Comment

Comment on Vishalakshi et al. MHD Hybrid Nanofluid Flow over a Stretching/Shrinking Sheet with Skin Friction: Effects of Radiation and Mass Transpiration. Magnetochemistry 2023, 9, 118

Asterios Pantokratoras

Citation: Pantokratoras, A. Comment on Vishalakshi et al. MHD Hybrid Nanofluid Flow over a
Stretching/Shrinking Sheet with Skin Friction: Effects of Radiation and Mass Transpiration. Magnetochemistry 2023, 9, 118. Magnetochemistry 2024, 10, 26. https://doi.org/10.3390/ magnetochemistry10040026

Academic Editors: Carlos J. Gómez García and Kamil G. Gareev

Received: 8 January 2024
Accepted: 7 April 2024
Published: 11 April 2024

Copyright: © 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece; apantokr@civil.duth.gr

1. First Error

In Figure 1, in [1], it is clearly shown that the x-axis is horizontal and the y-axis is vertical. The horizontal(u) momentum Equation (2) in [1] is as follows:

$$
\begin{equation*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=v_{h n f} \frac{\partial^{2} u}{\partial y^{2}}+\vec{g} \beta\left(T-T_{\infty}\right)-\frac{\sigma_{h n f} B_{0}^{2}}{\rho_{h n f}} \sin ^{2}(\tau) u \tag{1}
\end{equation*}
$$

It is well known in Physics that gravity acts in the vertical direction. Therefore, Equation (1) is incorrect because the gravity term $\vec{g} \beta\left(T-T_{\infty}\right)$ in Equation (1) must be zero. The incorrect gravity term from Equation (1) has been transferred to dimensionless Equation (13) in [1] as $\frac{R a_{\mathrm{s}}}{\operatorname{Pr}} \theta$ and as $\frac{R a_{\mathrm{s}}}{\operatorname{Pr}} \lambda f_{1}$ in Equation (17) in [1], and these equations are incorrect. Two papers with the same error have been criticized in [2,3].

2. Second Error

Equation (20) in [1] is as follows:

$$
\begin{equation*}
f(Y)=V_{C}+d\left(\frac{1-e^{-\delta Y}}{\gamma}\right) \tag{2}
\end{equation*}
$$

Equation (4c) in [1] is as follows:

$$
\begin{equation*}
T=T_{\infty}+\gamma\left(T_{w}-T_{\infty}\right) x \tag{3}
\end{equation*}
$$

In a Physics equation, all terms must have the same units, and from Equation (3), it is found that the units of γ are $m^{-1}(\text { length })^{-1}$. In Equation (2), the parameters $f(Y), V_{C}, d, Y, \delta$ are dimensionless, whereas γ is dimensional, and Equation (3) is incorrect.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Vishalakshi, A.B.; Mahesh, R.; Mahabaleshwar, U.S.; Rao, A.K.; Pérez, L.M.; Laroze, D. MHD Hybrid Nanofluid Flow over a Stretching/Shrinking Sheet with Skin Friction: Effects of Radiation and Mass Transpiration. Magnetochemistry 2023, 9, 118. [CrossRef]
2. Pantokratoras, A. Discussion on "Higher Order Chemical Reaction and Radiation Effects on Magnetohydrodynamic Flow of a Maxwell Nanofluid with Cattaneo-Christov Heat Flux Model Over a Stretching Sheet in a Porous Medium" (Reddy Vinodkumar, M. and Lakshminarayana, P., 2022, ASME J. Fluids Eng., 144(4), p.041204). ASME J. Fluids Eng. 2023, 145, 125501.
3. Pantokratoras, A. Comment on the paper "Shape effect of nanosize particles in unsteady mixed convection flow of nanofluid over disk with entropy generation". Proc. IMechE Part E J. Process Mech. Eng. 2019, 233, 147-148. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

