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Abstract: Kuratsuki bacteria enter the sake production process and affect the flavor and taste of
sake. This study compared gene expression in the sake yeast Saccharomyces cerevisiae in co-culture
with kuratsuki Kocuria to that in monoculture. Among the 5922 genes of S. cerevisiae, 71 genes were
upregulated more than 2-fold, and 61 genes were downregulated less than 0.5-fold in co-culture
with kuratsuki Kocuria. Among the stress-induced genes, fourteen were upregulated, and six were
downregulated. Among the fourteen upregulated genes, six were induced in response to replication
stress. Although the G1 cyclin gene CLN3 was upregulated by more than 2-fold, eight genes that were
induced in response to meiosis and/or sporulation were also upregulated. Fourteen metabolism-
related genes, for example, the glyceraldehyde-3-phosphate dehydrogenase genes TDH1, TDH2,
and TDH3, were downregulated by less than 0.5-fold in co-culture with kuratsuki Kocuria. The gene
expression patterns of S. cerevisiae co-cultured with kuratsuki Kocuria differed from those co-cultured
with lactic acid bacteria. Therefore, S. cerevisiae responded differently to different bacterial species.
This strongly suggests that kuratsuki bacteria affect gene expression in sake yeast, thereby affecting
the flavor and taste of sake.

Keywords: gene expression; kuratsuki bacteria; Kocuria; microbial interaction; sake yeast; Saccha-
romyces cerevisiae

1. Introduction

Sake is a traditional Japanese alcoholic beverage composed of koji, moto, rice, and
water. Koji is produced by growing the koji mold Aspergillus oryzae on steamed rice. The
enzymes of A. oryzae digest rice and produce sugars and amino acids; however, they cannot
produce ethanol. Moto is a fermentation starter made from a mixture of koji, rice, water, and
sake yeast Saccharomyces cerevisiae. S. cerevisiae converts sugar into ethanol, which is used in
beer, sake, and wine production [1]. The flavor and taste of sake are mainly determined
by the composition of esters and organic acids that are produced by the sake yeast [2–6].
Thus, different strains of sake yeast produce different flavors and determine the taste of
the sake [7]. Some lactic acid bacteria interact with S. cerevisiae to change its metabolism,
which results in the specific flavor and taste of the alcoholic beverage [8–10]. The effects of
co-culture of S. cerevisiae with bacteria were reported in the industrial ethanol production
process [11].

Bacteria that live in a sake brewery are called kuratsuki bacteria [12,13]; these bac-
teria inevitably enter the sake production process. Kuratsuki bacteria have evolved to
enable adaptation to the sake-making environment through the modification of their
genomes [13–15]. Although research on kuratsuki yeasts has been performed, research on
kuratsuki bacteria has been considered unnecessary. As a result, there was no information
on the difference in kuratsuki bacteria among different sake breweries. To elucidate the
diversity of kuratsuki bacteria, we isolated and identified bacteria from the sake production
process and subsequently characterized them [14,16].
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Strains belonging to the genus Kocuria were isolated and identified as kuratsuki bacteria
from the Narimasa Sake Brewery in Toyama, Japan [15,17]. Kocuria belongs to the phylum
Actinobacteria and is not a lactic acid bacterium. We isolated and identified two different
strains belonging to the genus Kocuria, which were K. koreensis strain TGY1120_3 and
K. uropygioeca strain TGY1127_2 [15]. We have used these two strains as representative
kuratsuki bacteria in our experiments, especially K. uropygioeca strain TGY1127_2 [18–20].

Although this strongly suggests that kuratsuki bacteria may interact with sake yeast
to change the metabolism as well as lactic acid bacteria, which results in the taste of
sake [14,18–21], the function of kuratsuki bacteria remains uncertain. We used the taste
recognition device to confirm whether the co-culture would change the taste. Different
effects of kuratsuki bacteria were found on different types of koji and different strains of sake
yeast [13,18,19]. Thus, the taste of sake with kuratsuki bacteria differed from that without
kuratsuki bacteria. We are performing research focusing on microbial interaction.

Comparison of gene expression is one of the most effective methods for elucidating the
interactions between sake yeast and bacteria. There have been no reports on the genome-
wide gene expression analysis of sake yeast in response to kuratsuki bacteria. In this study,
we compared the gene expression of sake yeast in monoculture and co-culture with that of
kuratsuki Kocuria.

2. Materials and Methods
2.1. Culture of Sake Yeast and kuratsuki Kocuria

The sake yeast S. cerevisiae strain K1401 [7] and Kocuria uropygioeca strain TGY1127_2 [15]
were used in this study. Each strain was pre-cultivated in TGY medium (5 g/L tryptone,
1 g/L glucose, and 3 g/L yeast extract) at 25 ◦C for 12 h. One milliliter of pre-cultivated
cell suspension of K1401 (2.25 × 106 cells/mL) was added to 200 mL of modified TGY
medium (20 g/L tryptone, 150 g/L glucose, and 10 g/L yeast extract). In addition, 1 mL of
the pre-cultivated cell suspension of K1401 and 1 mL of the pre-cultivated cell suspension
of TGY1127_2 (>1 × 108 cells/mL) were mixed with 200 mL of modified TGY medium.
Thus, monoculture and co-culture were performed in the artificial medium, which differs
from the fermentation environment during sake making. The two solutions were incubated
at 14 ◦C for seven days.

2.2. Measurement of Brix

Brix was measured daily (on days 0, 1, 2, 3, 4, 5, 6, and 7) using a PAL-BX/ACID
digital refractometer (ATAGO, Tokyo, Japan). Brix is a measure of the percentage of soluble
solids in syrups and products. Each degree of Brix is equal to 1% concentration of sugar in
solution when measured at 20 ◦C (https://www.foodscience-avenue.com/ (accessed on
20 April 2024)). Each measurement was repeated thrice. The median of the three values
was selected as the representative value. The Kolmogorov–Smirnov test was performed
to compare the two samples using R software (The R Project for Statistical Computing,
http://www.R-projet.org/ (accessed on 25 January 2024)). The Kolmogorov–Smirnov test
is sensitive to differences in both the location and the shape of the empirical cumulative
distribution functions of the two samples, which is one of the most useful nonparametric
methods for the comparison of two samples.

2.3. RNA Isolation and Sequencing

DNA was digested and total RNA was isolated using an RNeasy Mini Kit (Qiagen,
Hilden, Germany). After removing rRNA with riboPool (siTOOLs Biotech, Planegg, Ger-
many), sequencing libraries were prepared using the MGIEasy RNA Directional Library
Prep Set (MGI Tech, Shenzhen, China). The resulting libraries were analyzed using Synergy
H1 (Agilent, Santa Clara, CA, USA) and QuantiFluor dsDNA System (Promega, Madison,
WI, USA). The MGIEasy Circulation Kit (MGI Tech, Shenzhen, China), DNBSEQ DNB
Rapid Make Reagent Kit (MGI Tech), and DNBSEQ-T7 DNB Rapid Load Reagent Kit
(MGI Tech) were used. Sequencing was performed (2 × 150 bp) using a DNBSEQ-T7RS
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High-throughput Sequencing Kit (MGI Tech) and DNBSEQ-T7 (MGI Tech). The adapter
sequence was removed using Cutadapt (ver. 4.0); bases with a quality score of less than
20 and paired reads with a length smaller than 75 bases were removed using Sickle (ver.
1.33). High-quality reads were mapped to the Saccharomyces cerevisiae S288C genome (NCBI
RefSeq ID: GCF_000146045.2).

2.4. Gene Expression Comparison

We calculated the ratio of reads per kilobase of exon per million mapped reads
(RPKM) [22] in sake yeast in co-culture with the K. uropygioeca TGY1127_2 per RPKM
in the sake yeast in monoculture and selected a ratio of >2 for the upregulated genes and a
ratio of <0.5 for the downregulated genes.

3. Results and Discussion
3.1. Brix of Culture

The Brix change pattern of the co-culture of sake yeast K1401 and K. uropygioeca
TGY1127_2 was similar to that of the monoculture of sake yeast (Figure 1, Table S1). These
patterns were not significantly (p > 0.05) different in the Kolmogorov–Smirnov test. This
indicates that kuratsuki Kocuria did not inhibit alcohol fermentation by sake yeast, which is
consistent with a previous study [18]. The 7-day monoculture and co-culture system was
used for RNA isolation and sequencing. Brix was decreasing at 7 days (Figure 1, Table S1),
thereby indicating that ethanol fermentation by sake yeast is in progress.
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Figure 1. Brix of monoculture of the sake yeast K1401 and co-culture with the kuratsuki Kocuria
TGY1127_2. These change patterns were not significantly different (p > 0.05 in the Kolmogorov–
Smirnov test).

3.2. RNA Mapping and Gene Expression

The number of high-quality paired reads was 26,629,768 and 33,522,652 in the mono-
culture of sake yeast K1401 and co-culture with K. uropygioeca TGY1127_2, respectively.
Among these reads, 24,367,924 (91.59%) and 30,433,279 (90.87%) reads were mapped to a
single locus in the sake yeast monoculture and co-culture with kuratsuki Kocuria, respec-
tively. In this study, we did not use any reads that were mapped to multiple loci because
their origins were unclear, but we did use the reads that were mapped to a single locus.
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We mapped the RNA sequences of 6420 genes of Saccharomyces cerevisiae. The number
of genes that mapped more than 10 sequences in both sake yeasts in monoculture and
co-culture with kuratsuki Kocuria was 5922. For these 5922 genes, the ratio of RPKM (the
ratio of reads per kilobase of exon per million mapped reads) in co-culture with kuratsuki
Kocuria per RPKM in monoculture. The mean ratio was 0.955 ± 0.008. We compared the
gene expression levels of 5922 genes in sake yeast K1401 in monoculture and co-culture
with K. uropygioeca TGY1127_2. Among the 5922 genes, 71 genes were upregulated more
than 2-fold, and 61 genes were downregulated less than 0.5-fold in co-culture with kuratsuki
Kocuria (Figures 2 and 3, Tables S2 and S3, Figure S1).
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Figure 2. More than 2-fold upregulated genes of sake yeast in co-culture with the kuratsuki Kocuria.
Blue, green, red, and yellow indicate the genes involved in stress response, cell cycle, and/or
sporulation, retrotransposons, and metabolism, respectively. Purple indicates the gene involved in
stress response and cell cycle. Grey indicates the other genes.
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Figure 3. Less than 0.5-fold downregulated genes of sake yeast in co-culture with the kuratsuki
Kocuria. Blue, green, red, and yellow indicate the genes involved in stress response, cell cycle, and/or
sporulation, retrotransposons, and metabolism, respectively. Pink indicates the gene involved in
stress response and metabolism. Grey indicates the other genes.

3.3. Gene Expression Changes of Retrotransposons and Small Nuclear RNAs in Co-Culture with
the kuratsuki Kocuria

The most (38.8-fold) and second-most (18.0-fold) upregulated genes in co-culture with
K. uropygioeca TGY1127_2 encoded a retrotransposon TYA gag protein (Figure 2, Table S2).
Various stressors activate S. cerevisiae retrotransposons [23–27]. In our data, although
10 genes that encode the retrotransposon TYA gag protein were upregulated more than
2-fold in co-culture with kuratsuki Kocuria, five genes were downregulated less than 0.5-fold
(Figures 2 and 3, Tables S2 and S3). This suggests that K. uropygioeca TGY1127_2 affects
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retrotransposon regulation in sake yeast. Further studies are needed to elucidate yeast
genome modifications using retrotransposons induced by kuratsuki Kocuria.

The small nuclear RNAs SNR8 and SNR5, were 7.3-fold and 2.6-fold, respectively, in
co-culture with K. uropygioeca TGY1127_2 (Figure 2, Table S2). These two small nuclear
RNAs are hydrogen bound to 20S pre-rRNA [28]. In this study, 81 snRNAs were identified.
Interestingly, nuclear small RNAs other than SNR5 and SNR8 were not upregulated more
than 2-fold (Figure 2, Table S2). In addition, NOP2 was 2.1-fold upregulated in the co-culture
with kuratsuki Kocuria (Figure 2, Table S2), which encodes a ribosomal RNA (cytosine-C5-)
methyltransferase [29]. This suggests that sake yeast activates the processing of pre-
ribosomal RNA when co-cultured with kuratsuki Kocuria.

3.4. Expression Changes of Stress-Related Genes in Co-Culture with the kuratsuki Kocuria

Among the 71 more than 2-fold upregulated genes in the co-culture with K. uropygioeca
TGY1127_2, the following fourteen were stress-induced genes: AHP1, CAT8, CSR2, DDR2,
GEX1, HSP150, MOB1, MPC3, PAU5, PAU19, POM33, SRX1, TIP41, and RCN1 (Figure 2,
Table S2). Ahp1 is involved in oxidative stress response [30]. The transcription factor
Cat8 is involved in the reprogramming of carbon metabolism [31,32]. Csr2 is involved
in osmotic stress response [33]. Ddr2 is involved in response to multiple stresses [34,35].
Gex1 is a glutathione exchanger that is induced in response to ion depletion [36]. Hsp150
is involved in the response to aluminum and oxidative stress [37,38]. Mob1 is involved
in the regulation of mitotic exit [39,40]. Mpc3 stimulates respiration, which is involved
in response to oxidative stress [41,42]. S. cerevisiae contains 24 Pau proteins [43]. Pau5
and Pau19 are structurally different [43]. Pau5 may be involved in the recombination of
transposable elements [43,44]. The upregulation of PAU5 may be related to retrotransposon
activation. Pom33 is a membrane protein of the nuclear pore complex [45,46]. Srx1 is
involved in the oxidative stress response [47]. Tip41 is involved in the negative regulation
of the TOR signaling pathway [48]. Rcn1 is involved in the response to ethanol stress [49].
Among these fourteen stress-induced proteins, the abundance of six proteins, Cat8, Mob1,
Mpc3, Pom33, Srx1, and Tip41, increased in response to DNA replication stress [50].

Replication stress inhibits transcription of histone genes [51]. In our data, seven of ten
histone genes were downregulated in the co-culture with kuratsuki Kocuria (Table 1). Among
the histone genes, HHT2 was downregulated (Figure 3, Table 1 and S3). In addition, RTF1,
SAP30, and SDS3 were downregulated by less than 0.5-fold in co-cultures K. uropygioeca
TGY1127_2 (Figure 3, Table S3) [52–54]. Therefore, kuratsuki Kocuria is strongly suggested
to increase replication stress in sake yeast.

Table 1. Expression change of histone genes of sake yeast in co-culture with the kuratsuki Kocuria.

Genbank ID Gene Product Length (nt) No. of Mapped Reads RPKM Ratio

Monoculture Coculture Mono Co Co/Mono

NM_001182870.1 HHT2 histone H3 411 36894 4354 3749.46 358.96 0.096
NM_001178358.1 HHT1 histone H3 411 2419 1624 245.84 133.89 0.545
NM_001178243.1 HTA2 histone H2A 399 2201 1517 230.41 128.83 0.559
NM_001178357.1 HHF1 histone H4 312 1616 1169 216.34 126.96 0.587
NM_001180533.3 HTA1 histone H2A 399 4178 3769 437.37 320.08 0.732
NM_001178242.1 HTB2 histone H2B 396 829 749 87.44 64.09 0.733
NM_001182869.1 HHF2 histone H4 312 3556 3677 476.06 399.34 0.839
NM_001183941.1 HHO1 histone H1 777 936 1194 50.32 52.07 1.035
NM_001183266.1 HTZ1 histone H2AZ 405 445 588 45.89 49.20 1.072
NM_001180532.3 HTB1 histone H2B 396 600 855 63.29 73.16 1.156

In contrast, six stress-induced genes, ASR1, GSH2, HSP30, SSA2, SSA4, and YHB1,
were downregulated by less than 0.5-fold in co-culture with kuratsuki Kocuria (Figure 3,
Table S3). Asr1 is involved in the response to ethanol stress [55]. Gsh2 is a glutathione syn-
thase, which is involved in response to oxidative stress [56,57]. Hsp30 is involved in the re-
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sponse to several stressors [58,59]. Ssa2 and Ssa4 are a member of Hsp70 chaperones [57,60].
Yhb1 is involved in the oxidative stress [61]. Thus, the expression of some stress-induced
genes was diametrically opposed; for example, ASR1 vs. RCN1 in response to ethanol stress
and AHP1 vs. YHB1 in response to oxidative stress. These results suggest that the stress
levels of sake yeast co-cultured with kuratsuki Kocuria may not be as high.

3.5. Expression Changes of Cell Cycle-Related Genes in Co-Culture with the kuratsuki Kocuria

The following eight genes, HFM1, IRC18, LDS2, LOH1, MOB1, SPO24, SPS19, and
SSP1, are involved in meiosis and/or sporulation, and were upregulated more than 2-
fold in co-culture with K. uropygioeca TGY1127_2 (Figure 2, Table S2). Hfm1 is a DNA
helicase involved in meiotic crossing over [62]. Irc18 and Lds2 are involved in spore
wall assembly [63,64]. Loh1 is involved in the loss of heterozygosity [65]. As previously
mentioned, stress-induced Mob1 is involved in the regulation of mitotic exit [40]. SPO24
produces two mRNA forms, which appear during meiosis and mid-late meiosis [66]. Sps19
is a 2, 4-dienoyl-CoA reductase involved in sporulation [67]. Ssp1 is involved in meiotic
division and spore formation [68].

In addition, four genes, CLG1, CLN3, GSP1, and VHS1, are involved in the cell cycle
and/or maintenance of nucleolar organization and were also upregulated in co-culture with
kuratsuki Kocuria (Figure 2, Table S2). Clg1 is a cyclin-like protein, which interacts with the
cyclin-dependent kinase Pho85 [69,70]. Cln3 is activated in response to nutrient repletion
induced by acetyl-CoA [71]. Gsp1 is a GTP-binding protein involved in the maintenance of
nuclear organization [72]. Vhs1 suppresses cell cycle arrest during the G1-S transition [73].

Meanwhile, TEM1, which is involved in the termination of the M phase [74], was
downregulated by less than 0.5-fold (Figure 3, Table S3); this is inconsistent with the
upregulation of genes related to the meiosis/sporulation/cell cycle. In addition, the
upregulation (Figure 2, Table S2) of CLN3 is also inconsistent with the upregulation of
meiosis-induced genes because G1 cyclin Cln3 blocks meiosis [75,76]. Therefore, it is
uncertain whether sake yeast was about to undergo meiosis and enter the spore formation
stage in co-culture with kuratsuki Kocuria. It is possible that various cells at different cell
cycle stages existed.

3.6. Downregulation of Metabolic Genes in Co-Culture with kuratsuki Kocuria

The expression of other genes involved in metabolism was downregulated by less
than 0.5-fold in the co-culture with K. uropygioeca TGY1127_2, except for YIG1 (Figure 2,
Table S2). Thus, among the 61 genes downregulated by less than 0.5-fold, fourteen genes,
ASN1, CHA1, COQ5, DAL3, ELO1, ENO2, FAA4, GPH1, GSH2, MET28, TDH1, TDH2, TDH3,
and THI4, were involved in metabolic regulation (Figure 3, Table S3). Asn1 encodes an
asparagine synthetase [77]. Cha1 is an L-serine (L-threonine) deaminase [78]. Coq5 is
a 2-hexaprenyl-6-methoxy-1,4-benzoquinone methyltransferase involved in ubiquinone
biosynthesis [79]. Dal3 is a ureidoglycolate hydrolase [80]. Elo1 is a medium-chain acyl
elongase [81]. Eno2 is a phosphopyruvate hydratase [82]. Faa4 is a long-chain fatty
acyl-CoA synthetase [83]. Gph1 is a glycogen phosphorylase [84]. Gsh2 is a glutathione
synthetase [56]. Met28 is a transcriptional activator that regulates sulfur metabolism [85].
Tdh1, Tdh2, and Tdh3 are the glyceraldehyde-3-phosphate dehydrogenases involved
in glycolysis [86]. The glyceraldehyde-3-phosphate dehydrogenase activity generally
increases with ethanol stress [87]. Thus, the downregulation of the glyceraldehyde-3-
phosphate dehydrogenase genes was inconsistent with the increase in ethanol concentration
during fermentation. Thi4 is a thiazole synthase [88]. These downregulated metabolic
genes play important roles in growth processes, such as glycolysis. Thus, the cell activity of
sake yeast decreased in the co-culture with kuratsuki Kocuria.
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3.7. Expression Changes of Transporter Genes and Mitochondria-Related Genes in Co-Culture with
the kuratsuki Kocuria

The hexose transporter gene HXT11 [89] was 2.2-fold upregulated in the co-culture
with K. uropygioeca TGY1127_2 (Figure 2, Table S2). Three transporter genes, CTR3, OPT2,
and PHO84, were downregulated <0.5-fold (Figure 3, Table S3). Ctr3 is a copper trans-
porter [90]. Opt2 is an oligopeptide transporter [91]. Pho84 is a phosphate transporter [92].

Although nine mitochondria-related genes, CIT2, LSC1, MPC3, MRPL4, NCA3, NDE2,
PET9, SFC1, and SLS1, were upregulated more than 2-fold in co-culture with kuratsuki Kocu-
ria, two genes (SOM1 and TIM50) were downregulated less than 0.5-fold (Figures 2 and 3,
Tables S2 and S3), thereby suggesting that kuratsuki Kocuria affected the mitochondrial sys-
tem of sake yeast. Cit2 is a citrate synthase [93]. Lsc1 is a succinyl-CoA ligase [94]. Mpc3 is a
mitochondrial pyruvate carrier [42]. Mrpl4 is a mitochondrial ribosomal protein YmL4 [95].
Nca3 regulates the mitochondrial expression of Fo-F1 ATP synthase subunits [96]. Nde2
is a mitochondrial NADH dehydrogenase [97]. Pet9 is an adenosine diphosphate/ATP
translocator [98]. Sfc1 is a succinate–fumarate transporter [99]. Sls1 is a regulator of mito-
chondrial genes [100]. Som1 is a mitochondrial inner-membrane peptidase [101]. Tim50 is
a translocase of the mitochondrial presequence translocase [102]. In addition, PDC1 was
also 2.3-fold upregulated in co-culture with K. uropygioeca TGY1127_2 (Figure 2, Table S2).
Pdc1 is a key enzyme in alcoholic fermentation [103], strongly suggesting that ethanol
fermentation is activated. However, this was inconsistent with the downregulation of the
glycolytic enzyme genes ENO2, TDH1, TDH2, and TDH3. Further studies are needed to
elucidate the state of sake yeast mitochondria in co-cultures with kuratsuki Kocuria.

3.8. Comparison of Gene Expression Changes in Co-Culture with the kuratsuki Kocuria and with
Lactic Acid Bacteria

Mendes et al. [104] identified eleven upregulated (CCC2, CIN5, CTR1, CTR3, EEB1,
FIT1, FMP23, HMX1, SIT1, STL1, and TIS11) and six downregulated (ADH2, ATO3, CAR2,
PHM8, SUL1, and XBP1) genes in a co-culture with Lactobacillus delbrueckii subsp. bulgaricus.
Ccc2 is a Cu2+ transporting ATPase [105]. Cin5 is a transcription factor involved in the
response to various stressors [106,107]. Ctr1 and Ctr3 are a copper transporter [90,108].
Interestingly, CTR3 was 4.6-fold upregulated in response to co-culture with L. delbrueckii
subsp. bulgaricus [104]. Thus, the expression of this gene is the opposite in co-cultures with
kuratsuki Kocuria and lactic acid bacteria. Eeb1 is an alcohol O-octanoyltransferase [109].
Fit1 is a cell-wall mannoprotein [110]. Fmp23 is a putative protein involved in copper
and iron metabolism [111]. Hmx1 is a heme oxygenase [112]. Sit1 is a ferrioxamine
B permease [113]. Stl1 is a glycerol proton symporter [114]. Tis11 is an RNA-binding
protein [115]. Adh2 is alcohol dehydrogenase [116]. Ato3 is a putative outward ammonium
transporter [117]. Car2 is an ornithine transaminase [118]. Phm8 is a magnesium-dependent
lysophosphatidic acid phosphatase [119]. Sul1 is a sulfate transporter [120], while Xbp1 is a
stress-induced transcription factor [121]. Genes other than CTR3 are not listed in Tables S2
and S3. Therefore, gene expression changes in S. cerevisiae differed completely in response
to co-culture with K. uropygioeca TGY1127_2 and L. delbruechii subsp. bulgaricus.

Liu et al. [122] showed fifteen upregulated (CIN5, DAK2, GPX2, HCH1, HSP104, PAU3,
PAU19, PAU21, PAU22, PDR15, PHM8, RSB1, SRX1, TPS2, and TRR1) and 11 downregu-
lated (BCY1, BUD25, HSC82, HTA2, HYR1, MXR2, OXR1, SCO1, TEM1, THI4, and TRX1)
genes in a co-culture with Lactiplantibacillus plantarum. Cin5 is a transcription factor in-
volved in response to various stressors [106,107]. Dak2 is a dihydroxyacetone kinase [123].
Gpx2 is a glutathione peroxidase [124]. Hch1 is a chaperone-binding ATPase activator [125].
Hsp104 is involved in the response to multiple stressors [126]. Pau3, Pau19, Pau21, and
Pau22 belong to the seripauperin family [127]. Pdr15 is a general stress response factor [128].
Phm8 is a magnesium-dependent lysophosphatidic acid phosphatase [119]. PHM8 was
downregulated and upregulated in co-cultures with Lactobacillus delbrueckii subsp. bul-
garicus and Lactiplantibacillus plantarum, respectively. Rsb1 is involved in the sphingoid
long-chain base release [129]. Srx1 is involved in the oxidative stress response [47]. Tps2
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is trehalose-6-phosphate phosphatase [130]. Trr1 is a thioredoxin reductase [131]. Bcy1 is
a cyclic adenosine-monophosphate-dependent protein kinase [132]. Bud25 is involved in
bud-site selection [133]. Hsc82 is a chaperone and a paralog of Hsp82 [134]. Hta2 is a his-
tone H2A [135]. HTA2 was 0.56-fold downregulated in the co-culture with kuratsuki Kocuria
(Table 1). Hyr1 is a glutathione peroxidase [124]. Mxr2 encodes a methionine sulphoxide
reductase [136]. Oxr1 is involved in regulating V-ATPase [137]. Sco1 is a copper-binding
protein involved in the function of cytochrome c oxidase [138]. Tem1 is a GTP-binding
protein involved in the termination of M phase [74]. Thi4 is a thiazole synthase [88]. Trx1 is
a thioredoxin [139].

The two upregulated genes, PAU19 and SRX1, and the two downregulated genes,
TEM1 and THI4, are listed in Tables S2 and S3, respectively. As previously mentioned,
PAU19 and SRX1 are stress-inducing genes. TEM1 and THI4 are involved in the termina-
tion of the M phase and thiamine biosynthesis, respectively. The other upregulated and
downregulated genes differed between co-cultures with K. uropygioeca TGY1127_2 and
Lactiplantibacillus plantarum.

Although no genes with similar expression changes were found between co-cultures
with K. uropygioeca TGY1127_2 and Lactobacillus delbrueckii subsp. bulgaricus, four genes
were found between co-cultures with K. uropygioeca TGY1127_2 and Lactiplantibacillus
plantarum. In addition, although both L. delbruechii subsp. bulgaricus and Lactiplantibacillus
plantarum are lactic acid bacteria, a similar expression pattern was observed only for CIN5.
These results indicate that S. cerevisiae has different gene expression responses in the co-
culture of different bacterial species.

4. Conclusions

We showed that K. uropygioeca TGY1127_2 interacted with sake yeast and altered
its gene expression patterns. The genes involved in cell cycle/sporulation trended to be
upregulated and those involved in metabolism trended to be downregulated in response to
co-culture with K. uropygioeca TGY1127_2. The gene expression of yeast in co-culture with
kuratsuki Kocuria differed from that in co-culture with lactic acid bacteria. This strongly
suggests that S. cerevisiae exhibits different gene expression patterns in response to different
bacteria during sake production. Thus, a novel combination of sake yeast and kuratsuki
bacteria can lead to a unique sake that has never existed before.

Although our findings showed that the sake yeast changed its gene expression un-
der co-existing with the kuratsuki Kocuria, these results cannot be directly applied to the
relationship between sake yeast and kuratsuki bacteria in sake making. This is because the
culture conditions are different. It is already known that the effect of kuratsuki bacteria
differs by changing the type of koji, etc. In the future, it will be necessary to investigate how
sake yeast is affected by kuratsuki bacteria in the sake-making environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fermentation10050249/s1, Table S1: brix of culture. Table S2:
more than 2-fold upregulated genes of sake yeast in co-culture with the kuratsuki Kocuria. Table S3: less
than 0.5-fold downregulated genes of sake yeast in co-culture with the kuratsuki Kocuria. Figure S1:
volcano plot between hold change and p value.
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