be dried at
100–110 ◦C.

Based on the described research, this new, innovative, hydrometallurgical technology
was developed for obtaining manganese(II) perrhenate dihydrate that was produced en-
tirely from waste, i.e., superalloy scrap and Li–ion batteries. The next stage of the research
will be to find a real application of manganese(II) perrhenate dihydrate in the catalytic,
battery and defense industries. Research will be carried out on the possibility of obtaining
manganese(II) perrhenate dihydrate with dedicated physicochemical properties, e.g., grain
size below 100 nm.

3. Materials and Methods
3.1. Materials

Perrhenic acid, used in this research, was obtained by leaching the superalloy scrap
(Figure 8) with a mixture of acids with an addition of oxidants. The compositions of the
materials are shown in Table 6 [35,36]. In this way, a solution was obtained containing
1.1 g/dm3 of Re and mainly nickel but also cobalt, chromium and aluminum. This
solution was directed to the sorption of rhenium using a weakly basic ion exchange
resin A170 (Purolite, King of Prussia, PA, USA, hydroxide form). The solution obtained
after the sorption of rhenium was directed to the recovery of valuable metal components
(Ni and Co), while rhenium absorbed in the ion exchange resin was eluted with an
aqueous ammonia solution (25%, Chempur, Piekary Śląskie, Poland, p.a.). Ammonium
perrhenate was crystallized from the obtained ammonia eluate, which was then dis-
solved in water and directed to the sorption of ammonium ions using a strongly acidic
cation exchange resin C160 (Purolite, USA, hydrogen form) [37,38]. The post-sorption
solution, containing perrhenic acid, was sent to the concentration stage, or manganese(II)
perrhenate was obtained directly from it. Figure 9 shows the laboratory equipment
used in the preparation of perrhenic acid using the method described above. Perrhenic
acid used in the conducted research differed in rhenium concentration. The first type
came directly from the ion exchange process and was not concentrated. The second
type of perrhenic acid was first concentrated and then used to obtain manganese(II)
perrhenate dihydrate.
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In this way, two types of perrhenic acid were obtained, containing (1) 18.0 g/dm3 of
Re and <0.0001% of Ca, K, Mg, Cu, Na, Mo, Ni, Pb, Fe, NH4

+, Bi, Zn, W, As and Al each
and (2) 295.0 g/dm3 of Re; <0.0005% of K; <0.0002% of NH4

+; and <0.0001% of Ca, Mg, Cu,
Na, Mo, Ni, Pb, Fe, Bi, Zn, W, As and Al each [38].

The solutions obtained after the leaching of the black mass from Li–ion batteries were
used as the source of manganese—Table 7. Battery masses for the leaching process were
obtained as a result of using the technology developed and patented by Łukasiewicz-
IMN [39,40].

Table 7. Compositions of the black mass from Li–ion batteries used in the research.

Material
Composition, wt%

Ni Co Al Mn Li Fe Cu

C 6.50 32.00 2.00 5.45 2.50 1.90 2.03
D 12.70 17.00 2.79 10.02 2.70 2.10 1.78

After leaching, a solution with the composition of 2.50 g/dm3 of Al, 25.60 g/dm3 of Co,
2.56 g/dm3 of Li, 6.54 g/dm3 of Mn, 2.50 g/dm3 of Cu, 8.20 g/dm3 of Ni and 1.80 g/dm3

of Fe was obtained, which was directed to the MnO2 precipitation tests.
The following materials and reagents were used in this research: sulfuric acid

(95%, Chempur, Piekary Śląskie, Poland, p.a.), aqueous solution of hydrogen per-
oxide (30%, P.P.H. Stanlab, Lublin, Poland, p.a.), demineralized water (<2 µS/cm,
Łukasiewicz-IMN, Gliwice, Poland), sodium hydroxide (>98% Stanlab, Poland, p.a.),
KMnO4 (99% P.P.H. Stanlab, Lublin, Poland, p.a.) and Fe dust (>98%, Chempur, Piekary
Śląskie, Poland, p.a.).

3.2. Analyses

All analyses were performed at the Łukasiewicz Research Network—Institute of
Non-Ferrous Metals, mainly at the Centre for Analytical Chemistry (Gliwice, Poland).

The rhenium content in manganese(II) perrhenate and perrhenic acid was determined
by thin-layer X-ray fluorescence spectrometry using an X-ray fluorescence spectrometer
(ZSX Primus, Rigaku, Tokyo, Japan).

Ammonium ions in the aqueous solutions of perrhenic acid were determined by a
distillation method with titration after distillation—the Nessler method.

The following instrumental techniques were used to determine the concentrations
of Mn, Li, Cu, Mo, Pb, Bi, Zn, W, As, Al, Mg, Ca, K, Mg, Na, Fe, Co and Ni: GFAAS
(graphite furnace atomic absorption spectroscopy; Z-2000, HITACHI, Tokyo, Japan), ICP-
OES (inductively coupled plasma-optical emission spectroscopy; ULTI-MA 2, HORIBA
Jobin-Ivon, Kyoto, Japan), ICP-MS (inductively coupled plasma-mass spectroscopy; Nex-
ion, PerkinElmer, Waltham, MA, USA), FAAS, (flame atomic absorption spectrometry;
THERMO SOLAAR S4, Thermo Fisher Scientific, Waltham, MA, USA, equipped with
a flame module—deuterium background and correction) and ICP-OES (Optima 5300V,
Perkin Elmer, Waltham, MA, USA).

XRD analyses were also performed at the Łukasiewicz Research Network—Institute
of Non-Ferrous Metals, Centre of Functional Materials (Gliwice, Poland). The diffraction
patterns were prepared using a Rigaku MiniFlex 600 XRD diffractometer equipped with an
X-ray tube with a wavelength of 1.5406 Å, a D/TeX silicon strip detector and a Soller slit
with a high resolution of 2.5” on the primary and scattered beam, calibrated using NIST
SRM (Standard Reference Material) 640d Si powder.

SEM analyses were also performed at the Łukasiewicz Research Network—Institute of
Non-Ferrous Metals, Centre of Advanced Materials Technologies, using a high-resolution
Zeiss Gemini 1525 scanning electron microscope, equipped with a Quantax xFlash®6 Bruker
Nano X-ray spectrometer.
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For the precipitated and purified manganese(II) perrhenate dihydrate, its solubility
was measured using a gravimetric method. Figure 10 shows the used laboratory equip-
ment. The excess amount of salt was dissolved in water with a conductivity of 0.06 µS
in a thermostated reactor with a heating jacket with a working capacity of 0.5 × 10−3 m3.
The saturated solution was stirred for 4 h using a magnetic stirrer at a constant tem-
perature. The temperature was controlled using a Huber Ministat CC-K6 thermostat
(accuracy +/−0.02 ◦C). After stabilization, a sample of the saturated solution was taken
using a syringe equipped with a filter with a pore diameter of 0.22 µm. In order to avoid
crystallization during sample collection, the filter and syringe were heated to a temperature
5 ◦C higher than the solution temperature. The sample was dried in a laboratory dryer
at 30 ◦C. The solubility of manganese(II) perrhenate was calculated based on the mass
difference. The experiments were carried out for four temperature values, i.e., 0 ◦C, 10 ◦C,
20 ◦C and 30 ◦C. Each measurement was repeated three times.
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4. Conclusions

This work showed that with the use of manganese(II) oxide, precipitated from the
post-leaching solutions of the black mass from Li–ion batteries, after prior purification
from Cu, Fe, and Al (pH = 5.2)—respectively, steps 1 and 2—Mn(ReO4)2·2H2O can be
obtained. MnO2 precipitation should be carried out at a temperature not exceeding 50 ◦C
for 30 min using a stoichiometric amount of KMnO4—step 3. The precipitated MnO2
should be washed using a 20% solution of sulfuric acid and then water—steps 4 and 5.
Purified MnO2 should be added alternately with a 30% H2O2 solution (50 cm3 of hydrogen
peroxide for each 10 g of manganese(II) oxide) to an aqueous solution of perrhenic acid.
The reaction should be carried out at room temperature for 30 min to obtain a pH of
6–7—step 6. Mn(ReO4)2·2H2O precipitated by evaporating the solution to dryness—step
7—should be purified by recrystallization from water with the addition of H2O2 a minimum
of two times—step 8. The purified Mn described (ReO4)2·2H2O should be dried at a
temperature of 100–110 ◦C—step 9. Using the described procedure, Mn(ReO4)2·2H2O with
a purity > 99.0% and with a good precipitation efficiency can be obtained. A complete
diagram of the entire developed technology is shown in Figure 11.
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Figure 11 shows the diagram of the developed method in its entirety, with all the
recirculation possibilities and indication of the so-called auxiliary operations. The blue line
shows the recycling of sludge formed after the neutralization of perrhenic acid to prevent
the loss of manganese and rhenium. The purple line represents the recirculation of the
solutions resulting from the purification of Mn(ReO4)2·2H2O to minimize the losses of
rhenium and manganese. The orange line shows the recycling of the solutions from MnO2
purification to minimize the manganese loss.

5. Patents

Part of the results of the work presented in this publication is the material submitted
for patenting in the Patent Office of the Republic of Poland on 22 March 2024 entitled
Sposób otrzymywania dwuwodnego renianu(VII) manganu(II) z roztworów pochodzą-
cych z ługowania masy czarnej baterii Li–ion (English title: Method of obtaining man-
ganese(II) perrhenate dihydrate from the post-leaching solutions of the black mass from
Li–ion batteries).
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